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Abstract

In this paper, we first introduce the concept of absolutely continuous

functions of order s (0 < s <1). Next, we prove the energy equality

for weak solutions of the Navier-Stokes equations (NSE) in bounded
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three dimensional domains if and only if u is an absolutely continuous

solution of order 1/2. Finally, we present a sufficient condition for

the energy equality of weak solutions to NSE. Here, we prove that

12
if 0 LZ(O, T; H*)N L4(0, T; L2s+1) (1 <s< %), then the energy

equality holds.
1. Introduction

We consider the three dimensional initial boundary value problem for
NSE
3

aa”;i +Z;uj g;‘;'_ —Aui+g—fi=0in Ql =0, 7)xQ,i=13 (.1
i
. > ou; _ . . T
div(u) = g(‘;axi =0 in Q7, (1.2)
u(0, x) = ug(x) in Q, (1.3)

where Q 1is a smooth bounded domain in ]R3, and ug is a given vector-

function satisfying the condition div(uy) = 0.

We recall the definitions of the spaces Cjy ¢(Q), WOI’CZI(Q), 12(Q):

Co.6(Q) ={u O CT(Q), div(u) = 0},
Wol,’é(Q) = the closure of Cg; 5(Q) in the topology H(l)(Q),
12(Q) = the closure of Co.5(Q) in the topology (Q).

The space I5(Q) is equipped with the usual scalar product ((J0J and the

norm
1

_ _ _ 2., )2
luly =llulyq =lulz = UQlu(XH dxj :
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The space Wol’ S(Q) is a Hilbert space with scalar product

3
(. ) = Y (Du. D).
i=1

The norm in W(i’ g(Q) is defined by

1
5 2
lully2@) = lulo =| D | D%u(x) fdx
’ |a <1

The space WO1 ’g(Q) is contained and dense in I3(Q), and the injection

is continuous. Let WO_,EZ(Q) denote the dual space of W()l,’g(Q). By the

Riesz representation theorem, we have

1,2 -1,2
Wy'a(Q) O L5(Q) O Wy ¢%(Q).

For each u in Wol,’é(Q), there exists a unique element of WOTEZ(Q)

which we denote by Au such that

(Au,v) = ((u.v)).  Ov OWy5(Q).

We denote by H* (or sometimes H*(Q)) the domain of definition of

S A
A2. For the definition of A2, we refer the readers to [9].

We define a trilinear continuous form by setting
3
b(u, v, w) = Z jQ ui(Divj)wj.
i, j=1

For u, v in Wol’é(Q), we denote by B(u, v) the element of WO_EZ(Q)

defined by
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(B(u, v), wy = b(u, v, w), forall wO W()l,’z(Q)

o

and we set

Bu = B(u, u) O Wojgz(Q), for all u [ WOI”(%(Q).

By projecting on space WO_EZ(Q), equation (1.1) can write in the form

du _
E+Au+Bu =0. (1.4)

Definition 1.1. A vector field
0 .72 2 w2
u O L0, T; Lg(Q)) N Li,e (0. T5 Wy “(Q))
is called a weak solution of NSE if the relation

—(u, wt)Q’T + (Ou, DW)Q’T - (uu, DW)Q,T = (u, w(O))Q

is satisfied for all test functions w O Cg (0, T; Cg 6(Q)).

In this definition, (DDJQ means the usual pairing of functions on Q,
(00 7 means the corresponding pairing on [0, T) x Q. Finally, uu =
(uiuj)ij:l for u = (uy, up, u3) and we have u [(u = (u (0)u = div(uu)
when div(u) = 0.

Leray [6] and Hopf [4] showed the global existence of weak solutions to
NSE satisfying the energy inequality

1 2 t 2 1 2
Sl + 10 Gt < 5w 5.

However, the question whether or not every weak solution satisfies the
energy inequality remains still an open problem. Solutions satisfying the

above energy inequality are called Leray-Hopf weak solutions.
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It is well-known that the classical solutions of NSE satisfy the energy
equality

1 2 ! 2, _ 1 2
Sl + 106 5t =5 uo 5.

Serrin [7] showed that if a weak solution u belongs to L*(0, T; L1(Q))

for some g > 3, s > 2 with

3,24
q

v [N

then u satisfies the energy equality.

Later, Shinbrot [8] derived the same conclusion if the weak solution u

belongs to L*(0, T; L1(Q)) with
<1 (g=4).

