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AN EFFICIENT BLOCK SOLVER OF 

TRIGONOMETRICALLY FITTED 

METHOD FOR STIFF ODEs 

 

Abstract 

An efficient block solver of trigonometrically fitted method for          

stiff ODEs has been developed. This block solver utilizes a special 

trigonometrically fitted method as the basis function approximation 

with the introduction of varying step, varying order and suitably 

varying step size. The idea of interpolation and collocation is utilized 
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out via trigonometrically fitted method. Some theoretical properties of 

block solver are also investigated. To demonstrate the efficiency and 

accuracy of the method, we solve some examples of stiff ODEs. 

1. Introduction 

A large number of real life applications of differential equations come 

with different functions to be tracked unitedly as functions of time. Some 

systems of ordinary differential equations might be employed to stimulate 

the physical process. Assume that a situation occurs that allows diverse 

solution functions which possess quite different behaviour that makes the 

choice of the step size in the computational solution tough. For instance,               

a single element of a function might need a lesser step size in the 

computational solution since it is changing quickly, whereas some other 

elements might change tardily and do not need lesser step sizes for their 

calculations. Such a system is called stiff. Stiff differential equations are 

qualified as the analytical solutions which has a terminal figure of the kind 

,ct
e

−  where c is a large prescribed constant quantity. This is ordinarily a 

component of the solution named the transient solution. The most essential 

component of the solution is named the steady-state solution. A transient 

component of a stiff equation quickly decays to zero as t heightens [3, 5, 6]. 

We consider the stiff general one-dimensional systems with changeless 

constants: 

 ( ) ( ) ,, 0yayxBAyy =+=′  (1) 

where A is an mm ×  matrix with actual entries and ( ),xB  y, y′  are 

m-vectors. 

The exact solution to (1) is 

 ( ) ( )
=

λ +α=
m

i

pi
x

i xycexy i

1

,  (2) 

where ,iλ  ( )mi 11=  are the eigenvalues of A, with ,ic  ( )mi 11=  the 

matching eigenvectors. ( )xy p  is a special solution to (1), and ,iα  ( )mi 11=  
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are the actual constants that are unambiguously determined by the related 

initial conditions ( ) 0yay =  [10, 13, 14]. 

The block solver of (1) is formed as the computation of block predictor-

block corrector mode of 
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−− +=
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 ( ),...,1,0,for == mmrn  ( )0
A  and 

( )0
B  are rr ×  matrices. 

It is presumed that (3) and (4) is annealed so that ( )0
A  is an identity 

element matrix. A block solver is a block predictor mode if and only if the 

constant matrix ( )0
B  is a zero matrix. Otherwise, it is referred to as a block 

corrector mode [24]. 

Definition 1.1. Stiffness takes place whenever the linear constant 

quantity system of all its eigenvalues possesses a negatively charged real 

component and the stiffness proportion is large [13, 14]. 

Definition 1.2. Stiffness takes place whenever more or less elements of 

the analytical solution radioactively decay majorly more quickly than others 

[13, 14]. 

Definition 1.3. Stiffness takes place whenever stability requirements, 

rather than those of precision, restrain the step size [13, 14]. 
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Definition 1.4. Whenever a computational method with a bounded 

region of absolute constancy is employed to a system with any initial 

precondition which is pushed to employ in a certain interval of integration. 

The step size which is too small in relation to the smoothness of the 

analytical solution in that interval of the system is said to be stiff in that 

interval [13, 14]. 

Definition 1.5. The initial value problem 

( ) ( ) ( ) ,...,,,,,, 210
T

myyyyyayyxfy ===′   ( )Tmy ηηη= ...,,, 210  

is stated to be stiff oscillatory whenever the eigenvalues ,jjj ivu +=λ  

( )mj 11=  of the Jacobian 







∂
∂=
dy

f
J  have the succeeding attributes: 

( ) ,11,0 mju j =<  

,minmax
11

j
mj

j
mj

uu
≤≤≤≤

>  

or whenever the stiffness ratio satisfies 

 .1max
,

>=
j

i

ji u

u
S  See [7]. (5) 

Theorem 1.1 (Weierstrass approximation theorem). Let RRf →:              

be continuous and π2 -periodic. Then for each ,0>ε  there exists                    

a trigonometric polynomial ( ) 
−=

=
k

nj

ijx
jecxP  such that for all x, 

( ) ( ) .ε<− xPxf  Tantamountly, for any such f, there is a sequence of 

polynomials nP  converging uniformly to f [2]. 

