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Abstract 

An intelligent adaptive fractional-order backstepping control under 

unknown external disturbances and parameter uncertainties for 

quadrotor is developed. The developed approach named FCN-FOBC 

combines fractional-order backstepping control (FOBC) and fuzzy-

Chebyshev network (FCN). Initially, the overall control and system 

tracking are performed using backstepping control (BC). FOBC is 

designed to advance the convergence speed and control reliability. 

Second, the FCN is set up to approximate the uncertainties, and           

a robust term is considered to overcome the problem of FCN 

approximation errors. Finally, using the Lyapunov theory, the stability 

of control system is confirmed. The numerical results confirm that           

the proposed controller has better tracking accuracy and stronger 

robustness compared to conventional approaches. 

1. Introduction 

It is a grand challenge to develop a quadrotor control system that             

is a multi-input-multi-output (MIMO) system under non-linear dynamic, 

uncertainties and external disturbances [1-3]. Numerous researches that 

focused on developing quadrotor nonlinear control [4-6], as well as 

backstepping technique [7]. This work is provoked by the control problem of 

the quadrotor against parameter uncertainties and external disturbances         

and develops an appropriate control methodology that requires no prior 

knowledge of system uncertainties. Unluckily, an exact system dynamics is 

required in advance for backstepping controller (BC). Thus, adaptive and 

intelligent BC techniques are evocated in current years [8-11]. An adaptive 

neural network (NN) was used to approximate the uncertainty of the system 
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and then supply required compensation for an adaptive BC (ABC) [8]. 

Fractional-order (FO) controller provides further freedom in parameter 

adjustments, so it offers better performance and robustness [12]. But, only 

some FO backstepping controllers (FOBC) are designed [13, 14]. To 

decrease the influence of model uncertainties and external disturbances, FO 

adaptive backstepping controller (FOABC) is used with manipulator [15].          

In this work, an intelligent fractional-order backstepping control approach 

(named FCN-FOBC) combining the nonlinear approximation function of          

the fuzzy system and the Chebyshev network with FOBC is designed to 

control the quadrotor system. To advance robustness, a robust compensator 

is proposed to deal with uncertainties as well as approximation error and 

external disturbances. We outline the contributions as: 

(1) We have developed a nonlinear control structure (FCN-FOBC) 

which needs no prior knowledge of the uncertainties. 

(2) The FCN-FOBC approach has better strong robustness and more 

tracking precision. FOBC is used to decrease the uncertainties influence. The 

FCN approximator is applied to approximate and suppress uncertainties 

successfully and ensuring the robustness of the quadrotor system. 

(3) Based on conventional BC, the FO operation is included into FOBC, 

to provide further degrees of freedom and leading to a good impact on 

decreasing the uncertainties and external disturbances’ influences. 

(4) By Lyapunov theory, the developed control system stability is 

confirmed. 

1.1. Structure of the manuscript 

We summarize the remaining structure of the paper as: Section 2 

describes the dynamic equation of quadrotor system, problem statement and 

the BC design methodology. Section 3 depicts the proposed approach FCN-

FOBC. Finally, Section 4 clarifies numerical outcoming with discussions. 

Section 5 provides the conclusion. 
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2. QUAV Model 

2.1. Mathematical model and problem formulation 

As shown in Figure 1, the quadrotor is an underactuated system with six-

degree-of-freedom (6DoF) and two pairs of propellers. The control to be 

performed by varying the speed of four rotors. The quadrotor mathematical 

model is derived by Newton-Euler formulation. We have two coordinate 

frames, the inertial frame represented by  eee zyxE ,,  and the body fixed 

frame denoted by  .,, bbb zyxB   Tzyx ,,P  vector corresponds to the 

quadrotor position in frame E. Euler angle  T ,,  is employed to 

describe the orientation in frame B throughout regarding frame E, where 

,  and   characterize the roll angle ,22   pitch angle 

,22   and yaw angle ,  respectively. The control of 

both the position outputs  zyx ,,  and orientation outputs   ,,  is 

carried out by the total forces and torques  ,,,,  z  where z  

represents the total thrust on the body in the z-axis,   and   characterize 

the roll and pitch inputs, respectively, and   means a yawing moment. The 

(6DoF) model for the position and rotation is expressed by [16]: 

