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ON THE ENERGY EQUALITY FOR WEAK SOLUTIONS 

OF THE NAVIER-STOKES EQUATIONS 

 

 

Abstract 

In this paper, we first introduce the concept of absolutely continuous 

functions of order ( ).10 ≤< ss  Next, we prove the energy equality 

for weak solutions of the Navier-Stokes equations (NSE) in bounded 
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three dimensional domains if and only if u is an absolutely continuous 

solution of order .21  Finally, we present a sufficient condition for  

the energy equality of weak solutions to NSE. Here, we prove that          

if ( ) ( ) ,
2
5

1;,0;,0 12
12

42






 <≤∈ + sLTLHTLu ss

∩  then the energy 

equality holds. 

1. Introduction 

We consider the three dimensional initial boundary value problem for 

NSE 
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( ) ( )xuxu 0,0 =  in ,Ω  (1.3) 

where Ω  is a smooth bounded domain in ,3
R  and 0u  is a given vector-

function satisfying the condition ( ) .0div 0 =u  

We recall the definitions of the spaces ( ) ( ) ( ):,, 22,1
,0,0 ΩΩΩ σσ

∞
σ LWC  

( ) { ( ) ( ) },0div,0,0 =Ω∈=Ω ∞∞
σ uCuC  

( ) =Ωσ
2,1

,0W  the closure of ( )Ω∞
σ,0C  in the topology ( ),1

0 ΩH  

( ) =Ωσ
2

L  the closure of ( )Ω∞
σ,0C  in the topology ( ).2 ΩL  

The space ( )Ωσ
2

L  is equipped with the usual scalar product ( )⋅⋅,  and the 

norm 

( ) .:
2
1

2
,22 2 
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The space ( )Ωσ
2,1

,0W  is a Hilbert space with scalar product 

( )( ) ( )
=

=
3

1

.,,

i

ii vDuDvu  

The norm in ( )Ωσ
2,1

,0W  is defined by 

( ) ( ) .:
2
1

1

2
22,12,1

,0 
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α
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dxxuDuu W  

The space ( )Ωσ
2,1

,0W  is contained and dense in ( ),2 ΩσL  and the injection 

is continuous. Let ( )Ω−
σ

2,1
,0W  denote the dual space of ( ).2,1

,0 ΩσW  By the 

Riesz representation theorem, we have 

( ) ( ) ( ).2,1
,0

22,1
,0 Ω⊂Ω⊂Ω −

σσσ WLW  

For each u in ( ),2,1
,0 ΩσW  there exists a unique element of ( )Ω−

σ
2,1

,0W  

which we denote by Au such that 

( )( ) ( ).,,, 2,1
,0 Ω∈∀= σWvvuvAu  

We denote by sH ( ( ))ΩsHsometimesor  the domain of definition of 

.2
s

A  For the definition of ,2
s

A  we refer the readers to [9]. 

We define a trilinear continuous form by setting 

( ) ( ) 
=

Ω
=

3

1,

.,,

ji

jjii wvDuwvub  

For u, v in ( ),2,1
,0 ΩσW  we denote by ( )vuB ,  the element of ( )Ω−

σ
2,1

,0W  

defined by 
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( ) ( ),,,,, wvuwvuB b=  for all ( )Ω∈ σ
2,1

,0Ww  

and we set 

( ) ( ),, 2,1
,0 Ω∈= −
σWuuBBu  for all ( ).2,1

,0 Ω∈ σWu  

By projecting on space ( ),2,1
,0 Ω−
σW  equation (1.1) can write in the form 

 .0=++ BuAu
dt

du
 (1.4) 

