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MULTIPLICITY OF POSITIVE PERIODIC SOLUTIONS 
FOR A NICHOLSON-TYPE BLOWFLIES MODEL 

WITH NONLINEAR DECIMATION TERMS 

 

 Abstract  

This study considers a Nicholson-type blowflies model with nonlinear 
decimation terms in a periodic environment. The sufficient condition 
for this model to have at least two positive periodic solutions is 
elucidated. Our result is obtained by applying the Krasnoselskii fixed 
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point theorem. Example and its simulations are given to illustrate our 
result. 

1. Introduction 

Flies are familiar creatures to humans. They multiply rapidly and inhabit 
nearly all parts of the World in large populations. The lifespan of an adult fly 
is generally considered to be approximately one month, although it depends 
on the species and environment. Furthermore, a female fly begins to lay eggs 
approximately four days after emerging from the pupal stage. The laid eggs 
will hatch into larvae, which molt twice to become the last instar larvae and 
then turn into pupae when the shell hardens. As such, a fly undergoes a 
complete metamorphosis from an egg to an adult in approximately two 
weeks [13, 19]. The population dynamics of flies have been investigated by 
numerous researchers. In 1980, Gurney et al. [8] proposed the first-order 
autonomous differential equation 

tqxetpxtxtx  (1.1) 

to describe the population dynamics of the Australian sheep blowfly. Here, 
tx  is the size of the population at time 0;t  is per capital daily adult 

mortality rate; 0p  is the maximum per capital daily egg production rate; 

 is the time required for a blowfly to mature from an egg to an adult; q1  is 

the size of the blowfly population when the production function quue  takes 
the maximum value. Many studies based on this model were carried out 
subsequently (for example, see [3, 9, 17]). 

In addition, clinical experiments have shown that seasonal fluctuations of 
the environment greatly affect the population density and internal 
composition of organisms. Hence, the periodicity hypotheses of parameters 
were combined into biological population systems to incorporate periodic 
environmental variation. Equation (1.2) considering a periodic environment 
was thus modified to read 

,ttqxettxtptxttx  (1.2) 
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where ,0,, RCp  and RRC ,  are continuous and periodic 

with a common period. The existence of positive periodic solutions of 
equation (1.2) and its generalizations have been studied by several 
researchers (refer to [6, 10, 15, 21]). 

It has been reported that flies can help pollinate and boost the production 
of some crops and play a role in some medical and forensic fields [5, 20]. 
However, it cannot be ignored that flies transmit many diseases directly and 
indirectly to human beings. A disease called myiasis is the infestation of the 
organs or tissues by the larval stages of flies, it usually occurs when a female 
fleshfly hatches its eggs in its own body and then releases the larvae into the 
wounds or necrotic areas of humans [1, 16]. Moreover, according to research 
results, flies are also known to serve as mechanical vectors of human 
pathogens. Houseflies are important epidemiologic factors for the spread of 
turkey coronavirus [4]. Synanthropic flies have also been reported to be 
involved in the mechanical transmission of infantile trachoma virus [14]. 
Controlling the scale of fly populations is therefore critical to public health. 
Some studies have investigated the population dynamics of flies with 
decimation (harvesting) terms. The existence of positive periodic solutions 
and other qualitative dynamical properties of the Nicholson’s blowflies 
model with decimation (harvesting) terms were analyzed, we refer the reader 
to [2, 7, 11, 12, 22]. 

Experimental evidence has suggested that the production rate of flies 
drops to zero at both low and high density of flies, and saturates at an 
appropriate size of fly population. The second term 

ttqxettxtp  

in equation (1.2) represents the current density of flies that is affected by the 

past fly density. It can be seen that production function quueuf  in this 

production term is a unimodal function that reflects the basic properties of 
the production process of flies as described above. However, the production 
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rate of flies can suddenly increase due to the accumulation of solid waste in 
concentrated environments and other similar conditions [18]. To deal with 
this important but often overlooked phenomenon, a more appropriate 
production function is imperative. 

