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LYAPUNOV TYPE INEQUALITIES AND THEIR 

APPLICATIONS ON AN EIGENVALUE PROBLEM 

FOR DISCRETE FRACTIONAL ORDER EQUATION 

WITH A CLASS OF BOUNDARY CONDITIONS 

 

Abstract 

The Lyapunov inequality has its importance in the study of broad 

applications of solutions to differential and difference equations, such 

as oscillation theory, disconjugacy and eigenvalue problems. This 



D. Abraham Vianny, R. Dhineshbabu and A. George Maria Selvam 56 

paper is devoted to a new Lyapunov-type inequality for discrete 

fractional order equations with a class of two-point boundary 

conditions under the concept of the Riemann-Liouville fractional 

difference operator. We examine some new results for linear and 

nonlinear Lyapunov-type inequalities by developing suitable Green’s 

function and determining their corresponding maximum value for 

discrete fractional equations. The associated eigenvalue problem is 

also examined. We provide a couple of examples to demonstrate the 

applicability of the findings. 

1. Introduction 

Fractional differential calculus has become more popular in recent years. 

It has been explored by many researchers, resulting in a strong mathematical 

background and numerous articles are credited to its development. Readers 

can see [1-10] for additional information. Fractional calculus can be used to 

model physical phenomena such as control systems [11], mechanics, and 

viscoelasticity [12]. The Riemann-Lioville and Caputo derivatives [1] are 

two of the most commonly utilized fractional derivatives. 

A new field for researchers in the recent years is fractional difference 

equations. With the fractional difference operators, real-world phenomena 

are being studied, one can refer to [14]. Nevertheless, some researchers have 

recently shown a lot of interest in discrete fractional calculus. The existence 

and uniqueness of the solutions of the discrete FBVPs have been of great 

interest for over a decade [15-24]. 

On the other hand, the study of the so-called Lyapunov inequality was 

first developed in 1907 [25] as follows: 

( ) −>ξξ
d

c cd
dr ,

4
 

for a nonzero solution ( )ιu  of the BVP 

( ) ( ) ( ) ( )
( ) ( )
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where r is a real-valued continuous function. 
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The Lyapunov-type inequality (LTI), along with several of its 

generalizations, plays a significant role in the analysis of various properties 

of differential and difference equations in the theory of oscillation, 

eigenvalues, disconjugacy and criteria of stability for periodic differential 

equations [13, 26-32]. A great deal of effort has been made over the past few 

years to obtain valuable results for FBVPs and discrete FBVPs [33-39]. This 

paper is motivated by the previous works and its focuses on the LTI for the 

discrete FBVP: 

( ) ( ) ( )
( ) ( ) ( )





=+ϑ=−ϑ∆=−ϑ

∈ι=−ϑ+ι−ϑ+ι+ι∆ϑ

,0,03,03

,,011 0

ℓ

ℓ

uuu
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RL

N
  (1.1) 

where [ ),,0: 2
2 ∞→−+ϑ

−ϑ
ℓ

Nr  ϑ∆RL  is R-LFDO of order ( ]3,2∈ϑ  and 

.2N∈ℓ  Furthermore, we obtain generalized LTI and discuss the application 

of eigenvalue problems for our proposed discrete FBVPs. 

Section 2 concentrates on the essential definitions and preliminary 

findings. Section 3 establishes a solution to the discrete FBVP (1.1). Some 

new results of Lyapunov-type inequalities by developing suitable Green’s 

function and determining the corresponding maximum value are presented in 

in Section 4. Section 5 provides the applications of these inequalities to 

eigenvalue problems. In Section 6, we discuss examples that highlight the 

significance of our findings, and the paper is summed up with a brief 

conclusion in Section 7. 

2. Important Results of Discrete Fractional Calculus 

We present some basic properties of discrete fractional calculus which 

are used in the sequel. 