Theorem 1.2. An A-stable linear multi-step scheme: 

 (i) must be implicit, and 
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(ii) the most precise A-stable linear multi-step scheme =+1ny  

( )12 +++ nnn ff
h

y  of order 2=p  has an error constant ,
12

1
3 −=c  see            

[7, 13, 14]. 

The Dahlquist barrier of Theorem 1.2 can be outwitted by accepting 

unconventional numeric integrators, some of which are 

• nonlinear multistep schemes, 

• multiderivative multistep schemes, 

• exponentially fitting, and 

• extrapolation process [7]. 

Successful contributions to stiff problems involve the diagonally implicit 

block backward differentiation formula with optimal stability properties           

for stiff ODEs. D12BBDF applies diverse step size to get results [10]. The 

block method for generalized multistep Adams and backward differentiation 

formulae in solving first order ODEs is developed in [11]. BGMBDF 

implemented the step reduction with varying step size to achieve the 

tolerance level [11]. The adaptive order of block backward differentiation 

formulae for stiff ODEs is developed utilizing uniform step size. The 

ABBDF is done without the use of tolerance level [12]. An accurate block 

solver for stiff initial value problems has been implemented in a varying step 

size approach for optimal execution. This idea demands dividing and 

amending by a product of 1.7 or preserving the current step size. The 

VSSBBDF explores the combination of varying the step size and utilizing 

the tolerance level [15]. These methods used by [10-12, 15] were carried out 

using fixed step size, variable step size and tolerance level. The nature of the 

behaviour of the type of problem is not considered. On the other hand,            

the EBSTFM introduces the trigonometrically fitted method as the basis 

function approximation to fit the nature of the behaviour of the type of 

problem. Again, the variable step, variable order and suitable variable step 

size were suggested by [13, 14, 16-20] to enhance the efficiency and 
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accuracy of the method. This idea distinguishes EBSTFM from other 

implemented methods. References [16-18] suggested a BHMTB for solving 

oscillatory IVPs. The BHMTB satisfies A-stability and possesses the 

potential for handling stiff IVPs. Also, BHMTB comes with the ability of 

being self-initiating with good accuracy of order 4. Thus, needs solely two 

functions valuation for each integration step. The EBSTFM suggested the 

idea of variable step, variable order and suitable variable step size along with 

tolerance to enhance better efficiency and accuracy compared to [16-18] 

which were implemented with uniform step size. 

Solving stiff ODEs using block implicit method, block predictor-block 

corrector method and block hybrid predictor-corrector method is very 

cumbersome due to the stability requirements posed by Dahlquist theorem 

while others pose the challenges of stiffness ratio, solution decay and finite 

region of absolute stability. The Dahlquist theorem can be bypassed with the 

introduction of trigonometrically fitted method to approximate in accordance 

with the exact solution of the stiff problem. References [13, 14] proposed the 

inclusion of varying step, varying order and varying step size to improve the 

accuracy, enhance efficiency and maximize error [7, 13, 14]. 

The motivation of this work originates from the suggestion to yield high 

efficiency and accuracy via the introduction of varying step, varying order 

with varying step size. References [13, 14] proposed the exponentially 

method to bypass the Dahlquist barriers. Thus, this study implements 

trigonometrically fitted method in accordance with the exact solution to 

outwit the Dahlquist barriers [7, 13, 14]. 

2. Methods 

The formulation of the methods depends on [7, 13, 14]. References            

[13, 14] suggested the idea of varying order, varying step with varying step 

size as the central device to greater efficiency and accuracy resulting to 

lesser maximum errors. The paper [7] proposed the exponentially fitted 

method to overcome the Dahlquist barriers. This study suggests and initiates 
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a remodification of the block solver in form of block predictor-block 

corrector mode. The block predictor mode has point of interpolation as 1−ny  

and points of collocation as ,,,, 321 −−− nnnn ffff  while the block corrector 

mode has point of interpolation as 2−ny  and points of collocation as ,1+nf  

,2+nf  .3+nf  The points of interpolation and collocation of block predictor-

block corrector mode will be implemented for varying step. The structure for 

deriving the block predictor mode is defined as: 