Definition 1.1. A vector field 

( ( )) ( ( ))ΩΩ∈ σ
∞ 2,1

0
22 ;,0;,0 WTLLTLu loc∩  

is called a weak solution of NSE if the relation 

( ) ( ) ( ) ( )( )ΩΩΩΩ =∇−∇∇+− 0,,,, 0,,, wuwuuwuwu TTTt  

is satisfied for all test functions ( ( )).;,0 ,00 Ω∈ ∞
σ

∞
CTCw  

In this definition, ( )Ω⋅⋅,  means the usual pairing of functions on Ω, 

( ) T,, Ω⋅⋅  means the corresponding pairing on [ ) .,0 Ω×T  Finally, =uu  

( )3 1, =jijiuu  for ( )321 ,, uuuu =  and we have ( ) ( )uuuuuu div=∇⋅=∇⋅  

when ( ) .0div =u  

Leray [6] and Hopf [4] showed the global existence of weak solutions to 

NSE satisfying the energy inequality 

( ) ( ) ≤ττ∇+
t

udutu
0

2
20

2
2

2
2 .

2
1

2
1

 

However, the question whether or not every weak solution satisfies the 

energy inequality remains still an open problem. Solutions satisfying the 

above energy inequality are called Leray-Hopf weak solutions. 
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It is well-known that the classical solutions of NSE satisfy the energy 

equality 

( ) ( ) =ττ∇+
t

udutu
0

2
20

2
2

2
2 .

2
1

2
1

 

Serrin [7] showed that if a weak solution u belongs to ( ( ))Ωqs
LTL ;,0  

for some 2,3 >> sq  with 

,1
23 ≤+
sq

 

then u satisfies the energy equality. 

Later, Shinbrot [8] derived the same conclusion if the weak solution u 

belongs to ( ( ))Ωqs
LTL ;,0  with 

( ).41
22 ≥≤+ q
sq

 

Sohr [9] proved the energy equality for a weak solution u if uu belongs 

to ( ( )).;,0 44 ΩLTLloc  Here, the Serrin index of ( ( ))Ω44 ;,0 LTLloc  is .
4
5

 

In 2008, Cheskidov et al. [1] proved the energy equality in a function 

class not covered by the class considered by Sohr. If ,3
R=Ω  then          

they obtained the energy equality for weak solutions belonging to 

( ( )).;,0 33
1

,3
3

R∞BTL  For a general domain Ω, the energy equality for weak 

solutions belonging to ( ( ))Ω∞
3
1

,3
3 ;,0 BTL  is still not known. Later on in [2], 

the authors showed that if Ω is a bounded domain with 2
C -boundary and if 

a weak solution u belongs to ( ( )),;,0 6
5

3 ΩHTL  then u satisfies the energy 

equality. Notice that the Serrin index of ( ( ))Ω6
5

3 ;,0 HTL  is .
3
4

 For general 

unbounded domains, Farwig and Taniuchi [3] proved the energy equality for 
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weak solutions in ( ( )),~
;,0 2

1

7
18

3 ΩDTL  where ( )Ω2
1

7
18

~
D  is a space obtained            

by interpolation between the Sobolev space ( )Ω6
5

H  and the Besov space 

( ).3
1

,3 Ω∞B  Observe that the Serrin index of ( ( ))Ω2
1

7
18

3 ~
;,0 DTL  is also .

3
4

 

In this paper, we first introduce the concept of absolutely continuous 

functions of order ( ).10 ≤< ss  Next, we prove the energy equality for 

weak solutions of the Navier-Stokes equations (NSE) in bounded three 

dimensional domains if and only if u is an absolutely continuous solution of 

order .21  Finally, we present a sufficient condition for the energy equality 

of weak solutions to NSE. Here, we prove that if ( ( )) ∩Ω∈ s
HTLu ;,02  

( ( )) ,
2
5

1;,0 12
12

4






 <≤Ω+ sLTL s  then the energy equality holds. Note that 

the Serrin index of ( ( )) ( ( )) 





