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Abstract 

In this paper, we analyze numerically some of the features of the 

blow-up phenomena arising from a nonlinear parabolic equation 

subject to nonlinear boundary conditions. More precisely, we study 

numerical approximations of solutions of the problem 
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where .1  We obtain some conditions under which the 

solution of the semidiscrete form blows up in a finite time. We 

estimate its semidiscrete blow-up time and also establish the 

convergence of the semidiscrete blow-up time to the real one. Finally, 

we give some numerical experiments to illustrate our analysis. 

1. Introduction 

Consider the following initial-boundary value problem: 
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 (1.1) 

where 1  are parameters. The function 0u  satisfies the compatibility 
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condition 
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The first equation of (1.1) can be rewritten in the following form: 

           .,01,0,,,,, Ttxtxutxuutxu xxt    

Without loss of generality, we may consider the following: 

           ,,01,0,,,,, Ttxtxutxuutxu xxt    (1.2) 

    ,0,,0,0   ttutux  (1.3) 

    ,0,,1,1   ttutux  (1.4) 

    ,10,00, 0  xxuxu  (1.5) 

where .1  

Definition 1.1. We say that the solution u of (1.2)-(1.5) blows up in a 

finite time if there exists a finite time bT  such that   tu .,  for 

 bTt ,0  but 

  ,.,lim 
tu

bTt
 

where     .,max., 10 txutu x   The time bT  is called the blow-up 

time of the solution u. 

The theoretical study of solutions of nonlinear parabolic equations with 

nonlinear boundary conditions which blow up in a finite time has been the 

subject of investigations of many authors (see [5, 11, 12] and the references 

cited therein). Concerning the problem (1.1), under certain conditions given, 

Zhang [5] has shown that if ,1  then the solution must blow up in a 

finite time T and T satisfies .
1

1 1 


T  He also shows that if ,1  
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then the solution  txu ,  of the problem exists globally. But the numerical 

study has not been treated. The problem (1.2)-(1.5) belongs to a class of 

equations that are used in biology. These equations are used in the area                

of population biology, and ecological interactions, and are characterized by 

birth and death [2]. 

In this work, we are interested in the numerical study using a 

semidiscrete form of (1.2)-(1.5). 

Let 2I  be an integer. Then we set 
I

h
1  and define the grid 

,ihxi   for ....,,0 Ii   

We approximate the solution u of (1.1) by the solution hU  of the 

semidiscrete equations: 

         ,,0,11,2 h
biiii TtIitUtUtUtU

dt
d    (1.6) 
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Here,  h
bT,0  is the maximal time interval on which the solution  tUh  

of (1.6)-(1.9) is finite, where     .max 10 tUtU hxh    When h
bT  is 

infinite, we say that the solution  tUh  exists globally. When h
bT  is finite, 

we say that the solution  tUh  blows up in finite time and in the last case the 

time h
bT  is called the blow-up time of the solution  .tUh  Our aim in the 

present work is to give some conditions under which the solution of            

(1.6)-(1.9) blows up in a finite time and estimate its semidiscrete blow-up 

time. We also show that the semidiscrete blow-up time converges to the real 

one when the mesh size goes to zero. Concerning the numerical study of 

blow-up phenomena, one can also find in [1, 3, 6, 7, 9] some results where 

the authors have proposed some schemes for the numerical calculation of 

solutions which present singularities. 

The paper is organized as follows: in the next section, we give some 

properties concerning our semidiscrete scheme. In Section 3, under some 

conditions, we prove that the solution of the semidiscrete form of (1.2)-(1.5) 

blows up in a finite time as well as the convergence of the semidiscrete 

blow-up time. Finally, in the last section, we estimate the numerical blow-up 

time and give some numerical results to illustrate our study. 

2. Properties of the Semidiscrete Scheme 

In this section, we give some lemmas which will be used later. The 

following lemma is a semidiscrete form of the maximum principle. 

Lemma 2.1. Let       10 ,,0,  I
hh TCtbta   and let   tVh  

  11 ,,0 ITC   such that 

           ,,0,0,02 TtIitVtatVtbtV
dt
d

iiiii   (2.1) 

  .0,00 IiVi   (2.2) 
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Then we have 

   .,0,0,0 TtIitVi   (2.3) 

Proof. Let TT 0  and define the vector    ,tVetZ h
t

h
  where   is 

sufficiently small such that    0tai  for ,0 Ii    .,0 0Tt   Let 

 .min
00,0 tZm iTtIi   Since, for  ,...,,0 Ii    tZi  is a continuous 

function on the compact  ,,0 0T  there exist  00 ,0 Tt   and  Ii ...,,00   

such that  .00
tZm i  We observe that 

     
,0,0lim 0

00

0

0 000 Ii
tZtZ

dt

tdZ iii 
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From (2.1), we obtain the following inequality: 

 
          .0000

2
0

0
0000

0  tZtatZtb
dt

tdZ
iiii

i
 (2.8) 

It follows from (2.4)-(2.7) that       ,000 00
 tZta ii  which implies              

that   000
tZi  because    .000

tai  We deduce that   0tVh  for 

 0,0 Tt   and the proof is complete.  