  ,msscscx z   

  ,mscsscy z   

  ,gmccz z   

    ,xrrzy IJIIl  
  

    ,yrrxz IJIIl  
  

    ,zyx IIIl  
  (1) 

where  cosc  and  sins    scsc ,,,forsame  and r  

4321   is the angular propeller, m and g correspond to the 
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mass and the gravitational constants, respectively. yx II ,  and zI  represent 

the inertia constants, rJ  is the rotor’s moment, and l signifies the distance 

between the mass of quadrotor center and the rotation axis of propeller. The 

dynamic equations (1) constitute a second-order underactuated nonlinear 

system that can be rewritten as: 

    .iii xxx  B  (2) 

 

Figure 1. Quadrotor configuration. 

Commonly, the nonlinear dynamic function  xi  and the input     

control function  xiB  parameters are affected by uncertainties and external 

disturbances. With the occurrence of parametric variations and external 

disturbances, we reformulate the dynamic model described by equation (2) 

by: 

           tPxxxxx iiiiii  00 BB  

    ,iiii xx  B  (3) 

where   12,,,,,,,,,,,  Tzzyyxxx &&&&&&  defines the global 

state variables and    ,,,,, zyxi  represents the quadrotor 

control,  xi0  and  xi0B  indicate the unknown uncertainties and  tPi  

denotes the unknown external disturbance of the ith subsystem, respectively. 

The lumped uncertainty i  consists of non-linear additive uncertainties and 
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an external disturbance. It is described as      ,00 tPxx iiii  B  

with a positive constant of ,i  where: 

    ,1,0 mxx xx  B  

    ,1,0 mxx yy  B  

    ,, 1,1, mcxcxxx zz  Bg  

      ,,2,2,2, xxrxzy IlxxIJxxIIIx
r

  B  

      ,,2,2,2, yyryxz IlxxIJxxIIIx
r

  B  

      .,2,2,2, zyrzyx IlxxIJxxIIIx
r

  B  (4) 

The quadrotor dynamic model described above can be rewritten by: 

   

 














,,,,,,,1,

2,

2,1,

zyxixy

xxx

xx

ii

iiiii

ii

B&

&

 (5) 

  i
iii xxx 2

2,1, ,   is the vector of the local state of every subsystem 

where 1,ii xy   and ,2,ix  its derivative. From equation (1), the system has 

six outputs including the position outputs  zyx ,,  and the orientation 

outputs   ,,  with only four independent inputs. Thus, it is not easy to 

control the six subsystems individually. To defeat the concern, two virtual 

control inputs x  and y  are generated to drive the Cartesian position 

subsystems x and y, respectively [17]. Using equations (1) and (4), x  and 

y  are chosen as: 

 

 
.





























sscsc

sscsc

z

z

y

x
 (6) 

The control inputs  yx  ,  update the desired values of roll d  and 

pitch d  angles. Therefore,  dd  ,  angles are obtained as solutions of the 
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system described by equation (6) and can be given by: 

 
.

arcsin

arcsin



















































d
yx

yx

d

d

c

sc

cs

 (7) 

Assumption 1. The desired trajectory d
iy  with its time derivatives 

d
i

d
i yy  ,  is supposed to be known, smooth and bounded. 

2.2. Conventional backstepping controller (BC) 

The nonlinear BC developed for the closed-loop system (equation (5)) 

by using the Lyapunov stability theory requires the three steps [18]. 

3. Intelligent Adaptive FO Backstepping Control 

3.1. Fractional-order backstepping control (FOBC) 

To improve the tracking performance of quadrotor based on BC, an 

FOBC method based on FO virtual stability function is proposed. Due to the 

introduction of differential and integral orders   and ,  the controller has 

two more adjustable parameters. Thus, the tuning range of the controller 

parameters becomes larger, and the controller can control the quadrotor 

system more flexibly. 