 <≤ΩΩ +

2
5

1;,0;,0 12
12

42
sLTLHTL ss

∩  is 

also 34  but our space is not contained in ( ( ))Ω6
5

3 ;,0 HTL  nor in 

( ( )).~
;,0 2

1

7
18

3 ΩDTL  

2. Energy Equality for Absolutely Continuous 

Solutions of Order 21  

Definition 2.1. A function f is called absolutely continuous of order 

( )10 ≤< ss  on [ ]ba,  if for every ,0>ε  there exists 0>δ  so that for all 

finite separate intervals [ ] [ ] [ ]babaniba iiii ,,,...,,2,1,, ⊂=  satisfying 
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=

δ<−
n

i

s
ii ab

1

,  

we have 

( ) ( )
=

ε<−
n

i

ii afbf

1

.  

Remark. (i) If ,1=s  then the above definition is the definition of the 

absolute continuity. 

(ii) For ,10 21 ≤≤< ss  if the function f is absolutely continuous of 

order 2s  on [ ],, ba  then f is absolutely continuous of order 1s  on [ ]., ba  

Theorem 2.2. Suppose that u is a weak solution of the Navier-Stokes 

equations. Then there exists a closed set [ ]TK ,0⊂  whose 21 -dimensional 

Hausdorff measure vanishes, and such that u is (at least) continuous from 

[ ] KT \,0  into .1
H  

This theorem is Theorem 5.1 in [10]. 

Theorem 2.3. Suppose that u is a weak solution of the Navier-Stokes 

equations and ( ( )),;, 1 Ω∈ HbaCu  [ ] [ ].,0, Tba ⊂  Then the energy equality 

holds: 

( ( ) ( ) ) ( ) ττ∇=−
b

a
dubuau .

2
1 2

2
2
2

2
2  

This theorem is a direct consequence of Theorem 1.4.1, V, see [9]. 

Theorem 2.4. Suppose that u is a weak solution of the Navier-Stokes 

equations. A necessary and sufficient condition for the weak solution u 

satisfying the energy equality 

( ( ) ( ) ) ( ) ∇=−
T

dttuTuu
0

2
2

2
2

2
20

2
1

 

is that the function ( ) 2
2tu  is absolutely continuous of order 21  on [ ].,0 T  
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Proof. The sufficient condition. We have that the function 2
2u∇  is 

integrable on [ ].,0 T  For ,0>ε  because of the absolute continuity of the 

Lebesgue integral, there exists 01 >δ  so that 

( ) ε<∇
M

dttu
2
2  

with any measurable set [ ],,0 TM ⊂  ( ) ,1δ<µ M  where µ  denotes the 

Lebesgue measure of a set in .1
R  Since ( ) 2

2tu  is absolutely continuous of 

order 21  on [ ],,0 T  there exists 02 >δ  so that 

( ) ( )
=

ε<−
n

i

ii buau

1

2
2

2
2  

with any finite separate intervals [ ],, ii ba  ,...,,2,1 ni =  [ ] [ ]Tba ii ,0, ⊂  

satisfying 


=

δ<−
n

i

ii ab

1

22
1

.  

From Theorem 2.2, there exists an open set [ ]T,0⊂Ω  so that 

[ ] ,\,0 Ω= TK  ( ) 0
2
1 =µ K  and ( )., 1

HCu Ω∈  Here, ( )Msµ  denotes the 

s-dimensional Hausdorff measure of a set in ,1
R  .+∈ Rs  

By the definition of the Hausdorff measure, there exist open intervals 

[ ]TGiG ii ,0...,,2,1, ⊂=  such that 

∪
∞

=

⊂
1i

iGK  

satisfying 

( )
∞

=

δδ=δ<
1

212
1

.,min:

i

iG  

Here, H  is the diameter of any set { }.,:sup, HyxyxHH ∈−=  
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Because K is compact, there exists N∈n  so that 