Lemma 2.2. Let       11 ,,0,  I
hh TCtWtV   and   ,0 Cf  

and   0tbh  such that 
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                 ,,, 22 ttWftWtb
dt

tdW
ttVftVtb

dt
tdV

iii
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iii
i   

 ,,0,0 TtIi   

    .0,00 IiWV ii   

Then 

     .,0,0, TtIitWtV ii   

Proof. Introduce the vector      .tVtWtZ hhh   Let 0t  be the first 

0t  such that   0tZi  for  ,,0 0tt   ,0 Ii   but   000
tZi  for a 

certain  ....,,00 Ii   It is not hard to see that 
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which implies that 

 
            .0,, 000

2
0

0
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0  ttVfttWftZtb
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tdZ
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i
 

But this inequality contradicts the first strict differential inequality of the 

lemma and the proof is complete.  

Lemma 2.3. Let hU  be the solution of (1.6)-(1.9). Then 
 

0
dt

tdUi  for 

 .,0,0 h
bTtIi   
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3. Blow-up Time of the Semidiscrete Problem 

In this section, under some assumptions, we prove that the semidiscrete 

solution hU  of problem (1.6)-(1.9) blows up in a finite time. Then we 

estimate the semidiscrete blow-up time, and finally, we prove that this time 

converges to the real one when the mesh size goes to zero. 

Lemma 3.1. Let 1 I
hU   such that .0hU  Then we have 

.1,0212   IiforUUU iii  

Proof. Using Taylor’s expansion, we obtain 
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where i  is an intermediate value between iU  and 1iU  and i  is an 

intermediate value between 1iU  and .iU  Using the fact that ,0hU  we 

have the desired result.  

Theorem 3.1. Let hU  be the solution of problem (1.6)-(1.9). Assume 

that 1  and suppose that there exists a constant 0  such that 

,11,2   Iiiiii  (3.1) 

,
2

0000
2

0
 

h
 (3.2) 

.
22   IIIII h

 (3.3) 
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Then the solution hU  of problem (1.6)-(1.9) blows up in a finite time h
bT  

and we have the following estimate: 

.
1

1
1








hh

bT  (3.4) 

Proof. Let  h
bT,0  be the maximal time interval on which   tUh  

.  Our aim is show that h
bT  is finite and satisfies (3.4). 

Introducing the vector hJ  such that 

       .,0,0, h
biii TtIitUtU

dt
d

tJ    (3.5) 

We shall prove that   ,0tJi  for .0,0  tIi  

From (3.5), we have 

.0,22 IiUU
dt
d

UUU
dt
d

dt
d

JUJ
dt
d

iiiiiiii 




 





    

Using Lemma 3.1, we obtain 
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d 2122  
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d

U ii   

By a straightforward computation, we have 

,11,212   IiU
dt
d

UJUJUJ
dt
d

iiiiiii  
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IIIIIII JU
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JUJUJ

dt
d   1212  

  .1
2 2

III U
dt
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h

   

Using the fact that 1  and the hypotheses of the theorem, we get 

,012  
iiiii JUJUJ

dt
d
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  .00 iJ  

We deduce from Lemma 2.1 that   0tJh  for  ,,0 h
bTt   which 

implies that 

    .0, IitUtU
dt
d

ii    

Integrating the above inequality over  ,,0
h

bTt  we arrive at 

  
1

1 1
0

0 


tU
tT ih

b  (3.6) 

which implies that 

,
1

1
1








hh

bT  

and the proof is complete.  

Theorem 3.2. Assume that (1.2)-(1.5) has a solution    1,01,4u  

 T,0  and the initial condition h  at (1.9) satisfies: 
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   ,10 ouhh    as ,0h  (3.7) 

where        ,...,,,0
T

Ih xutxutu    .,0 Tt   Then, for h sufficiently 

small, problem (1.6)-(1.9) has a unique solution 

  11 ,,0  I
h TU   

such that 

 
        .0,0max 2

,0
 

hhuOtutU hhhh
Tt

 (3.8) 

The proof of the theorem of convergence of the solution hU  is similar to 

those given in [1, 10], so we omit it here. 