Definition 2.1 [40]. The falling function is described as follows: 

( ) ( )
( )

,
1

1
:

+ϑ−ιΓ
+ιΓ=ι ϑ  

for any ., R∈ϑι  
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Definition 2.2 [40]. For ,0>ϑ  the fractional sum of RN →a:F  is 

defined as 

( ) ( ) ( )( )( ) ( )
ϑ−ι

=ξ

−ϑϑ− ξξρ−ιϑΓ=ι∆
a

,
1

:
1
FF  

for ϑ+∈ι aN  and ( ) .1+ξ=ξρ  Also, we define ( ) ( ),:0 ι=ι∆−
FF  for 

.aN∈ι  

Lemma 2.3 [41, 42]. Assume .0, >ϑα  Then the following properties 

hold: 

 (i) ( ) ( );1−ϑϑ ιϑ=ι∆  

(ii) ( ) ( ).1+ϑΓ=ϑ ϑ  

Lemma 2.4 [42]. If ,10 NN ≤ϑ<−≤  then  

( ) ( ) ( ) ( ) ( ),2
2

1
1

N
NAAA −ϑ−ϑ−ϑϑϑ− ι++ι+ι+ι=ι∆∆ ⋯uu

RL
 

for each ,R∈kA  with .1 N≤≤ k  

3. Solution of a Class of Discrete FBVPs 

In this section, we establish a solution of a class of discrete FBVP (1.1). 

The following theorem concerns a linear variant of (1.1). 

Theorem 3.1. Let RN →Ψ +ϑ
−ϑ
ℓ
3:  be given. A function u is a solution 

of the linear discrete FBVP: 

( ) ( )
( ) ( ) ( )
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where ,32 ≤ϑ<  if and only if ( ),ιu  for 
ℓ+ϑ

−ϑ∈ι 3N  has the form  

( ) ( ) ( )( )( ) ( )
ϑ−ι

=ξ

−ϑ −ϑ+ξΨξρ−ιϑΓ−=ι
a

u 1
1 1

 

( )

( )( ) ( )
( )( )( ) ( )

=ξ

−ϑ
−ϑ

−ϑ
−ϑ+ξΨξρ−+ϑ

ϑΓ+ϑ
ι+

ℓ

ℓ

ℓ
0

1

1

1

.1  (3.2) 

Proof. By using ϑ−∆  with Lemma 2.4 on both the sides of (3.1), we 

have 

( ) ( ) ( )( )( ) ( ) ( )
ϑ−ι

=ξ

−ϑ−ϑ ι+−ϑ+ξΨξρ−ιϑΓ−=ι
0

1
1

1
1

1
Au   

( ) ( ),3
3

2
2

−ϑ−ϑ ι+ι+ AA  (3.3) 

where ,R∈kA  for .3,2,1=k  As a result of the condition ( ) ,03 =−ϑu  

we get 

( ) ( )( )( ) ( ) ( )( )
−

=ξ

−ϑ−ϑ −ϑ+−ϑ+ξΨξρ−−ϑϑΓ
− 3

0

1
1

1
313

1
A  

     ( )( ) ( )( )
.033

3
3

2
2 =−ϑ+−ϑ+ −ϑ−ϑ

AA  (3.4) 

By using Definition 2.1 in (3.4), we conclude that ( ) .023 =−ϑΓA  

Therefore, .03 =A  Taking the operator ∆  on both the sides of (3.3) with 

,03 =A  we arrive at  

 ( ) ( ) ( ) ( ) ( ).1 2
2

1
1

1 −ϑ−ϑ−ϑ− ι∆+ι∆+−ϑ+ιΨ∆−=ι∆ AAu  (3.5) 

From Lemma 2.3 of (i), Definition 2.2 gives  

  ( ) ( ) ( ) ( ) ( ) ( )3221 2,1 −ϑ−ϑ−ϑ−ϑ ι−ϑ=ι∆ι−ϑ=ι∆  (3.6) 
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and  

( ) ( ) ( ) ( )( )( ) ( )
+ϑ−ι

=ξ

−ϑ−ϑ− −ϑ+ξΨξρ−ι−ϑΓ=−ϑ+ιΨ∆
1

0

21 .1
1

1
1  (3.7) 

So, using (3.5)-(3.7) together, we deduce that  

( ) ( ) ( )( )( ) ( )
+ϑ−ι

=ξ

−ϑ −ϑ+ξΨξρ−ι−ϑΓ−=ι∆
1

0

2
1

1

1
u  

( ) ( ) ( ) ( ).21 3
2

1
1

−ϑ−ϑ ι−ϑ+ι−ϑ+ AA   (3.8) 

By using second boundary condition ( ) 03 =−ϑ∆u  in (3.8), it follows 

that .02 =A  From (3.3) along with 02 =A  and ,03 =A  we have 

( ) ( ) ( )( )( ) ( ) ( )
ϑ−ι

=ξ

−ϑ−ϑ ι+−ϑ+ξΨξρ−ιϑΓ−=ι
0

1
1

1
.1

1
Au  (3.9) 

From ( ) ,0=+ϑ ℓu  we get 

( )
( )