Point of interpolation - .1−ny  

Points of collocation - .,,, 321 −−− nnnn ffff  

Block solver points of evaluation - .,, 321 +++ nnn yyy  

Basis function approximation of trigonometrically fitted method is as 

follows: 
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Utilizing the combination of the point of interpolation, points of 

collocation and block solver points of evaluation will yield the expression 

written in Mathematica matrix format as 

matrixa { }
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[ ] [ ] [ ] [ ] [ ]{ };3,2,1,,1 −−−−= nfnfnfnfnyb  

[ ] [ ] [ ] [ ] [ ]{ } Inverse4,3,2,1,0 =aaaaa [ ] ..matrixa b  

The Mathematica matrix is solved using Mathematica Kernel 9. The 

unknowns of ,ia  4...,,1,0=i  are substituted into the trigonometrically 

fitted method to yield the continuous scheme. This continuous scheme is 

evaluated using the block solver points of evaluation to generate the block 

predictor mode as 
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Similarly, the derivation of the block corrector mode is done as follows:  

Point of interpolation - .2−ny  

Points of collocation - .,, 321 +++ nnn fff  

Block solver points of evaluation - .,, 321 +++ nnn yyy  

Basis function approximation of trigonometrically fitted method is given 

as follows: 
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Utilizing the combination of the point of interpolation, points of 

collocation and block solver points of evaluation will yield the expression 

written in Mathematica matrix format as 
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The Mathematica matrix is solved using Mathematica Kernel 9. The 

unknowns of ,ia  3...,,1,0=i  are substituted into the trigonometrically 

fitted method to yield the continuous scheme. This continuous scheme is 

evaluated using the block solver points of evaluation to generate the block 
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Equations (6) and (7) are called the block predictor-block corrector 

mode otherwise referred to as block solver which is formulated via the 

implementation of varying step and trigonometrically fitted method. The 

point of interpolation of the block predictor mode and block corrector mode 

differs. The block predictor mode is of order four (4) which requires the 
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values of 2,1,0, =iyi  to initiate the process while the block corrector is of 

order three (3) which requires the values of 1,0, =iyi  to start the process. 

This defines the variable step implementation. The number of unknowns of 

the block predictor mode is five (5) while the number of unknowns of the 

block corrector solver is four (4). This justifies the variable order. The 

symbol w represents the frequency [16-23]. 

2.1. Theoretical investigation of the method 

Definition 2.1. The order of the operator hL  is the highest r such that 

whenever ( )xy  possesses a continuous ( )th1+r  derivative,  

 ( )( ) ( ).0 1+= r
h hxyL  (8) 

Whenever we presume a continuous ( )th2+r  derivative for y, we can 

replace the Taylor’s series for y and y′  with remainder ( ).0 1+r
h . Whenever 

the terms 120 ...,,, +r
hhh  are assembled unitedly, we arrive at 

( )( ) ( )( ) ( )
+

=

++=
1

0

1 ,0

r

q

rqq
qh hxyhCxyL  

where 

 

( ) ( )
( )













>







β−

−−α−

=α

=





=

−

=

.0,
!1!

,0,

0

1

0

q
q

i

q

i

q

C
k

i

i

q

i

q

k

i

i

q   (9) 

The linear equations ,0=qC  ,rq ≤  are the equations which decide an 

rth order method. 

Given the number of truncation errors, put in for each step, is given by 

( ) ( ).0 211

0

1 +++

=

+ +

β

rrr

k

i

i

r hyh
C
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Therefore, the natural standardization becomes 

 
=

=β
k

i

i

0

1  [8]. (10) 

Theorem 2.1. The multistep method (3) is of order p, if and only if one 

of the following equivalent conditions is satisfied: 

  (i) 
=

=α
k

i
i

0

0  and  
= =

−β=α
k

i

k

i

q
i

q
i iqi

0 0

1  for ;...,,1 pq =  

 (ii) ( ) ( ) ( )1+=σ−ρ phh
hOehe  as ;0→h  

(iii) 
( ) ( ) (( ) )p

O 1
log

−ς=ςσ−ς
ςρ

 as ,1→ς  

where the linear difference operator L is specified by 

( ) ( ) ( )( )
=

+′β−+α=
k

i

ii ihxyhihxyhxyL

0

,,  [9]. (11) 

Proof. Expanding ( )ihxy +  and ( )ihxy +′  into Taylor series and 

introducing these series (truncated whenever essential into (11)), we have 

 ( ) ( )( ) ( )( )  
=

≥ ≥
+











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i
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0
0 0
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!!
,,  

( ) ( )( )   
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≥
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−













β−α+α=

k

i
q

k

i

k

i

q
i

q
i

q
q

i iqixy
q

h
xy

0
1

0 0

1
.