Sohr [9] proved the energy equality for a weak solution u if uu belongs

to I,.(0, T; I*(Q)). Here, the Serrin index of I},.(0, T; L*(Q)) is %

In 2008, Cheskidov et al. [1] proved the energy equality in a function

class not covered by the class considered by Sohr. If Q = R3, then

they obtained the energy equality for weak solutions belonging to
1
L, T; B} . (R?)). For a general domain Q, the energy equality for weak

1
solutions belonging to (0, T; B3 (Q)) is still not known. Later on in [2],

the authors showed that if Q is a bounded domain with C? -boundary and if
5
a weak solution u belongs to L*(0, T; H6(Q)), then u satisfies the energy

5
equality. Notice that the Serrin index of I>(0, T; H®(Q)) is % For general

unbounded domains, Farwig and Taniuchi [3] proved the energy equality for
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1 1

weak solutions in (0, T; ~12 (Q)), where DZ(Q) is a space obtained

o]
o]

~|
vy

by interpolation between the Sobolev space H g(Q) and the Besov space

1

1
B3 (Q). Observe that the Serrin index of L*(0, T; D2
7

(Q)) is also %

In this paper, we first introduce the concept of absolutely continuous
functions of order s (0 < s <1). Next, we prove the energy equality for
weak solutions of the Navier-Stokes equations (NSE) in bounded three
dimensional domains if and only if u is an absolutely continuous solution of

order 1/2. Finally, we present a sufficient condition for the energy equality

of weak solutions to NSE. Here, we prove that if « O I2(0, T; H*(Q)) N

12

L4(0, T; L25*1(Q)) (1 <s< %), then the energy equality holds. Note that

12
the Serrin index of I2(0, T; H*(Q)) N L}(0, T; L25+1(Q)) (1 <s< %) is

5
also 4/3 but our space is not contained in I}(0, T; H6(Q)) nor in

2. Energy Equality for Absolutely Continuous
Solutions of Order 1/2

Definition 2.1. A function f is called absolutely continuous of order

s (0 <5 <1) on [a, b] if for every € > 0, there exists & > 0 so that for all

finite separate intervals [al-, bl-], i=12,..,n, [al-, bi] 0 [a, b] satisfying
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n
Z“’i —q; " <8,
i=1

we have
M1 r) - fla)| <e.
i=1

Remark. (i) If s =1, then the above definition is the definition of the
absolute continuity.

(i1) For 0 < s < sy <1, if the function f is absolutely continuous of
order s, on [a, b], then fis absolutely continuous of order s; on [a, b].

Theorem 2.2. Suppose that u is a weak solution of the Navier-Stokes

equations. Then there exists a closed set K [ [0, T] whose 1/ 2 -dimensional
Hausdorff measure vanishes, and such that u is (at least) continuous from

[0, T\K into H'.
This theorem is Theorem 5.1 in [10].

Theorem 2.3. Suppose that u is a weak solution of the Navier-Stokes
equations and u 0 C(a, b; Hl(Q)), [a, b] O [0, T]. Then the energy equality
holds:

L@ B ~1a@)]B) = [ 100 e

This theorem is a direct consequence of Theorem 1.4.1, V, see [9].

Theorem 2.4. Suppose that u is a weak solution of the Navier-Stokes
equations. A necessary and sufficient condition for the weak solution u
satisfying the energy equality

LUu@) B ~1u@)B) = [ 0u(r) e
o W)l =T 7 = | o T

is that the function | u(r) ||§ is absolutely continuous of order 1/2 on [0, T].
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Proof. The sufficient condition. We have that the function || Ou ||% is

integrable on [O, T]. For &€ > 0, because of the absolute continuity of the

Lebesgue integral, there exists & > 0 so that

Ou(r)[|3dr < €
[ 103

with any measurable set M 00 [0, T], u(M) < d;, where | denotes the

Lebesgue measure of a set in R!. Since [ u(r) ||% is absolutely continuous of

order 1/2 on [0, T], there exists &, > 0 so that

n
D llula) 5 = ul@) 5] <
i=1

with any finite separate intervals [a;, b;], i =1, 2, ..., n, [a;, b;] O [0, T]
satisfying

n 1
Z|bi —a;[2 <9,
i=1

From Theorem 2.2, there exists an open set Q [J[0, 7] so that

K=[0,T\Q, u;(K)=0 and uO0C(Q, H'). Here, u (M) denotes the
2

s-dimensional Hausdorff measure of a set in ]Rl, sOR".
By the definition of the Hausdorff measure, there exist open intervals
G;,i =12, .. G; 00, T] such that

00

kol Je

i=1
satisfying
i 1
D |G [2 < 8:= min(3;, &).
i=1

Here, | H | is the diameter of any set H,| H | =sup{| x - y|: x, y O H}.
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Because K is compact, there exists n J N so that
n

n [o0]
kol Ja, Z|Gi|%sZ|G,-|
i=1 i=1

i=1

<o

N —

It is easy to see that, there exist sets H; = (a;, b;), 1 < i < m, such that

n m
UGi:UHl', HlﬂH]:D
i=1 i=1

and

T
I
-
2

with 1 <ism, 1 <i <i, <--<i <n Wehave
1

k; 2
U Gik
k=1

1
|H;[2 =

k; |
k=1

1 € i £ m. Therefore,

m 1 m_ ki 1 n 1
DIH <D Y |G 2= |G <8

i=1 i=1 k=1 i=1
Thus,
m 1
Zlbl - a; E <6.
i=1
Let

M =]o, T]\LmJ(a,-, b;).
i=1
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Then

m+1

M = U [ci. di],
i=1

where [¢;, d;1N[cg, di ] =0, i,k =1,2,..,m+1,i # k. We have

| u(0) I3 = w(T) |3

m+l1

_Z(”“(C)Hz | uld;)|3) Z("u(a I3 =1 ) 13)-
Since u 0 C([¢;, d;]; H'), we have by Theorem 2.3,
Lule =1t B) = [ 1 Oute) Bt
5 utei) i) =), 24l
From

