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Abstract

In this paper, we study the existence, uniqueness and other properties
of solutions of fractional Volterra Fredholm integrodifferential
equation involving Caputo fractional derivative of special class

n—-1<a<n, n>1. The result of existence and uniqueness is

obtained with help of well known Banach contraction principle and
the integral inequality which provides explicit bound on the unknown

function. The obtained some results are illustrated through example.
1. Introduction

In the present paper, we study existence, uniqueness and other
properties of solutions of the following nonlinear Caputo fractional mixed

integrodifferential equations with constant coefficient A (0(0,1) of the

form:

t b
“DOy(1) = o) + f(z, o) [ ks, s, [, y<s))dsj, (1)
for t 0[0, ] =1, n—1<a <n,n>1A0(0,1); with nonlocal conditions:

YD) =¢;+g;(6). (j=0,1,2 . n-1), (1.2)
where f:IxXxXxX - X and k, h:IxX - X and
g;:C([0,p]. X) -~ X(j=0,1,2 ...,n-1)

are continuous functions and ¢ | ( j=0,1,2,..,n—- 1) are given points in X.

For the most of differential or integrodifferential equations of fractional
order, we know that every solution is presented in terms of equivalent
integral equation with singular kernel and few inequalities are there to study
other properties of special version of such equations. Further, in case of

singular kernel, there several research papers in the literature using the fact

that (r — 5)® Tep® s<r 0O [0, b] with 0 < a < 1. This is not the correct,
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in fact for o :% and the interval [0, 1] with # = 1 s = !

> 3 one can observe

that
1 1

NG I RN ORI

By keeping these in mind, authors considered a class of special

—

equations where singularities are removed and we are free to use general
integral inequalities to discuss the various properties of solutions. This study

may be the new motivation towards the class of more general type.

Recently, several researchers have been studied the results such as
existence, uniqueness and other properties of solutions for the nonlinear
fractional equations involving various types of fractional derivatives by
different techniques, see [2-8, 10, 13, 14, 17-19] and the detailed literature
for fractional calculus can be found in [1, 9, 11, 12, 16, 20].

The paper is organized as follows. In Section 2, we present the
preliminaries and hypotheses. Section 3 deals with the existence and
uniqueness of the solution employing contraction principle. Section 4 is
devoted to the existence of at most one solution and estimates on solutions
via inequality. In Section 5, we discuss results on continuous dependence of
solutions on initial data, functions involved therein and parameters. In the

final Section 6, we present the suitable example to demonstrate the results.
2. Preliminaries

Before proceeding to the statement of our main results, we shall set
forth some preliminaries and hypotheses that will be used in our subsequent
discussion.

Suppose Ll(I) denotes the space of Lebesgue-integrable functions

y: I - X with the norm

b
I3lp = 15@)dr



4 H. L. Tidke, V. V. Kharat and G. N. More

Definition 2.1 [16]. The Riemann-Liouville fractional integral of a

function # 0 I'(1, R,) of order o O R, is defined by

19() = % [ ; (t - )% h(s)ds,

where I is the Euler gamma function.

Definition 2.2 [9]. The Caputo fractional derivative of order o > 0 of a

function h O I! (1, R,) is defined as
¢ D% () I (r = s)" 0 ) (5) s

where n = [a] +1 and [a] denotes the integer part of the real number a.

Lemma 2.3 [9]. Let o >0 and n = [a] + 1. Then

1
1°(°D%£(r) Z

=0

=~

where f (k)(t) is the usual derivative of f(t) of order k.
Lemma 2.4 [16]. For o > 0, the fractional differential equation
“D%(r) = 0,
has a solution h(t) =cytott c2t2 + ...+ cn_ltn_l, where ¢;, 1 =0,1, 2,
., n =1 are constants and n = [a] + 1.

Let X be a Banach space with norm | and 7 =0, b] denotes an

interval of the real line R. We define B = C"(I, X) (where r =n for
aON and r =n—1 for a ON) is a Banach space of all continuous

functions from 7 into X, endowed with the norm

lxlp = sup| x()| : x OB}, ¢OL.