!
 (12) 

This agrees with the condition (i) as ( ) ( )1,, += p
hOhxyL  for all 

sufficiently regular functions ( ).xy  

It continues to show that the three preconditions of Theorem 2.1 are 

tantamount. The identity operator 

( ) ( ) ( ),,0exp, hh
ehehL σ−ρ=  
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where exp represents the exponential function, unitedly with 

( )    
=

≥
= =

−













β−α+α=

k

i
q

k

i

k

i

q
i

q
i

q

i iqi
q

h
hL

0
1

0 0

1
,

!
,0exp,  

which succeeds from (12) and proves the equivalence of the conditions (i) 

and (ii). 

By using the translation ( ),logor ς==ς he
h  condition (ii) will be 

spelt out in the form 

( ) ( ) (( ) )1
loglog

+ς=ςσ∗ς−ςρ p
O  as .1→ς  

But this condition above is equivalent to (iii), because 

( ) (( ) )2
11log −ς+−ς=ς O  as ,1→ς  see [9] for more information. 

2.2. Convergence 

Convergence for variable step size Adams method was first considered 

in [26]. In order to show the convergence for the general case, we present the 

vector ( ) .,...,, 11
T

nnknn yyyY +−+=  The method 

  
−

= =
+−+++ β=α+

1

0 0

1

k

i

k

i

ininkninikn fhyy  (13) 

then turns tantamount to 

 ( ) ( ),,,11 nnnnknnnn hYxhYIAY Φ+⊗= −++  (14) 

where nA  is established by the comrade matrix: 


















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 α−α−α−

=

−

01

001

0001

,0,1,1
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⋯

⋯⋯ nnnk

nA  
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and 

( ) ( ) ( ).,,,, 1 nnnnnnnn hYxIehYx Ψ⊗=Φ  

The value ( )nnnn hYx ,,Ψ=Ψ  is specified by 

( ) ( ) 
−

= =
+++++ α−Ψβ+β+=Ψ

1

0 0

.,,

k

i

k

i

ininknkninininkn yhxfyxfy  

We proceed by writing 

( ) ( ) ( ) ( )( ) ,,...,, 11
T

nnknn xyxyxyxY +−+=  

the precise values to be estimated by .nY  The convergence theorem can 

immediately be developed as succeeds, see [9] for more information. 

Theorem 2.2. Assume that 

• the method (3) is stable of order p, and has bounded coefficients inα  

and ;inβ  

• the starting values satisfy ( ) ( );00
p

n hOYxY =−  

• the step size ratios are bounded .
1








 Ω≤
−n

n

h

h
 

Then the method is convergent of order p, i.e., for each differential equation  

( ) ( ) 00,, yxyyxfy ==′  

with f sufficiently differentiable, the global error satisfies  

( ) p
nn ChyxY ≤−  for ,x̂xn ≤  

where ,max ihh =  see [9] for more information. 

Proof. Since the method is of order p and the coefficients and step size 

ratios are bounded, the formula  
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( ) ( ) ( ) ( ) 
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= =

+
+−+++ =′β−α+

1
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1
01

k

i

k

i

p
ininknininkn hOxyhxyxy  

proves that the local error 

( ) ( ) ( ) ( )( )nnnnknnnnn hxYxhxYIAxY ,,111 Φ−⊗−=δ −+++  (15) 

satisfies 

 ( ).1
1

+
+ =δ p

nn hO  (16) 

Deducting (13) from (15), we get 

( ) ( ) ( ( ) )nnnnn YxYIAYxY −⊗=− ++ 11  

( )( ) ( )( ) 11 ,,,, +−+ δ+Φ−Φ+ nnnnnnnnnkn hYxhxYxh  

and by induction, 

( ) 11 ++ − nn YxY  

( )( ) ( )( )000 YxYIAAn −⊗= …  

( )( ) ( )( ) ( )( )
=

+−+ Φ−Φ⊗+
n

i

iiiiiiiiinki hYxhxYxIAAh

0

11 ,,,,...  