Theorem 3.3. Suppose that the solution of (1.2)-(1.5) blows up in a 

finite time bT  such that     ,,01,01,4 Tu    and the initial condition 

at (1.9) satisfies 

   ,10 ouhh    as .0h  

Then, under the hypothesis of Theorem 3.1, the solution hU  of (1.6)-(1.9) 

blows up in a finite time h
bT  and we have 

.lim
0

b
h

b
h

TT 


 (3.9) 

Proof. Let .0  Then there exists a positive constant N such that 






21
1 1y

 for  .,  Ny  (3.10) 

Since the solution u blows up at the finite time ,bT  there exists 1T  such 

that 

21
 bTT  and   Ntu 2.,   for  .,1 bTTt   
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Let .
2

1
2

bTT
T


  Then 

 
  ..,sup

2,0



tu

Tt
 

It follows from Theorem 3.2 that       .sup
2,0 NtutU hhTt    

Applying the triangular inequality, we get 

        ,  tutUtutU hhhh  

which implies   NtUh   for  .,0 2Tt   From Theorem 3.1,  tUh  

blows up in a finite time .h
bT  We deduce from (3.6) and (3.10) that 
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2

22
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TTTTTT hh
bb
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bb  

which achieves the proof.  

4. Numerical Experiments 

In this section, we estimate the numerical blow-up time and present 

some numerical results of the problem (1.2)-(1.5). For the numerical 

computation, we consider the equation on the finite interval  1,0x  and 

using the standard central difference approximation, we obtain the system of 

ODEs: 

           ,2
2

11 tU
h

tUtUtU
tUtU

dt
d

i
iii

ii
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We apply the algorithm based on the technique of the arc length 

transformation. The main idea of the method is to transform the ODE into a 

tractable form by the arc length transformation technique and to generate a 

linearly convergent sequence to the blow-up time. This sequence is then 

accelerated by the Aitken 2  method. The present method is applied to the 

blow-up problems of PDEs by discretising the equations in space and 

integrating the resulting ODEs by an ODE solver. Solver DOP54 is used 

with the tolerance parameters 15.1  dAbstolReltol  and pInitialste  

0  (see [3, 4, 6, 8, 9]). 

We report the cases with 3,2  and .  Several other cases with 

1  were tested as well and the results are similar. 

Without loss of generality, the initial value    xexpxu  40  is set to 

be superior to zero. The spatial step size h varies from 161  to .5121  The 

reason of choosing smaller spatial step sizes is not for the stability of 

numerical scheme, but for observing the blow-up more accurately. The order 

s of the method is computed from 

    
  .
2log

log 224 hhhh TTTT
s


  

In tables further, we list the computed blow-up time h
bT  for various 

values of parameters   and .  These results show that there is a 

relationship between the blow-up time and the parameters   and .  Indeed, 

when   is fixed and   increases, the blow-up time diminishes. This 

phenomenon is well known from the biological point of view. From these 

tables, we can also assure the convergence of the blow-up time h
bT  of the 

solution of (1.2)-(1.5), since the rate of convergence is near 2, which is just 

the accuracy of the difference approximation in space. 
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Table 1. Blow-up times, steps and orders of the approximations obtained for 

3,2   

I h
bT  Steps Orders 

16 0.02045421 4610 - 

32 0.02047033 6951 - 

64 0.02047384 11104 2.19 

128 0.02047466 18935 2.10 

256 0.02047485 34583 2.04 

512 0.02047490 100695 2.01 

Table 2. Blow-up times, steps and orders of the approximations obtained for 

4,2   

I h
bT  Steps Orders 

16 0.00043719 1219 - 

32 0.00044224 1682 - 

64 0.00044351 2400 1.98 

128 0.00044376 2860 2.08 

256 0.00044384 4328 2.00 

512 0.00044386 7191 2.00 

Table 3. Blow-up times, steps and orders of the approximations obtained for 

3,3   

I h
bT  Steps Orders 

16 0.0341992  5873  - 

32 0.0341074  8791  - 

64 0.0340784  13913  1.67 

128 0.0340697  23430  1.74 

256 0.0340673  44735  1.82 

512 0.0340666  146945  1.94 
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Table 4. Blow-up times, steps and orders of the approximations obtained for 

5.3,3   

I h
bT  Steps Orders 

16 0.00291688 2396 - 

32 0.00290369 3228 - 

64 0.00289989 4457 1.79 

128 0.00289870 6745 1.80 

256 0.00289837 10742 1.87 

512 0.00289828 21914 1.90 

Remark 4.1. In the following figures, we show the evolution of the 

semidiscrete solution. The parameter value 2  is adopted together with 

3  and .1 Ih   The four different stages of the semidiscrete solution       

at 128,64,16I  and 512 are depicted. We can also appreciate that the 

semidiscrete solution blows up in a finite time at a single node. The contour 

maps in figures also indicate this conclusion, since the contours get flat 

outside this node. This result provides some numerical evidence of blowing 

up as studied in [5]. 

 

(a) 
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(b) 

Figure 1. The evolution profiles of the semidiscrete solution for ,2  

3  with 16I  (in (a)) and 64I  (in (b)). 

 

(a) 
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(b) 

Figure 2. The evolution profiles of the semidiscrete solution for ,2  

3  with 128I  (in (a)) and 512I  (in (b)). 
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