Some Results on Nonlinear Mixed Fractional Integrodifferential ... 5

From the above lemma, it is easy to observe that if y (0 B, then y(¢)

satisfies the following integral equation which is equivalent to (1.1)-(1.2):

n—1

y(t)‘z—t’+go ZI t_s g,(y)ds

Jj= 0

+ %I; (t = )" Ty(s)ds

N ﬂla; [ sy f(s, o) [ k(e y(@)er, | Ob W, y(r))erds.

2.1

We require the following lemma known as Pachpatte’s inequality in our
further discussion.

Lemma 2.5 [15]. Let u(t), p(¢t), q(¢), r(t) O C([a, b], R,) and ¢ = 0 be

a real constant and for t [ [a, b],
u(t) < c + j p(s)[ )+ [ a(o)u(o)do+ | b r(o)u(c)do}ds.
If

a

a=[" o) exp( [NICE q(r)]drjdo <1

then

u(t) <

exp(j [p(s) + 4(s) ]dSJ for tO]a, b].

We list the following hypotheses for our convenience.

(H)) f:IxXxXxX - X is a continuous and there exists a
function p; O C(1, R, ) such that

£ (e x(2). ¥(2). 2(2)) = £ (. X(2). 3(). 2(1)) ]
< pOf x() = 2@+ y() = 5O | + 1 2() = 2() -
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(Hy) k,h:IxX - X are continuous functions and there exist

functions p,, p3 0 C(I, R,) such that
k(e x) = k(2. y) < po()] x() = ¥(2)]
and
I (e, x) = h(e, y) || < p3 ()] x(t) = y(2) .
(H3) Each g;:C(I, X) -~ X,(j=0,1,..,n-1) are continuous
functions and there exist constants L > ( j=0,1,..,n- 1) such that

Ig;(v)=g;(2) [ < Lj| () = z(1) .

(H4) Assume that N = sup and

tar

f(t, 0. [ k(s. 0)ds. [ (s, O)ds)

n=ly. )
m=sup 30 a6 =g, 0) 0 -1
tar =0 J:

3. Existence and Uniqueness

The following theorem deals with existence and uniqueness of solution
of the problem (1.1)-(1.2).

Theorem 3.1. Assume that hypotheses (H;)-(H4) hold. If

B =L+[7\+P1(1+(P2 +P3)b)}ba <1

Ma +1)
where P =sup{p;(t)}, (i=1,2,3), and G =sup z]—‘ and
tar ol j=0 /-
n-1p, ~lj
L =sup z#, then the nonlocal problem (1.1)-(1.2) has a unique
tar j=0 :

solutionat y B onI.
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Proof. We use the Banach contraction principle to prove existence and

uniqueness of solution to the problem (1.1)-(1.2). Let

E.={yOB:|ylg =<}
where

o[ PR ey

be closed and bounded set. Define an operator on the Banach space B by

S N D
J—f + 8oy Z Wg](y)d
j=0 Jj=1

+ FZ\G) J(Z (t = 5)* y(s)ds

b

+%Jl(;(t —s)“_lf(s, y(s), I(jk(r, y(1))dr, Io h(t, y(r))drjds.
3.1

Firstly, we show that the operator 7 maps E, into itself.

By using hypotheses, we have

I(Ty) (@)

n-1

ZJO )y 0) s

+ % [NEDEOI

a9

+ i f(s, o) [ kG, v jobh(r, y(T))de ds
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n-l — i—1
< M+ go(0) = 401+ 2001+ X [ G205 600 1as
j=1

+ZJ (00 0 s+ s [ =52 s

(s 0, J' ;k(r, 0)dr, th(r, O)drj
LES0! i e, (0
f

+ﬁj‘;(t—s)a_l f ds

)al

+ﬂlajjé(t s
- f(s, 0, I;k(r 0)d
<M +G0+Z_[

n—

T, Odrj

ye js + Lol y(1)|

+

t(f - i—1
[ L) s

j=1

Nb® Aot ya-l
) @ o T

o= o)

H56) 1+ [l @l + [ ps (o) e s

n-1
<M +£G0 +Y.G; —J [10 + ZL] ,J” y(s)[l

Jj=1

a a
+ Nb + Ab -
Ma+1) (a+1)
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1
+ %J‘O (t = )" IP[r + Pobr + Pybr]ds

(‘1 a
Ab
<
M+ZG] ]‘+ZL]J' F(O(+1) (a+1)r

1’1[1 + (P, + P3)b]b%r

Mo +1)
Nb? A+ B[+ (P, + P)b]
SM+G*Lrs m s ( Flar) )
Nb© A+ A1+ (P + P«
R R e e e

e

+ [L + (7‘ + B[+ (P + B)] jba}

Ma+1)

Thus,
1(Ty) [ < 7. (3.2)
The equation (3.2) shows that the operator 7 maps E, into itself.