( )( )( ) ( ) ( )( )
=ξ

−ϑ−ϑ =+ϑ+−ϑ+ξΨξρ−+ϑ
ϑΓ

−=+ϑ
ℓ

ℓℓℓ

0

1
1

1
.01

1
Au  

Direct computation yields 

( )( ) ( )
( )( )( ) ( )

=ξ

−ϑ
−ϑ −ϑ+ξΨξρ−+ϑ

ϑΓ+ϑ
=

ℓ

ℓ

ℓ
0

1

11 .1
1

A  

Substituting the value of 1A  in (3.9), the solution of (3.1) satisfies  

( )
( )

( )( )( ) ( )
ϑ−ι

=ξ

−ϑ −ϑ+ξΨξρ−ι
ϑΓ

−=ι
0

1
1

1
u  

( )

( )( ) ( )
( )( )( ) ( )

=ξ

−ϑ
−ϑ

−ϑ
−ϑ+ξΨξρ−+ϑ

ϑΓ+ϑ
ι+

ℓ

ℓ

ℓ
0

1

1

1

,1  (3.10) 
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for .3
ℓ+ϑ

−ϑ∈ι N  Conversely, (3.10) is a solution of (3.1) by direct substitution. 

The proof is complete. 

4. Lyapunov-type Inequalities for Linear and  

Nonlinear Discrete FBVPs 

We use the solution from Theorem 3.1 to establish new results for 

Green’s function and LTI for discrete FBVPs. 

4.1. Green’s function 

George Green discovered the theory of Green’s functions which is 

widely accepted and recognized. Green’s functions are mainly used to solve 

non-homogeneous BVPs. In particular, Green’s function techniques are 

commonly used in applied mathematics, physics, especially in aerodynamics, 

electrodynamics, quantum field theory, and engineering [43, 44]. In this 

subsection, Green’s function formula is discussed as it relates to a three-

point discrete FBVP. 

Theorem 4.1. Let .32 ≤ϑ<  Then the discrete FBVP (1.1) has a unique 

solution 

( ) ( ) ( ) ( ) ( )
=ξ

−ϑ+ξ−ϑ+ξξιϑΓ=ι
ℓ

0

,11,
1

uru G   (4.1) 

where  

( ) RNN →×ξι +ϑ
−ϑ

ℓℓ
03:,G  

is defined by 
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Proof. We arrive at equation (3.10) by continuing the proof of Theorem 

3.1. Then it follows that 

( ) ( ) ( )( )( ) ( ) ( )
ϑ−ι

=ξ

−ϑ −ϑ+ξ−ϑ+ξξρ−ιϑΓ−=ι
0

1
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1
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( )( )( ) ( )

( )( ) ( ) ( ).11

1
1

11

−ϑ+ξ−ϑ+ξ














+ϑ
ιξρ−+ϑ+ 
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−ϑ−ϑ
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ℓ
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As a result, it is clear that 

( ) ( ) ( ) ( ) ( )
=ξ

−ϑ+ξ−ϑ+ξξ−ιϑΓ=ι
ℓ

0

,11
1

uru  

where ( )ξι,G  is given in (4.2). 

Lemma 4.2. The Green’s function ( )ξι,G  described in (4.2) satisfies 

the following conditions: 

 (i) ( ) 0, ≥ξιG  for each 
ℓ+ϑ

−ϑ∈ι 3N  and ;0
ℓ
N∈ξ  

(ii) ( ) ( ),,1,max

3

ξ−ϑ+ξ=ξι
+ϑ
−ϑ∈ι

GG
ℓ

N

 for each .0
ℓ
N∈ξ  

Proof. The proof of Lemma 4.2 is very similar to that in [43]. 
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Theorem 4.3. The maximum of the function ( )ξ−ϑ+ξ ,1G  is given by 

( ) ( ) ( )
( ) ( )( ) .