 

Figure 1. Graphs of production function uueuf  and u
i euutg 2,  

in the case that 1q  and 2  for all Rt  and ....,,2,1 mi  

Taking the reason above into account, we consider the generalized 
Nicholson-type blowflies model 

m

i

n

j
jiii txtHttxtgtbtxtatx

1 1
,,,  (1.3) 

where utc
i ieuutg ,  for Rt  and Ru  with .1  In this model, 

the following assumptions will be imposed: 

 (i) iba,  and ,0,RCci  and miRRCi 1,  are 

-periodic functions; 

(ii) njRRRCH j 1,  are nonlinear terms that are 

-periodic functions with respect to t for each fixed ,Ru  i.e., 
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utH j , ., utH j  Moreover, there exist two constants l and L with 

l1  L  such that 

taLu

utH
tal

n
j j

1
,

1 1  (1.4) 

for Rt  and .Ru  

Let .maxmax
01

ti
tmi

 Then we consider equation (1.3) under the 

initial condition 

0ttx  for .0,t  

The purpose of this paper is to present a sufficient condition which 
ensures that equation (1.3) has at least two positive -periodic solutions. Let 

.supmax
01

tcc i
tmi

 Then we define .cueuug  It can be seen that 

the function g is strictly increasing on gu,0  and strictly decreasing on 

,,gu  where .cug  For simplicity, we denote 

1
1

L   and  ,
1l

l
 (1.5) 

in which 
0

.exp drra  Let .10  Then our main result is 

as follows: 

Theorem 1.1. Let tbb iti 0inf  for each ....,,2,1 mi  Suppose 

that 

m

i
ggi uugb

1
.  (1.6) 

Then equation (1.3) has at least two positive -periodic solutions. 
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2. Auxiliary Lemmas and Preparations 

We begin with the definition of a cone on Banach space. Let X be a 
Banach space. A closed and nonempty subset XK  is said to be a cone if 

(a) 0,, 1KyKx  and 02  imply ;21 Kyx  

(b) Kx  and Kx  imply that ,x  where  is the zero element 

of K. 

The following is the well-known Krasnosel’skii fixed point theorem in a 
cone. 

Lemma 2.1. Let X be a Banach space, and XK  be a cone in X. 
Assume that 21,  are open bounded subsets of X with 11  

,2  and let 

KK 12 \: ∩  

be a completely continuous operator such that either 

 (i) 1, ∩Kxxx  and ,, 2∩Kxxx  or 

(ii) 1, ∩Kxxx  and ., 2∩Kxxx  

Then  has a fixed point in .\ 12∩K  

We define the set of -periodic continuous functions by 

.,: RtRtxtxtxX  (2.1) 

It is obvious that X is a Banach space with the norm 

txx t0sup  

for any .Xx  For an element Xx  satisfying 0tx  for ,Rt  let 

txtx̂  for ,t  

and 

txtˆ  for .0,t  
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We can prove that a positive -periodic function tx̂  is the solution of 

(1.3) with initial function ˆ  if and only if the original function Xx  

satisfies 

0tx  and 
t

t

m

i
iii dsssxsgsbxstFtx

1
,,;,  (2.2) 

where 

1

;,

0
1

1

,

,

drrx

rxrH
ra

drrx

rxrH
ra

n
j j

s
t

n
j j

e

exstF  for ., tts  (2.3) 

The inequality Luta
utH

l
n
j j

1
,1  can be deduced easily from 

(1.4). Then we can estimate that 

.0
0

1

0

,

LdrraL
drrx

rxrH
ra

drrall eee

n
j j

 (2.4) 

Hence, we have 

1

;,

0
1

1

,

,

drrx

rxrH
ra

drrx

rxrH
ra

n
j j

t
t

n
j j

e

exttF  

1
1

1

1

0
1 , L

drrx

rxrH
ra

n
j j

e
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and 

1

;,

0
1

1

,

,

drrx

rxrH
ra

drrx

rxrH
ra

n
j j

t
t

n
j j

e

exttF  

.
1

1
0

1

0
1

,

,

l

l

drrx

rxrH
ra

drrx

rxrH
ra

n
j j

n
j j

e

e  

Therefore, it follows from (1.5) that 

.
1

;,;,;,
1

1
l

l

L xttFxstFxttF  (2.5) 

Moreover, the functional F satisfies the periodic relationship 

.;,;, xstFxstF  (2.6) 

Let xtxXxK :  be a cone in X. Then we define an 

operator  by 

   
t

t

m

i
iii KxdsssxsgsbxstFtx

1
.for,;,  (2.7) 

Noting the solution representation (2.2), we see that the solution ˆ;x  

of (1.3) is a fixed point of .  