Now, for every x, y U E, and for ¢ [J I, we obtain

1(7x) (e) = (Ty) ()|

<] 50() - g0l ||+Zj sl g0 500 s

o (-1

e [ 7 )= (0 s
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)G—l

rlglie-

f(s, o), ke s, | Obh(r, x(T))dTJ

_ f(s, Vo), ke v, | O”h(T, y(r))drj s

< L <) = ()] + ZLJ =1L 6) - 5(5) s

o (G-1)
ﬂ)\ajé (r = 5)* 7 x(s) = ¥(s) || ds + ﬂlajjé (t = )% i (s)
x [" x(s) = y(s) | + J;pz(r)|| x(1) = y(1) | dr

+ I . (1) x(t) - y(1) IIdT}dS
0 3
)\G
< 15 - ynB+ZJ D eyl + e vl
a
+ﬁpl[l+sz+P3b]%llx—Y||B

n-1 ;
l‘j
< Lol x=ylp + X 5Ll x5l
j=

AB® All+Pb+Pb] of,
| ey + A -5,

n-1 ;
t! _ A+ R+ (P +P)b] ay
=2 il ylp + (A ) - 51

< [L (7\ + Pl[ll'(Jra(le)Jr P3)b])b°‘}|| x= vy
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Hence, we have
1 (7x) = (Ty) 5 < Bl x = ¥l

where 0 <3 <1. This proves that the operator T is a contraction on the

complete metric space B. Therefore, by Banach fixed point theorem, the

operator T has a unique fixed point in the space B and this is the required

unique solution of the nonlocal problem (1.1)-(1.2) on 1. O

4. Estimates on Solutions

The following theorem deals with the uniqueness of solutions to the
nonlocal problem (1.1)-(1.2) without the existence part.

Theorem 4.1. Suppose that the hypotheses (H;)-(H3) hold and

0 = [ ps)en{ [ [ 250+ pato) s <1,

where

0= (M) e- e+ 0, G|

Then the nonlocal problem (1.1)-(1.2) has at most one solution on 1.

Proof. Let y(¢) and z(t) be two solutions of the problem (1.1)-(1.2) and
u(r) = | y(z) = z(z) |, O 1. Now by using hypotheses, we have

u(r)
= y(r) = z(e) |

< 1] 3() - < ||+ZI 6= 5(6) - o) ds

(-0

+ %Ié(r =)%Y y(s) = 2(s) || ds + %J‘S (t = )% pi(s)
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<[156) =0+ [ 201500 - 0 e

b
[ 0= i

—

n- t(; — )1 t
< Lyu(t) + ijo (t(j f)lj)‘ u(s)ds + %J‘O (t- s)a_lu(s)ds

j=1

\)

) o= ) )+ [ ot + [ pteute)a s

I ) - 97 o)+ a0 [ (s

0
(1= Lo)ult)
< ;A(s)[u(s) + [ pa(uar+ | §p3(r)u(r)dT}ds.

Thus,

u(t) < j(: (1{(20 ){u(s)+ IO o (D) u(t)dr + job p3(T)u(T)dT}ds. @.1)

By applying Pachpatte’s inequality to the inequality (4.1) with u(t) =
150 =201 26) =250 46) = p2(0). 1) = p3ts) and e =0, we
obtain

) = 72 e [ [k + o)
<0

= u(t) = 0.

Therefore y(¢) = z(¢), which proves that there exists at most one solution. [J
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The following theorem deals with the estimates on the solutions of the

nonlocal problem (1.1) - (1.2).

Theorem 4.2. Suppose that the hypotheses (H,)-(H4) hold and

d= I exp( J’ ; [ 1{(?0 ¥ pz(T)}dT)ds <1.

If y(t), t U1 is any solution of the problem (1.1)-(1.2), then

Iy

{M +G+ ALk } !
g :(_qd+ 1)|1-L eXpUt[ A(s) + pz(s):|dSJdS, for t 01,

ol1-1Ly
where A(s) is defined as in Theorem 4.1.