Firstly, the differential and integral of FO related to generalizations of 

the integer-order (IO) is expressed by: 

 

 

   





















 







,0

01

0

0

0

R

R

R

t

t

t
RL
t

d

dt

d

D  (8) 

D designates the operator of FO calculus,   is the FO that can be a real or a 

complex number, 0t  and t represent the limits of the operation, and  R  

indicates the real part of .  In this work, in order to simplify the notation, 
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FO operator 
tt D

0
 is designated as D  [19]. Next, the FO virtual stability 

function is chosen as: 

 ,,,,,,,1,2,1,1,1,,,   zyxiDDy iiiiiiFO
d
iiFO eee&  (9) 

where iFO,  and 2,i  are any positive constants. We define the iFO ,2e  

virtual tracking error as follows: 

.1,1,,1,2,1,1,,,2 iiiFOiiiiiFOiiFO DDy eeeee &&    (10) 

Substituting equation (3) into equation (10), we get 

    1,
1

1,1,,,2 iiiiFOiiiiiFO Dxx eee  &&&& B  

.1,,1,
1

2, iiFOii D ee    (11) 

To guarantee the FOBC system stability, we substitute equations (10) 

and (11) into 

 
  

.
,,,,, ,,,,, 2,1,1,1,1   


zyxi zyxi i

d
iiii xyL &&& eee  

Describing BC used in [18], we obtain: 

 
  

 
,,,,,

2
1,,1,1,2,1,1,1,1 .

zyxi iiFOiiiiii DDL eeeee&  (12) 

We define the second Lyapunov function for the FOBC by: 

  


,,,,,
2

,21, .
2
1

zyxi iFOiFO LL e  (13) 

If we differentiate equation (13) and use equations (10) and (11), we can 

achieve: 

iFOL ,
&  

  


,,,,, ,2,2,21,1 zyxi iFOiFOiFOiL eeee &&  

 
  

 
,,,,,

2
1,,1,1,2,1,1,1,zyxi iiFOiiiiii DD eeeee  
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    
 

.
,,,,, ,,2,21, 


zyxi iFOiiiiiFOiFOi xx &Beee  

 (14) 

Thus, the control law of FOBC is given by: 

     1
,2,2,1,

1
,

  iFOiFOiFOiiiiFOBC xx eee
(

B  

  .,1,1,2,1,1,1, iiFOiiiiii DD   &eeee  (15) 

To ensure the stability of ,, iFO  it is necessary to satisfy ,0, iFOL&  by 

substituting equation (14) in equation (15), we obtain: 

iFOL ,
&  

  
,0

,,,,, ,,,,,
2

,2,
2
,1,  


zyxi zyxi iFOiFOiiFO ee

(
 (16) 

where iFOiFO ,, , 
(

 are positive constants. Since the derivative of iFOL ,      

is a negative-definite function, that means 1,ie  and iFO ,2e  converge to zero 

asymptotically. Consequently, the system satisfies the Lyapunov theorem, 

and the quadrotor system stability can be assured. In conclusion, the 

designed FOBC gets better tracking performance and convergence precision 

of the quadrotor. Conversely, in practical field, it is complex to expect the 

correct uncertainties’ values. Thus, FCN-FOBC is developed to compensate 

for shortcomings illustrated above by combining FOBC and FCN uncertainty 

approximator. 

3.2. FCN uncertainty approximator 

To deal with the concern of the FOBC law described in the previous 

subsection, we propose an adaptive fuzzy-Chebyshev network. This 

approach allows combining the nonlinear function approximation of fuzzy 

system and Chebyshev network. The fuzzy-Chebyshev network output is 

given by: 

   ,ˆˆ,ˆ xx i
T

i ii
   (17) 
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where  TNiii ,1, ˆ...,,ˆˆ    and  xi  are the estimate vector of 

network parameters and the regressor vector of the developed hybrid 

network, respectively. And 

           ,...,,,...,, ,1,,1,
T

iiHiii xxxxx   (18) 

where  xji,  and  xIi,  for Hj ...,,1  and l...,,1I  represent the 

fuzzy basis functions with Chebyshev polynomial functions designed by 

[20]: 

 
   

   
,...,,1,

1 2,1,

2,1,

,

,21,

,1,1 Hj
xx

xx

x
H

k ii

ii

ji
k

i
k
i

j
i

j
i 





  AA

AA

((

((

 (19) 