Lemma 2.2. The operator KK:  is completely continuous. 

Proof. First, we show that  maps K into K. For any ,XKx  it 

follows from (2.6) that 



Multiplicity of Positive Periodic Solutions for a Nicholson-type … 45 

tx  

2

1
,;,

t

t

m

i
iii dsssxsgsbxstF  

t

t

m

i
iii dsssxsgsbxstF

1
,;,  

t

t

m

i
iii txdsssxsgsbxstF

1
.,;,  

Hence, .Xx  

From (2.5), we obtain 

t

t

m

i
iii dsssxsgsbtx

1
,  

and 

t

t

m

i
iii dsssxsgsbtx

1
.,  

Hence, we have 

,sup
0

txtx
t

 

which implies that 

.tx  

Thus, we see that .Kx  By a basic calculation, we can verify that  is 
completely continuous. We omit its proof. 

3. Proof of Theorem 1.1 

We will prove Theorem 1.1 by means of Lemma 2.1. Since the operator 
 defined by (2.7) has the property shown in Lemma 2.2, it is sufficient to 

check the assumptions (i) and (ii) to apply Lemma 2.1 to our result. 
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Let tbb iti 0sup  for ....,,2,1 mi  Then we choose a constant 

0  satisfying m
i ib10 ,10  in which 1Li  is given in 

Section 1. Let .infmin 01 tcc itmi  Then we define uceuuh  

for .0u  The function h is strictly increasing on hu,0  and strictly 

decreasing on ,,hu  where .cuh  Moreover, 

.0limlim
0

uhu
uh

uu
 

Hence, we can find numbers 1v  and 2v  with 210 vuv g  such that 

100 vuuh  for ,0 1vu  (3.1) 

and 

20vuh  for ,2vu  (3.2) 

where cug  is given in Section 1. Let .223 vvv  Recall that 

.uceuug  From the condition (1.6), there exists a constant 0  

guv2,0  such that 

m

i
ggi uugb

1
0.  (3.3) 

We define subsets 321 ,,  and 4  of X as follows: 

;:;: 211 guxXxvxXx  

.:;: 3403 vxXxuxXx g  

Then 41 ii  are open and bounded subsets of X, and satisfy that 

.44332211  

Certainly, the zero element  of K belongs to .1  
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Part (1). Let x be any element of .1 XK ∩  Then x is a -periodic 

function and satisfies .1vx  Hence, we have 

10 vssx i  for Rs  and ....,,2,1 mi  (3.4) 

For each ,1 mi  we see that uheueuutg ucutc
i i,  

for Rt  and .0u  From (2.5), (3.1) and (3.4), we obtain 

t

t

m

i
i

m

i
ii vvbdsssxhbtx

1
110

1
 for .Rt  

Therefore, xvx 1  for .1∩Kx  

Part (2). Let x be any element of .2 XK ∩  Then x is an 

-periodic function and satisfies guxtx  for .Rt  Hence, it 

follows that 

gig ussxu  for Rs  and ....,,2,1 mi  (3.5) 

From the unimodal property of g, we see that 

.min g
uuu

ugug
gg

 (3.6) 

For each ,1 mi  we see that ugeueuutg ucutc
i i,  

for Rt  and .0u  By (1.6), (2.5), (3.5) and (3.6), we have 

t

t

m

i
ggi

m

i
ii uugbdsssxgbtx

11
 

for .Rt  This leads to xux g  for .2∩Kx  

Hence, we checked that the assumption (i) of Lemma 2.1 is satisfied. 
Lemma 2.1 shows that the operator  defined by (2.7) has a fixed point 1x  

in .\ 12∩K  This fixed point 1x  satisfies that 11 xtx  for Rt  
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and .0 11 guxv  Namely, we see that 1x  is a positive -periodic 

function. Let txtx 11̂  for ,t  and txt 11
ˆ  for .0,t  

Then 1̂x  is a solution of (1.3) with the initial function .ˆ
1  

Part (3). Let x be any element of .3 XK ∩  Then x is an 

-periodic function and satisfies 0guxtx  for .Rt  

Hence, we have 

00 gig ussxu  for Rs  and ....,,2,1 mi  

Since 0  is a sufficiently small positive constant, we have the 

relationship that 
.min 0

00
gguuu

ugugug
gg

 