Proof. By using the fact that the solution y(t) of the problem (1.1)-(1.2)

satisfies the equivalent equation (1.1) and the hypotheses, we have

Iy

1 —S]l
Z'J— e 1y 50+ 6y +Z ol G

+ZJ Lny()uds

0( -1 Nb®
I y(s)l|ds + Mo +1)

I'(O().[
 OINEDR0

561+ [l + [ ps (o) e s
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n—1 i
t! Nb®
=M +Gy +2Gj7+lﬂ|| y(S)"“‘m

J=1

K= b-s)7l A+ (s) a-
*fo[ZILf((j—)l)! T 07 1]
=

O [ @5+ [ )] (0 as

<[ w0 iy o 01

[ A+ [ pa e+ [ ps ) 0 s,

which can be written as

O = g o+ 0

+ I; 1{(2) [" y(s) ] + I(‘:pz(T)" y(1)||dt + ij3(r)|| y(1) ||dT}ds.

4.2)

Hence, by an application of Lemma 2.5 to (4.2) with

)= 1501 26) = 25 49 = 0260, 5) = ),

_ 1 Nb®
c——l_lﬂ{M +G+—r(a+1)},
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we obtain
I y(@)]
Nb® 1
M+G+
{ Mo+ 1)} 1-
= 1-d & CXPU; [1{(2) + Pz(S)}dsJ, for t O 1. (4.3)

O
5. Continuous Dependence

In this section, we shall deal with continuous dependence of solution of
the problem (1.1)-(1.2) on the initial data, functions induced therein and also

on parameters.
5.1. Dependence on initial data
We first discuss dependence of solution on given initial data.
Theorem 5.1. Suppose that the hypotheses (H;)-(Hz) and let
b sT A1)
a=[ " pis)exp | [—+ 1) |dt |ds <1,
s mlex{ [ [0+

where A(s) is defined as in Theorem 4.1. If y(t) and z(t) are solutions of
(1.1) with initial data

YD) =¢; +g,(0), (j=0,1,2 . n—1) (5.1)

and
) =d; +hi(z), (j=0,1,2 . n=1), (5.2)
| g;(y) = h;j(y)] <8, where (j =0,1,2, ... n =1), (5.3)

respectively, then

(1\7+(_}
<

19(0) - )] < %;jexp[ Jo [+ )]s or 1,
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where
||c - S
T S Ak N P~
IDI ]—0 a1 ]—0

Proof. By using the fact that y(z) and z(¢) are solutions of (1.1) and
u(r) =| () = z(z) |, # O 1. Then by the hypotheses, we have

u(f)

1001 = £ ) - 0]

=
+ZI || g0 = hy(2) |ds

eyl =56 = 2(6) s + g [ =9 i)
1360 =201+ [0 - 20

b
[0 - i

<M+ go(y) = go(2) | +1l g0(z) = () |

2 JHD T 6,00 (2 s

n-1

+le;

)=y + e [ s

+ ey fte- s)“'lpl(s)[um + [ paeu(ar+ | Obpa(r)umdr}ds
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< 1+ 3 + 1] () -0 + ZéJ e

= e -s)/ !
# 2 5f GEr56) = s + g [ = 9 uls)as
J

« [u(s) [ pa@u(ars | ps(r)u(r)dr}ds

n—1 i
<M+ {2613—]‘} + Lou(t)
=0

[ A uls) + [ paute)a + [ ps Oy 64
cs(2E

o2k )+ [ e [ m@uaras 69

o, oo of Lemma 25 1 153 wit = 920 )

%, q(s) = pa(s), r(s) = p3(s), u(t) =||y(t) - z(¢) ||, we obtain
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(1\7 + (_}j

=Ly ) ('] Ab)

- <~ -7 7 4 .

||)’(l) z(1) | < =4 eprO [1 ~ 1, pz(s)}dsj, tO1r;

which shows the dependency of solutions of equation (1.1) on given initial
data. (]

5.2. Dependence on functions

Consider the problem (1.1)-(1.2) and the corresponding problem

. - 1 b
CDYL(r) = Aalr) + f[t, ), [ k. <(s)yas. [ G z(s))dsj 5.6)
for t+01=[0,b], >0, n—1<a<n, n>1, A0O(0,1) with nonlocal
conditions:
0)=d; +hi(2) (j=0,1,2 . n—1), (5.7)
where f is defined as f.