( )( )
=

++ δ⊗+
n

i

iin IAA

0

11 ....  

As in the proof of Theorem 2.1, we derive that the nΦ  satisfies a 

uniform Lipschitz precondition with respect to .nY  Unitedly with stability 

and (16), we have 

( ) ( )
=

−+++ +−≤−
n

i

p
iikinn hCYxYLhYxY

0

1111 .  

In order to figure out this inequality, we bring in the sequence { }nε  

specified by 
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( ) ,000 YxY −=ε  

 
=

−++ +ε=ε
n

i

p
ikin hCLh

0

111 .  (17) 

A simple induction statement proves that 

 ( ) .nnn YxY ε≤−  (18) 

From (17), we get for ,1≥n  

( ) nknnknnn LhLh ε≤ε+ε=ε −+−++ 111 exp  

so that, in addition, 

( )( ) ( )( ) ( ( ) ).ˆexpˆexp 1001010
p

kn hCYxYLhLxxLxx +−⋅−=ε−≤ε −  

The inequality unitedly with (18) completes the proof of Theorem 2.2, 

see [9] for more information. 

2.3. Variable step size implementation for block solver 

This aspect utilizes the global errors of the block predictor mode of 

order four (4) and block corrector mode of order three (3) to initiate the 

procedure. The block predictor mode of order four (4) and the block 

corrector mode of order three (3) will be used to implement the variable          

step size of the block solver. The global error of the block predictor-block 

corrector mode is estimated as: 
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≈−  (19) 

where z establishes the exact solution to the first derivative equation 

conforming to the initial condition ( ) ( ).nn xyxz =  
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Imagine if we rebuild the process with a new step size qh to produce  

new estimates of 
[ ]
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l
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l
ny +  
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[ ]
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ny +  To check and 

control the global error in ε, we select q such that 
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Utilizing the principal local truncation errors of the block predictor-

block corrector mode together with (20) results 
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So, we select q with 
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Accordingly, change the variation in step size from h to qh, where  
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Nevertheless, the process of implementing the block predictor-block 

corrector mode of the block solver involves the use of (22) or (23). Again, 

the block predictor-block corrector mode together with the newly suited         

step size must be resolved iteratively until the tolerance level is ascertained.  

Again, this process is repeated if it fails until a newly chosen step size 

conforms to the tolerance level. If the newly chosen step size succeeds,         

then it becomes the suitable variable step size to yield the desired results          

with better accuracy and efficiency. Variable step size procedures involve 

changing the step repeatedly during the process of the loop until the 

tolerance level is achieved. 

A step size variation for block solver is more expensive in terms of 

functional measures in comparison to a multistep scheme, see [1, 4-6, 19-23] 

for details. 
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3. Stiff Problems 

This aspect will be carried out employing the suited variable step size 

and block predictor-block corrector mode as proposed earlier. Three stiff 

ODEs were considered and solved at some selected tolerance level of ,10 2−  

410−  and .10 6−  The efficient block solver is compared with some stiff 

BBDF adopting the approach of using the tolerance level. The following stiff 

ODEs will be considered and solved as the numerical examples [11, 13-15]. 

The execution of this method is carried out under the Mathematica platform 

of Mathematica Kernel 9. 

Stiff Problem 3.1 

,201921 3211 yyyy −+−=′  

,202119 3212 yyyy +−=′  

,404040 3213 yyyy −−=′  

( ) ,101 =y  

( ) ,002 =y  

( ) ,103 −=y    .100 ≤≤ x  

Exact solution 

( ) [ ( )],40sin40cos
2

1 402
1 xxeexy

xx ++= −−  

( ) [ ( )],40sin40cos
2

1 402
2 xxeexy

xx +−= −−  

( ) ( ) .40sin40cos
2

1
2 40

3 



 −−= −

xxexy
x  

Author: [15]. 

Stiff Problem 3.2 

,21 yy =′  

.12 yy −=′  
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Exact solution 

( ) ,sin1 xxy =  

( ) .160,cos2 π≤≤= xxxy  

Author: [11]. 

Stiff Problem 3.3 

( ) ( ) ( )( ).2cos
1

2sin2 xyxxy π−ε−ππ−=  

Exact solution 

( ) ( ) .100,2cos ≤≤π= xxxy  

Author: [15]. 