From (2.5) and the above two inequalities, we obtain 

t

t

m

i
gi

m

i
ii ugbdsssxgbtx

1
0

1
 

m

i
gi ugb

1
 

for .Rt  Then (3.3) derives that xux g 0  for .3∩Kx  

Part (4). Let x be any element of .4 XK ∩  Then x is an 

-periodic function and satisfies 3vx  and 33 vssxv i  for 

Rs  and ....,,2,1 mi  Note that .320 vvug  From (2.5) and 

(3.2), we have 

t

t

m

i
i

m

i
ii vvvbdsssxhbtx

1
3220

1
 

for ,Rt  which implies that xvx 3  for .4∩Kx  
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Hence, we checked that the assumption (ii) of Lemma 2.1 is satisfied. 
Lemma 2.1 shows that the operator  defined by (2.7) has a fixed point 2x  

in .\ 34∩K  This fixed point 2x  satisfies that 22 xtx  for Rt  

and .0 320 vxug  Hence, 2x  is a positive -periodic function. 

Let txtx 22ˆ  for ,t  and txt 22
ˆ  for .0,t  Then 

2x̂  is a solution of (1.3) with the initial function .ˆ
2  

4. Example and Numerical Simulation 

We will give an example to illustrate Theorem 1.1 in this section. 

Example 4.1. Consider the equation 

2

1

2

1

2 .,
i j

j
ttxtc

ii txtHettxtbtxtatx ii  

 (4.1) 

Let 

,2sin6
1

4
1 tta  (4.2) 

,2cos6,2sin222 21 ttbttb  (4.3) 

,2sin3
1

3
2,2cos4

1
4
3

21 ttctc  (4.4) 

.2cos480
1

48
1,,2sin480

1
40
1, 21 ututHututH  (4.5) 

The delays are defined by 51 t  and .12 t  Then equation (4.1) 

has at least two positive 4-periodic solutions. 

It is clear that the period .4  From (4.2), it turns out that 

.2sin6
1

4
1exp

4

0
edrr  
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In view of (4.5), we have 

tua

utH
j j
2

1
,

6
1

4
1

480
1

48
1

480
1

40
1

10
1  

,5
3

6
1

4
1

480
1

48
1

480
1

40
1

 

and hence, 1.1l  and .6.1L  Then we see that 

"25297.0
1

1
6.1e

 and .16876.0
1

1
6.11.1

1.1
"

ee
e  

It follows from (4.4) that .11,1maxc  Note that .2  Then the 

function uuc eueuug 2  and .2gu  Because of the unimodal 

property of g, we can estimate that 

.08128.033752.033752.0 33752.0

2
"

e
gug g  

Moreover, (4.3) implies that 201b  and .52b  Therefore, we obtain 

2

1
08128.0520425297.0

i
gi ugb  

.205614.2 gu"  

Thus, condition (1.6) is satisfied. Theorem 1.1 shows that equation (4.1) has 
at least two positive 4-periodic solutions. 

In Figure 1, the two solutions of (4.1) are drawn. Numerical simulations 
show that the two solutions approach a periodic solution as t increases.                       
In other words, equation (4.1) has a positive 4-periodic solution that is 
asymptotically stable. 
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Figure 2. Numerical simulations of solutions of (4.1) with initial function 

81 t  and .302 t  

 
Figure 3. Equation (4.1) has a positive 4-periodic solution with the initial 
function 010889.01 t  for .0,5t  This positive 4-periodic solution 

is unstable. 

Theorem 1.1 guarantees the existence of at least two positive periodic 
solutions of (4.1). Hence, equation (4.1) has another positive 4-periodic 
solution. This periodic solution is generally considered to be an unstable 
solution. In this example, we can fortunately simulate an unstable positive 
4-periodic solution (see Figure 2). The approximate value of the initial 
function of the unstable periodic solution is 010889.01 t  for .0,5t  
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