The following theorem deals with the continuous dependence of

solutions of the problem (1.1)-(1.2) on the functions involved therein.

Theorem 5.2. Suppose that the hypotheses (H;)-(Hz) hold and

functions g ;, h; satisfying the conditions (4.1). Let

d= I; 1173(s)exp(‘|‘(;v [% + pz('[):|d'[jds <1.

Furthermore, suppose that

{150 [ 6. 6 6D

<E,

_ f(z, 0, [ ks, (s, | Obh(s, y(s))dsj

where € >0 is an arbitrary small constant and z(t) is a solution of the
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problem (5.6)-(5.7). Then the solution y(t), t O 1 of the problem (1.1)-(1.2)

depends continuously on the functions involved in the right side of equation

(1.1).

Proof. Let y(¢) and z(¢) be solutions of the problem (1.1)-(1.2) and
(5.6)-(5.7), respectively, and let u(r) = | y(t) = z(z) |, t O 1.

Now, by hypotheses, we have

u(t)
= y(t) = z(1)]

<Z"’- 148y + Lol 1) - <0 ||+ZI g

o (-1

n—1 P _ N\
; I%Lju (5) = 2(s) | ds

e [ 9 () - <) s

1

+ WJ.(; (r - 5)° —lpl(S) [" y(s) = z(s) [|dt + I(; pa ()] »(t) = z(1) ||aT

* I; p3(0)] ¥(t) - =(1) ||dr}ds + %J‘; (c - 5)* eds

_ Uty %
<M+ 60+Z#
=
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ey o 97 ) ) [ o)+ [ ps(eutr)ae s

eb? (t)

<M+G +m+lou

+ J(Z A(S)[“(S) * J(: pa(T)u(t)dr + .[: p3(r)u(r)dr}ds

. o a
iu(l‘)gﬁ{M +G +%:|

+ J; %{u(s) + J; po(Du(t)dt + I: p3(T)u(T)dT}ds. (5.8)

Therefore, on application of Lemma 2.5 to (5.8), with

() = | 56) - ). p(0) = 20

a(s) = pa(s). r(s) = psls). ¢ = ﬁ[ﬁ +G + %}

we get

{M N (sb“ 1)}
a+ t s
130) - 01 = oy oo [y [+ mao)]as). 69

t 1. From (5.9), it follows that the solution of the problem (1.1)-(1.2)

depends continuously on the functions involved in the right side of the
problem (1.1). O

Remark 5.3. The result given in Theorem 5.2 rotates the solutions of
problems (1.1)-(1.2) and (5.6)-(5.7) in the sense that if f is close to F,
¢cj »dj, and g; - hj, (j=0,1,..,n—1), then the solutions of the

problem (1.1)-(1.2) and the problem (5.6)-(5.7) are also close to each other.
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5.3. Dependence on parameters

We next consider the following problem

CDO (1) = My(1) + F(z, o). [ ks, v(sDas, | jh(s, ¥(5))ds. ulJ, (5.10)

for +t071=[0,b,b>0,n-1<a<nn>1,A0(0,1) with nonlocal

conditions:
YD) =c; +g;(0). (/=012 .n-1) (5.11)

and

€DOL(r) = Acr) + F(t, ). [ ks, (e, | ;’ (s, 2(s))ds, “Zj’ (5.12)

for t01=[0,b], b>0, n—-1<a<n, n>1, AO(0,1) with nonlocal

conditions:

0)=d; +hi(2) (j=0,1,2 . n—1), (5.13)
where FOC(IxX xX xX xR, X), h, kOC(I, X) and constants |l
and [, are real parameters.

The following theorem shows that the dependency of solutions of the
problems (5.10)-(5.11) and (5.12)-(5.13) on parameters.