1
,1max

1
0

−ϑ
∈ξ +ϑ+Γ

+ϑΓϑΓ=ξ−ϑ+ξ
ℓℓ

ℓ

ℓ

G
N

 

Proof. We use the difference operator on ( )ξ−ϑ+ξ ,1G  to find the 

maximum of ( )ξ−ϑ+ξ ,1G  over .ξ  Especially: 

( )ξ−ϑ+ξ∆ ,1G  

( )( ) ( )( )( )

( )( ) 











+ϑ
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( ) 






+ξ−Γ
ξ−+ϑΓ

+ξΓ
ϑ+ξΓ∆

+ϑ
= −ϑ 11

1
1 ℓ

ℓ

ℓ

 

( )( )
( )

( )
( )( )

( )
( )
( )

( )
( ) 






+ξ−Γ
ξ−+ϑΓ

+ξΓ
ϑ+ξΓ−

ξ−Γ
ξρ−+ϑΓ

+ξΓ
+ϑ+ξΓ

+ϑ
= −ϑ 112

11
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+ϑ
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( ) ( ) ( )[ ]
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( ) ( ) ( )( )
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12

2

1

1211

+ξ−Γ+ξΓ
ξρ−+ϑΓϑ+ξΓ+Γ

++ϑΓ
−ϑξ−−−ϑ=

ℓ
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ℓ
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As a result, 

( ) ( ) ( ) ( )[ ] ( ),1211,1 ξ−ϑξ−−−ϑ=ξ−ϑ+ξ∆ FℓG  

with ( ) ( ) ( ) ( )( )
( ) ( ) ( )

0
121

2 >
+ξ−Γ+ξΓ++ϑΓ
ξρ−+ϑΓϑ+ξΓ+Γ=ξ

ℓℓ

ℓℓ
F  for all .0

ℓ
N∈ξ  
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Now, if 
( )

,
2

1−<ξ ℓ
 then ( ) ( ) ( ) ( )1211 −ϑξ−−−ϑ=ξ ℓh  increases. 

On the other hand, if 
( )

,
2

1−≥ξ ℓ
 then ( ) ( ) ( ) ( )1211 −ϑξ−−−ϑ=ξ ℓh  

decreases. Therefore, 

( ) ( ) ( ) ( )
( ) ( )( ) .

1
,1,1max

1
0

−ϑ∈ξ +ϑ+Γ
+ϑΓϑΓ=−ϑ+=ξ−ϑ+ξ
ℓℓ

ℓ
ℓℓ

ℓ

GG
N

 

The proof is complete. 

4.2. Lyapunov-type inequality for linear BVP 

Theorem 4.4. Let [ )∞→−+ϑ
−ϑ ,0: 2

2
ℓ

Nr  be a nonzero function. If BVP 

(1.1) has a nontrivial solution given by (4.1), then  

 ( ) ( )
( )

( )( )
=ξ

−ϑ+ϑ
+ϑΓ
+Γ≥−ϑ+ξ

ℓ

ℓ
ℓ

ℓ

0

1
.

1
1r  (4.3) 

Proof. Due to the fact that the discrete FBVP (1.1) has a nonzero 

solution, we have 

( ) ( ) ( ) ( ) ( ),11,
1

0


=ξ

−ϑ+ξ−ϑ+ξξιϑΓ=ι
ℓ

uru G  

( ) ( ) ( ) ( ) ,11,
1

0


=ξ

−ϑ+ξ−ϑ+ξξιϑΓ≤
ℓ

uru G  

( ) ( ) ( )
=ξ

−ϑ+ξ−ϑ+ξϑΓ≤
ℓ

0

.11
1

1 rG  
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From this, it follows that  

( ) ( )
( )

=ξ
ξ−ϑ+ξ

ϑΓ≥−ϑ+ξ
ℓ

0
,1

1
G

r  

( )
( ) ( )

( ) ( )( )1
1

−ϑ+ϑ+Γ
+ϑΓϑΓ

ϑΓ=

ℓℓ

ℓ
 

( )
( )

( )( )
.

1 1−ϑ+ϑ
+ϑΓ
+Γ= ℓ
ℓ

ℓ
 

This completes the proof. 

4.3. Generalized Lyapunov-type inequality for nonlinear BVP 

Let ( ) ( )( )11 −ϑ+ι=−ϑ+ι uu F  in (1.1). Then we get a discrete 

FBVP of order ( ]:3,2∈ϑ   

  
( ) ( ) ( )( )

( ) ( ) ( )





=+ϑ=−ϑ∆=−ϑ

∈ι=−ϑ+ι−ϑ+ι+ι∆ϑ

,0,03,03

,,011 0

ℓ

ℓ

uuu
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RL
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 (4.4) 

where ( )++∈ RR ,CF  is non-decreasing and [ )∞→−+ϑ
−ϑ ,0: 2

2
ℓ

Nr  is a 

nontrivial function and .2N∈ℓ  

The following corollary is obtained by applying Theorem 4.4. 