1
Z|bl~—a,-|§ <6562,

it follows that

D ula) |5 =1u@)]3) <

i=1

Since 8 < 1,

m m 1
Dlbi—ai| <D b —ai[2 <353,
i=1 i=1

we deduce that

m bi )
> [ o Gar <e
i=1
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Therefore,
LA, =) ,) - [ 100 B
2 r 2 Jo 2

B
2

=| 22 Guta) B = 1B = Y- [ | Ou) Bt
i=1 i=1 !

for any € > 0. Thus,

TR - 1)) = [ 1060 B

The necessary condition. If u satisfies the energy equality, then the

function | u(r) ||i2 is absolutely continuous of order s =1. Therefore,

0

| =

[ u(z) ||i2 is absolutely continuous of order s =

3. A Sufficient Condition for the Energy Equality

We first recall two lemmas that we need later.

Lemma 3.1. Ler X be a given Banach space with dual X' and let u
and g be two functions belonging to L (a, b; X). Then the following three

conditions are equivalent:

(1) u is equal to a primitive function of g:
t
u(t) =&+ [ gs)ds. DX, 10[a. 0]

(ii) For each test function @ D(a, b),

jb u(0) (1) dt = —jb o () eli) dr ( - %’j.

a
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(iii) For each n O X',

d
2w = (g ),
in the scalar distribution sense, on (a, b).

In particular, if (1)-(iii) are satisfied, then u is equal to a continuous

function from [a, b] into X.
This lemma is Lemma 1.1 in [11].

Lemma 3.2. Let V, H, V' be three Hilbert spaces, each space
continuously included in the following one, V' being the dual of V, H = H'.

If a function u belongs to L2(0, T;V) and its derivative u' belongs to
12 (0, T, V'), then u is almost everywhere equal to a function continuous
from [0, T] into H and we have the following equality, which holds in the
scalar distribution sense on (0, T):

dy 2 _ s
E|u| = 2(u', u).

This lemma is a particular case of a general theorem of interpolation of
Lions-Magenes [5].

Theorem 3.3. Let Q O R be a bounded domain, 1 < s < % and u be a

weak solution of the Navier-Stokes equations. Suppose additionally that

12
uO 20, T; H) N L0, T; L25+1).

Then, after a redefinition on a null set of [O, T], u C(O, T; Lz), and the
energy equality holds

1 2 t 2, _ 1 2
@)1 + [ 10u(@) Gt = 3w 5

forall t OO0, T).
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Proof. If v is an element of Cg 5(Q), then one have by definition of

weak solutions
d _
E(u, v) + ((u, v)) + b(u, u, v) =0.

In other words, we can rewrite the above equation in another form
u' = —Au — Bu. (3.1
Let

_ 6
1= 37

By the Sobolev embedding inequality, we have

|| % ”Wl,q < c|| % ||Ws,2 < c|| % ”Hv

Now, using the Holder inequality with % + % = 1, we obtain inequality

2 2
[ v)| < el | O g < el v o
Thus, we have

2
D, v)[ < elul” gy Vs
12s+1

Hence,

2 4
IBu) P, s @) -
125+l

Therefore, by hypotheses of the theorem, Bu belongs to I2(0, T; H™®).
From u O L2(0, T; H®) with s > 1, it follows that Au [ L2(0, T; H™®).
Hence, since both Au and Bu belong to L2(0, T; H™*), the function

—Au - Bu belongs to I2(0, T; H™*). It then follows that
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W' =—Au—-BuOI*0,T; H™).

Applying Lemma 3.2 with H = >, V = H®, V' = H™®, we obtain
uldc(o, T; LZ) and
dy 2 _ s
E" uly =20, u). (3.2)
We notice that (Bu(t), u(r)) O L}(0, T) since Bu O I?(0, T; H™®),
u 0120, T; H). By pairing (3.1) with u, integrating in T from 0 to #, we
get

e+ [ 1 0@ Bare = [ (Bue). u(@)dt = 3 uo I3

for all + O[0, T). However, (Bu(t), u(t)) = 0 almost everywhere on [0, T),

then jé(Bu(T), u(T))dt = 0 and we arrive at the conclusion that

1 2, (! 2 . _ 1 2
@5 + [ 10u(0) Bt =3 u 5
for all # O[0, T). The proof of the theorem is complete. g

Remark. If s = %, then the hypotheses in Theorem 3.3 mean
18

7
)N }o, T; LS).

wDI?0, T; H

;
Here, Serrin’s index of the spaces L2(O, T; HO) - LZ(O, T; L9) and

18

r (0, T; L?) is % The Serrin index of our spaces is the same as the Serrin

index of the space considered in [2]. However, our space is different from

theirs and the method of the proof is also different.
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