∪
n

i

n

i i

iii GGGK

1 1 1

2
1

2
1

.,

= =

∞

=
  δ≤≤⊂  

It is easy to see that, there exist sets ( ),, iii baH =  ,1 mi ≤≤  such that 

∪ ∪ ∩

n

i

m

i

jiii HHHG

1 1

,

= =

∅==  

and 

∪
i

k

k

k

ii GH

1

,

=

=  

with .1,1
21

niiimi
ikkk ≤<<<≤≤≤ ⋯  We have 


==

≤=
i

k

i

k

k

k

i

k

k

ii GGH

1

2
12

1

1

2
1

,∪  

.1 mi ≤≤  Therefore, 

  
= = = =

δ<=≤
m

i

m

i

k

k

n

i

iii

i

k
GGH

1 1 1 1

2
1

2
1

2
1

.  

Thus, 


=

δ<−
m

i

ii ab

1

2
1

.  

Let 

[ ] ( )∪
m

i

ii baTM

1

.,\,0

=

=  
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Then 

[ ]∪
1

1

,,
+

=

=
m

i

ii dcM  

where [ ] [ ] ,,, ∅=kkii dcdc ∩  .,1...,,2,1, kimki ≠+=  We have 

( ) ( ) 2
2

2
20 Tuu −  

( ( ) ( ) ) ( ( ) ( ) ) 
+

= =

−+−=
1

1 1

2
2

2
2

2
2

2
2 .

m

i

m

i

iiii buauducu  

Since ([ ] ),;, 1
HdcCu ii∈  we have by Theorem 2.3, 

( ( ) ( ) ) ( ) ∇=−
i

i

d

c
ii dttuducu .

2
1 2

2
2
2

2
2  

From 


=

δ≤δ<−
m

i

ii ab

1

22
1

,  

it follows that 

( ( ) ( ) )
=

ε<−
m

i

ii buau

1

2
2

2
2 .  

Since ,1<δ  

 
= =

δ≤δ<−≤−
m

i

m

i

iiii abab

1 1

12
1

,  

we deduce that 

( )
=

ε<ττ∇
m

i

b

a

i

i

du

1

2
2 .  
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Therefore, 

( ( ) ( ) ) ( ) ∇−−
T

LL
dttuTuu

0

2
2

22
220

2
1

 

( ( ) ( ) ) ( )
2
3

2
1

1 1

2
2

2
2

2
2

ε≤ττ∇−−=  
= =

m

i

m

i

b

a
ii

i

i

dubuau  

for any .0>ε  Thus, 

( ( ) ( ) ) ( ) ∇=−
T

dttuTuu
0

2
2

2
2

2
2 .0

2
1

 

The necessary condition. If u satisfies the energy equality, then the 

function ( ) 2
2

L
tu  is absolutely continuous of order .1=s  Therefore, 

( ) 2
2

L
tu  is absolutely continuous of order .

2
1=s  □ 

3. A Sufficient Condition for the Energy Equality 

We first recall two lemmas that we need later. 

Lemma 3.1. Let X be a given Banach space with dual X ′  and let u          

and g be two functions belonging to ( ).;,1
XbaL  Then the following three 

conditions are equivalent: 

  (i) u is equal to a primitive function of g: 

( ) ( ) [ ] ∈∈ξ+ξ=
t

batXdssgtu
0

.,,,  

 (ii) For each test function ( ),, baD∈φ  

( ) ( ) ( ) ( )  





 φ=φ′φ−=φ′

b

a

b

a dt

d
dtttgdtttu .  
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(iii) For each ,X ′∈η  

,,, η=η gu
dt

d
 

in the scalar distribution sense, on ( )., ba  

In particular, if (i)-(iii) are satisfied, then u is equal to a continuous 

function from [ ]ba,  into X. 

This lemma is Lemma 1.1 in [11]. 