Theorem 5.4. Assume that (H,)-(H3) hold and the functions g j» b

satisfy the condition (5.3). Also, the function F satisfying the conditions
| F (e x(e), y(0). 2(0), ) = F e, X(2), ¥(). Z(2), ) |
< pa O[] x(0) = x(@O) | + [ y(e) = @) |+ 2() = 2], (5.14)
and
| F @ x(0). y(0). 2(e) ) = F e, x(0). y(0). 2(0). ma) [ < ps(e) b = pa |,
(5.15)
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where py, ps O C(I, R,). Let

=l 5 i<

where
M+ pals) Li(b-s)""!
s o S

If y(t) and z(t) be the solutions of the problem (5.10)~(5.11) and
(5.12)-(5.13). Then

Iy() = z(1) |
;_+_+| "W [P o
Rk Gl_ﬁ—rd”rlaﬁﬁ ”LXpr{lB_g)O s i) 0

where P = sup{ ps(1)}.
QI

Proof. Let u(r) =| y(r) = z(¢)|. ¢ O 1. From the hypotheses, it follows
that

u(r)

; n-l — j—1
ST e S s st~ 0
j=1

+Zj Lny() 2(s) lds

e [0~ (o)
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s 060 [ ke s, e ) )

-1

1 ! a
RO

— F(s, 2(s). j ke, () | Obh(r, (). uzj s

=y A a-
+Z;J.0 G- 1' Lju dﬁr(a)jo(t_s) uls)ds
J

i L EFON WO NI ET

el

i} F(s, (), I;k(r, (), jobh(r, (), ulj ds

F(s, i e

))dr, sz

J‘( s)(]l

+ Lou(e) + r(la) [ ;(z ~ )% ps(s) 1y Ha |ds

“u(s)ds + gy [ NEDS

a

A ! a
*mh‘”’

156 =201+ [ pa(0l0) - 0 L
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b
+Iz&ﬁWyﬁ)—dﬂnm}a

0

|U1_H2|Fb0(

SM+G + Lou(t) + SRS

+ I;B(s)[u(s) + I;pz(r)u(r)dr + J.(fp3(1')u(1')d1} ds. (5.16)

Thus

) [ma%ba}

+ﬁ£%$ﬁ%£&ﬁh@ﬂ+ﬁmwﬂmﬂﬁ-@m

Now, an application of Lemma 2.5 to (5.17), with

)= 150 - 201 o) = 251

q(s) = pz(s), r(s) = p3(s), c = ﬁ{ﬁ +G +%ba}
we obtain
Iy(r) = =(1) |
_1 _+_+|“ “W|P q
1—10[M G rl(a +21) b pr(r{lB(;)O +p2(s)}ds} (5.18)
ol1-

t U1, which shows the dependence of solutions of the problems (5.10)-

<

1-d

(5.11) and (5.12)-(5.13) on parameters |; and H,. O

6. Example

In the last section, we can illustrate our results through the following

example by taking the fractional order o, 1 < a < 2.
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Example 6.1. Consider the following fractional integrodifferential

equation
1 e’ | y(7)]
“DY2y(1) = — y(t) + [
0= 1520) 8+ ) L1+ ()]
s)ds, (6.1)
9 2 + s
for t 01 =[0,1],1<a <2, A0(0, 1) with conditions:
_ . Ay 1 .
y(0) = ¢ + gsiny, ¥ (0) =c, + 1050 Y- (6.2)
Problem (6.1)-(6.2) is of the form (1.1)-(1.2) with a = % A= %,
t 1
o0 [} ks stoDas. [ ot y<s)>ds]
s
= s)ds.
row ReaiTo] )

Clearly, for each y, z, u, y, Z, u U X and ¢t U [O, 1],

- - 1 — _ _
1 £Gy zu)= £ 5 2 w) | < glly =5+ Tz =z +[u-u]].

Also, we have

1 _
[ k(e y) =kt D) < gly =51,
1 _
[ 2, y) = h(e, ) <5l y =¥,
1 _
&) - <gly -7l

N
| 22(3) = 22 = 5l y = VI
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Hence all hypotheses (H,)-(H,) are satisfied with A = %, I = é,
la=i P=l P =1 P=l Therefore, we have
1001792793 79" )
- _1 .1 _1
L= sup{L1+th}SL1+la_§+E__0.
o, 1]

Now, we estimate the value

A+B(l+(P +B)b)] o
B+L+[ 1<r(a(+21) 3) )}b

i+ll+ l+ll

_19,110 9 99
90 5
3)

=0.2111+0.1774

= 0.3886

<l.

It follows from Theorem 3.1 that the problem (6.1)-(6.2) has a unique

solution on [0, 1].
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