       ,...,,1,, 2,
2
,1,

1
,, l Ixxx ijiiIiji  (20) 

where  1,ix
i


A
 characterizes the membership functions that are usually 

chosen as Gaussian membership functions. Moreover,  1,
1
, iji x  represents 

Chebyshev polynomials given by the recursive formula [21]: 

        ,1,2 1
0,1,1,1,,11,1,   xxxxx i

k
Iii

k
Iiii

k
Ii  

                               ....,,0;2,1 l Ik  (21) 

Depending on the property of the universal approximation, the fuzzy 

approximations error described in equation (10) becomes: 

       ,~ˆ,ˆ xxxx
iii i

T
ii    (22) 

where 
iii 


  ˆ~  represents the parameter estimation error, i

 

 TNii




  ,1, ...,,  is the optimal parameter minimizing the approximation 

error  x
i  satisfying      xx iix ixi

 



ˆsupminarg  over 

a compact set .x  
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Assumption 2. The approximation error  x
i  is defined small and 

bounded for every xx   as   ,
0ii

x    conforming to universal 

approximation theory, where 
0i  denotes the unknown positive constant. 

From the above approximations, i  adaptive control law is expressed as: 

.,, iRiFCNi   (23) 

The control law consists of two terms: the adaptive fuzzy-Chebyshev 

network control term ,, iFCN  inserted to handle with the unknown lumped 

uncertainty ,i  and the second is a robust term iR,  dealing with 

disturbances and approximation errors. The following form is taken by the 

adaptive term: 

 
 

   1
,2,2,1,2,




 iOiFOiFOiiiFCN x
x

x
 eee

(

B

B
 

  ,ˆ
,1,1,2,1,1,1, iiFOiiiiii DD   &eeee  (24) 

where i̂  is the estimated value of lumped uncertainty .i  The robust 

controller term will yield the described form below: 

 
 

  ,sgnˆ ,2,22, iFOiFOiR ix

x ee 


 
B

B
 (25) 

where   is the design positive constant, and 
i̂  is the estimate of .

i  We 

describe the adaptive parameters by: 

 ,ˆ ,2 x
iii iFO   e&  (26) 

,ˆ ,2 iFOii
e &  (27) 

where 
ii   ,  are positive designing constants. 
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Remark 3. The term   1xiB  is substituted by 
 
  x

x
2B

B
 and the 

stability is proved [22] to assure that the developed adaptive controller term 

is successfully achieved even while  xiB  closes toward zero. 

Proof. We outline the Lyapunov function candidate by: 

   
















,,,,,,23 ,

~~

2
1

~~

2
1

zyxi

TT

iFO
i

ii

i

iiLL  (28) 

where 
iii

T
  ˆ~

0
 is the error of parameter estimation. So, the time 

derivative of 3L  is described by: 

   
