Lemma 3.2. Let V, H, V ′  be three Hilbert spaces, each space 

continuously included in the following one, V ′  being the dual of V, .HH ′≡  

If a function u belongs to ( )VTL ;,02  and its derivative u′  belongs to 

( ),;,02
VTL ′  then u is almost everywhere equal to a function continuous 

from [ ]T,0  into H and we have the following equality, which holds in the 

scalar distribution sense on ( ) :,0 T  

.,22
uuu

dt

d ′=  

This lemma is a particular case of a general theorem of interpolation of 

Lions-Magenes [5]. 

Theorem 3.3. Let 3
R⊂Ω  be a bounded domain, 

2
5

1 <≤ s  and u be a 

weak solution of the Navier-Stokes equations. Suppose additionally that 

( ) ( ).;,0;,0 12
12

42 +∈ ss
LTLHTLu ∩  

Then, after a redefinition on a null set of [ ],,0 T  ( ),;,0 2
LTCu ∈  and the 

energy equality holds 

( ) ( ) =ττ∇+
t

udutu
0

2
20

2
2

2
2 2

1
2
1

 

for all [ ).,0 Tt ∈  
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Proof. If v is an element of ( ),,0 Ω∞
σC  then one have by definition of 

weak solutions 

( ) ( )( ) ( ) .0,,,, =++ vuubvuvu
dt

d
 

In other words, we can rewrite the above equation in another form 

 .BuAuu −−=′  (3.1) 

Let 

.
25

6
s

q −=  

By the Sobolev embedding inequality, we have 

.2,,1 ssq HWW vcvcv ≤≤  

Now, using the Hölder inequality with ,1
12 =+
qp

 we obtain inequality 

( ) .,, ,1
22

q
p

q
p WLLL

vucvucvuub ≤∇≤  

Thus, we have 

( ) .,, 2

12
12 s

s

H

L

vucvuub

+

≤  

Hence, 

( ) ( ) .42

12
12

+
− ≤

s

s

L
H

tuctBu  

Therefore, by hypotheses of the theorem, Bu belongs to ( ).;,02 s
HTL

−  

From ( )s
HTLu ;,02∈  with ,1>s  it follows that ( ).;,02 s

HTLAu
−∈  

Hence, since both Au and Bu belong to ( ),;,02 s
HTL

−  the function 

BuAu −−  belongs to ( ).;,02 s
HTL

−  It then follows that 
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( ).;,02 s
HTLBuAuu

−∈−−=′  

Applying Lemma 3.2 with ,2
LH =  ,s

HV =  ,s
HV

−=′  we obtain 

( )2;,0 LTCu ∈  and 

 .,22
2 uuu

dt

d ′=  (3.2) 

We notice that ( ) ( ) ( )TLtutBu ,0, 1∈  since ( ),;,02 s
HTLBu

−∈  

( ).;,02 s
HTLu ∈  By pairing (3.1) with u, integrating in τ  from 0 to t, we 

get 

( ) ( ) ( ) ( )  =τττ−ττ∇+
t t

uduBudutu
0 0

2
20

2
2

2
2 2

1
,

2
1

 

for all [ ).,0 Tt ∈  However, ( ) ( ) 0, =ττ uBu  almost everywhere on [ ),,0 T  

then ( ) ( ) =τττ
t

duBu
0

0,  and we arrive at the conclusion that 

( ) ( ) =ττ∇+
t

udutu
0

2
20

2
2

2
2 2

1
2
1

 

for all [ ).,0 Tt ∈  The proof of the theorem is complete. □ 

Remark. If ,
6
7=s  then the hypotheses in Theorem 3.3 mean 

( ) ( ).;,0;,0 5
18

46
7

2
LTLHTLu ∩∈  

Here, Serrin’s index of the spaces ( ) ( )926
7

2 ;,0;,0 LTLHTL �  and 

( )5
18

4 ;,0 LTL  is .
3
4

 The Serrin index of our spaces is the same as the Serrin 

index of the space considered in [2]. However, our space is different from 

theirs and the method of the proof is also different. 
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