Corollary 4.5. If (4.4) has a nontrivial solution, then 

( ) ( )
( ) ( )

( )( )
=ξ

−ϑ+ϑ
η+ϑΓ

η+Γ≥−ϑ+ξ
ℓ

ℓ
ℓ

ℓ

0

1
,

1
1

F
r  (4.5) 

where ( ).1max

2

−ϑ+ξ=η
+ϑ
−ϑ

u
ℓ

N
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5. Applications to Eigenvalue Problems 

In this section, we provide some applications of the Lyapunov-type 

inequalities (4.3) and (4.5) to discrete fractional eigenvalue BVPs. 

Let ( ) λ=−ϑ+ι 1r  in (1.1). We now discuss a discrete fractional 

eigenvalue BVP of order ( ]3,2∈ϑ  as follows: 

( ) ( )
( ) ( ) ( )





=+ϑ=−ϑ∆=−ϑ
∈ι=−ϑ+ιλ+ι∆ϑ

,0,03,03

,,01 0

ℓ

ℓ

uuu

uu
RL

N
  (5.1) 

where R∈λ  and .2N∈ℓ  

Theorem 5.1. For any ,R∈λ  if (5.1) has a nonzero solution, then  

( )
( )

.
1

2+
+ϑ≥λ

ℓ

ℓ
 

Proof. Applying Theorem 4.4, we obtain 

( )
( )

( )
( ) ( )

( ) ( )( )

.

1

,1
1

0 −ϑ=ξ
+ϑ+Γ

+ϑΓϑΓ
ϑΓ=ξ−ϑ+ξ

ϑΓ≥λ
ℓℓ

ℓ

ℓ

G
 

From this, we obtain 

( )
( )

,
1

2+
+ϑ≥λ

ℓ

ℓ
 

which completes the proof. 

Let ( ) λ=−ϑ+ι 1r  in (4.4). Then we get a discrete fractional 

eigenvalue BVP of order ( ]:3,2∈ϑ  

( ) ( )( )
( ) ( ) ( )





=+ϑ=−ϑ∆=−ϑ
∈ι=−ϑ+ιλ+ι∆ϑ

,0,03,03

,,01 0

ℓ

ℓ

uuu

uu
RL

NF
 (5.2) 

where ,R∈λ  ( )++∈ RR ,CF  is a non-decreasing function and .2N∈ℓ  

Now, we have the following corollary obtained from Theorem 5.1. 
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Corollary 5.2. For any ,R∈λ  if (5.2) has a nontrivial solution, then 

( )
( ) ( )

,
1

2 η+
η+ϑ≥λ
Fℓ

ℓ
 

where ( ).1max

2

−ϑ+ξ=η
+ϑ
−ϑ

u
ℓ

N

 

6. Illustrative Examples 

Here we shall provide specific examples to illustrate the significance of 

our findings. 

Example 6.1. Consider the following discrete FBVP (1.1): 

( ) ( ) ( )

( ) ( ) ( )






==−∆=−

∈ι=+ι
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Here ,5.2=ϑ  5∈ℓ  and ( ) .
3

12 +ι=ιr  We have ( ) [ )∞→+ι ,0:5.1 5.5
5.0Nr  

with  

( ) 
=ξ =ξ

>=+ξ=+ξ
5

0

5

0

.018
3

42
5.1r  

Therefore, from Theorem 4.4, we get  


=ξ

≈≥=+ξ5

0

.25.1
6

5.7
18

3

42
 

Example 6.2. Consider the following discrete fractional eigenvalue BVP 

(5.1): 

( ) ( )
( ) ( ) ( )
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Here 3,2.2 ==ϑ ℓ  and .4=λ  Therefore, from Theorem 5.1, we get 

.3250.0
16

2.5
4 ≈≥=λ  

7. Conclusion 

In this study, we considered a two-point discrete fractional boundary 

value problem order ( ]3,2∈ϑ  with the help of the Riemann-Liouville 

fractional difference operator. We carried on an essential analysis of the 

discrete FBVP (1.1) based on the fundamental discrete fractional calculus. In 

particular, we developed some new results on Lyapunov-type inequalities  

for discrete FBVPs (1.1). The main results are demonstrated by employing 

Green’s function and the corresponding maximum value. As far as               

an application is concerned, we provided an example of the eigenvalue 

problem. It is exciting and challenging to consider Lyapunov-type inequality 

for linear and nonlinear discrete FBVPs. At the end of the paper, specific 

examples consistent with the main findings are provided. 
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