4. Results 

The numerical results are shown in Tables 1-3. The EBSTFM considers 

three stiff problems whose exact solution is trigonometrical in nature. The 

results of EBSTFM were compared with BGMBDF and VSSBBDF to 

demonstrate the efficiency and accuracy of the method. The results in Tables 

1-3 were computed under the platform of Mathematica Kernel 9. The 

EBSTFM yields better results in Tables 1 and 2 compared to VSSBBDF and 

BGMBDF while VSSBBDF yields better results in Table 3 compared to 

EBSTFM. The betterment of the EBSTFM of Tables 1 and 2 occurs as a 

result of the ability to implement the trigonometrically fitted method and 

finding a suited variable step size as suggested by [13, 14]. VSSBBDF yields 

better results compared to EBSTFM due to its ability to find a suited varying 

step size to satisfy the tolerance level [11, 15]. 



O. J. Godwin, O. S. Adewale and O. P. Oluwatomi 94 

Table 1. Stiff Problem 1 

Mthdused Maxerror TOL 

VSSBBDF 5.27731e − 006 

EBSTFM 5.14453e − 005 

EBSTFM 1.29594e − 005 

EBSTFM 2.99998e − 006 

210−  

VSSBBDF 7.42231e − 008 

EBSTFM 5.30633e − 009 

EBSTFM 1.54404e − 009 

EBSTFM 3.e − 010 

410−  

VSSBBDF 7.93169e − 010 

EBSTFM 5.30909e − 013 

EBSTFM 1.54644e − 013 

EBSTFM 2.9976e − 014 

610−  

Table 2. Stiff Problem 2 

Mthdused Maxerror TOL 

BGMBDF 1.50633e − 001 

EBSTFM 7.6004e − 008 

EBSTFM 2.34258e − 004 

210−  

BGMBDF 7.87780e − 004 

EBSTFM 7.59999e − 014 

EBSTFM 2.34374e − 006 

410−  
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Table 3. Stiff Problem 3 

Mthdused Maxerror TOL 

VSSBBDF 1.23612e − 005 

EBSTFM 1.96072e − 004 

210−  

VSSBBDF 6.74134e − 007 

EBSTFM 1.94861e − 006 

410−  

VSSBBDF 3.19856e − 009 

EBSTFM 1.94861e − 008 

610−  

The following terminologies are used in showing the results in            

Tables 1-3: 

    EBSTFM : Efficient block solver of trigonometrically fitted method 

           TOL : The tolerance level used 

      Maxerror : Maximum error 

     Mthdused : Method used 

 BGMBDF : Block method for generalized multistep Adams and 

backward differentiation formulae [11] 

VSSBBDF : Variable step size algorithm based on block backward  

differentiation formula [15]. 

5. Conclusion 

An efficient block solver of trigonometrically fitted method has been 

suggested for solving stiff problems appearing in the areas of applied and 

natural sciences. The variable step size, variable order and suitable variable 

step size suggested for this study are considered to be very proficient, 

efficient and accurate. The EBSTFM is designed to provide solutions                  

to oscillating and vibrating problems in applied and natural sciences. The 

results of EBSTFM are provided in Tables 1-3 which show the efficiency 
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and accuracy. The EBSTFM has three results in Table 1 since it has three 

exact solutions while it has two results in Table 2 since it has two exact 

results and one result in Table 3 since it has one exact solution. The 

EBSTFM shows better performance than VSSBBDF and BGMBDF as shown 

in Tables 1 and 2 due to its ability to find a suitable variable step size to 

satisfy the tolerance level. On the other hand, the results of VSSBBDF 

perform better than EBSTFM as shown in Table 3 as a result of its inability 

to determine a suitable variable step size to satisfy the tolerance level. The 

performance demonstrated by EBSTFM utilizes the trigonometrically fitted 

method in accordance with the behaviour of the problem compared with 

other methods using linear difference operator and divided differences. Both 

the linear difference operator and divided differences are at variance with  

the behaviour of the problem. The EBSTFM possesses the advantage to 

determine the suited step size to enhance convergence at all tolerance levels. 

Thus, EBSTFM is seen to compete favourably with VSSBBDF and BGMBDF 

by implementing the variable step, variable order and suited variable step 

size. Further study will be carried out by reducing the step with varying 

order and suited varying step size. 
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