,,,,,,3 .

~~~~

zyxi
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iFO
i

ii

i

iiLL
&&

&&  (29) 

Thus, from equations (28) and (29), it can be clearly seen that 3L  

satisfies: 

 
  

 
,,,,,

2
1,,1,1,2,1,1,3 zyxi iiFOiiiii DDL eeeee&  

   
  











 iFOiiiiFO

x

x
x ,2,2 &

B
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




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


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

&&

 (30) 

Substituting the FCN-FOBC law equation (23) into equation (30), we 

get: 

  
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&&
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From the adaptive law equations (26) and (27), we can obtain: 

  


,,,,,
2

,2
2

,2,
2

1,,3 zyxi iFOiFOiFOiiFOL eee 
(

&  

   .
0,2 ii

xiFO   e  (32) 

Hence, ,3 VL  which implies that the signals T
iiFO i

~,, 1,,2 ee  and 

T
i

~  are bounded. Furthermore, by using Barbalat’s lemma, we conclude that 

the tracking errors and its derivatives converge asymptotically to zero. 

4. Numerical Results 

The proposed FCN-FOBC is implemented using MATLAB/SIMULINK 

environment. The developed controller (FCN-FOBC) is compared with the 

BC and FOBC. Physical parameters adopted in simulations are given in 

Table 1. The parameters of the controllers are shown in Table 2. We have 

carried out the numerical tests under unknown external disturbances and 

parameter uncertainties for quadrotor system. Furthermore, for the parameter 

uncertainties’ conditions, uncertainties of 10% and 50% are adopted               

for moment coefficients  zyx III ,,  applied at different times ,s12t  

,s14t  s16t  for ,,, zyx III  respectively. Meanwhile, the expression of 

disturbances is time-varying due to wind gust. The disturbance is represented 

by:    ,1.0sin25.0 ttPi   and the disturbance is applied at .sec30t  

The input variables of the hybrid network equation (29) are selected as 

 2,1, , iii xxx   for position and attitude system. For every variable, five 

Gaussian membership functions are expressed: 

    ,5:1,,,,,,,
2
1
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where the centers i  were chosen in  3,3  with the standard deviations 

.021.0i  The FO derivative 3.0  and integral order ,4.0  for 

FOBC and FCN-FOBC. 
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Table 1. Parameters of the quadrotor 

Parameter Value Units 

m 0.65 kg 

g 9.81 m/s2 

yI  7.5  10-3 kg/m2 

xI  7.5  10-3 kg/m2 

zI  1.3  10-2 kg/m2 

I 0.23 m 

rI  6.5  10-5 kg/m2 

d 7.5  10-7 N.m.s2 

b 3.1  10-5 N.s2 

Table 2. Control gains 

Controllers x, y z ,   

BC 
01.0i  

2.0i


 

01.0i  

2.0i


 

1.0i  

3.0i


 

2.0i  

4.0i


 

FOBC 

5.1,  iFO  

4,  iFO
(

 

5.11, i  

5.12, i  

5.2,  iFO  

5.1,  iFO
(

 

5.21, i  

2.12, i  

5,  iFO  

2,  iFO
(

 

11, i  

5.12, i  

3,  iFO  

2,  iFO
(

 

5.11, i  

5.12, i  

FCN-FOBC 

5.1,  iFO  

2,  iFO
(

 

5.21, i  

5.32, i  

5.1,  iFO  

2,  iFO
(

 

5.21, i  

5.32, i  

5.1,  iFO  

2,  iFO
(

 

5.21, i  

5.32, i  

5.1,  iFO  

2,  iFO
(

 

5.21, i  

5.32, i  

The quadrotor is supposed in flying state and tracking space circle 

trajectory. The desired trajectory of the quadrotor is made as: 

,rad
6

,4
 

dd
z ymy  












 




,s60s10,
10

cos

s10,0

tmt

tm
yd

x  
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










 




.s60s10,
10

sin

s10,0

tmt

tm
yd

y  

The positions and angles’ initial values are set to zero. As a result, when 

uncertainties occur, robustness and accuracy in the performance of the 

quadrotor control system using the proposed FCN-FOBC can be achieved 

and this is clearly confirmed in the simulation results as depicted in Figures 

2 to 5. Figure 2 illustrates the quadrotor position and orientation over its 

flight in 2D, from which the controller proved a significant resistance against 

the parameter uncertainties and external disturbances. Figures 3 and 4         

show the position and the attitude angles’ responses. We observe that the 

FCN-FOBC provided the best convergence with the reference trajectories. 

This signifies that the designed controller is successfully handling parameter 

uncertainties and external disturbances’ effects while maintaining the 

hovering capability. From Figure 5, it is clear that the inputs’ signal 

illustrates a smooth variation. 

 

Figure 2. 2D position circle trajectory tracking response using (BC, FOBC 

and FCN-FOBC). 
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Figure 3. Position responses of quadrotor by (BC, FOBC and FCN-FOBC). 

 

Figure 4. Attitude angle responses of the hovering quadrotor (FNC-FOBC). 

 

Figure 5. Control signal using control (FCN-FOBC). 
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5. Conclusion 

We have developed an intelligent quadrotor controller named FCN-

FOBC. Compared to BC and FOBC, the designed approach proved the 

effectiveness in terms of external disturbances and uncertainties such as 

parameter variations and permits the best robustness and tracking accuracy. 

The incorporation of the calculus of the fractional-order in the backstepping 

control that offers further degrees of freedom leads to develop FOBC.          

The FCN is added with FOBC to successfully approximate the uncertainties 

that occur in the quadrotor system and ensuring the robustness of the system. 

Besides, to deal with uncertainties such as approximation error, a robust 

term is developed. 
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