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Abstract

We investigate the following fractional hybrid differential equation:

{D&[X(ﬁ - At x(@)] = foe, (1)) ae 1O, (1.0)

)C(to) = Xy O R,

where D,O(0+ is the Riemann-Liouville differential operator order of

a >0, J =ty ty+a], forsome t, OR, a >0, f;0C(J xR, R),
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f O E(;,(J xR, R), p=1 and satisfies certain conditions. We

investigate such equations in two cases: o [J(0,1) and a =1. Tn

the first case, we prove the existence and uniqueness of a solution
of (1.0), which extends the main result of [1]. Moreover, we show

that the Picard iteration associated to an operator T : C(J xR) -

C(J xR) converges to the unique solution of (1.0) for any initial

guess x 0 C(J xR). In particular, the rate of convergence is n'. In

the second case, we investigate this equation in the space of k times

differentiable functions. Naturally, the initial condition x(fy) = x; is

replaced by x(k)(to) =Xxp, 0<k<ng ,—1 and the existence and
uniqueness of a solution of (1.0) is established. Moreover, the
convergence of the Picard iterations to the unique solution of

(1.0) is shown. In particular, the rate of convergence is nl. Finally,
we provide some examples to show the applicability of the
abstract results. These examples cannot be solved by the methods
demonstrated in [1].

1. Introduction

Fractional differential equations arise in many engineering and
scientific disciplines such as physics, chemistry, biology, economics, control
theory, signal and image processing, biophysics, blood flow phenomena,
and aerodynamics (see [2-5] and references therein). The main advantage of
using fractional nonlinear differential equations is related to the fact that
we can describe the dynamics of complex non-local systems with memory.
In this line of taught, the equations involving various fractional orders are
essential from both theoretical and applied views of points. In this line of
taught, the equations involving various fractional orders are essential from
both theoretical and applied views of points. Moreover, applications of
fractional order differential equations in modeling viral disease transmission
have been widely used and many significant results related to the fractional
differential equations were obtained (see, for example [6-9] and references

therein). However, still, there are many open problems in this direction.
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There are various definitions of fractional derivative, but in this work,
we investigate fractional order differential equations defined by Riemann-
Liouville differential operator. The differential equations defined by
Riemann-Liouville differential operators are very important in the modelling
several real-life problems (see, for instance [10, 11]). Fractional order hybrid
differential equations defined by Riemann-Liouville differential operators
have been developing very fast in the last few years (see [12-14] and
references therein). In the investigations of fractional order hybrid type
differential equations, the hybrid type fixed point theorems are widely
used. In this context, the hybrid type fixed point theorem refers to the
Krasnoselskii-type fixed point theorem which is a combination of Banach’s
and Schauder’s fixed point theorems. Next, we discuss some applications
of Krasnoselskii-type fixed point theorems to the hybrid differential and
hybrid fractional differential equations. In 2013, Dhage [12] and Dhage
and Lakshmikantham [15] proved significant Krasnoselskii-type fixed point
theorems and applied them to the following hybrid differential equation:

%[ﬁ} = folt. x(). 107, (1)
x(t9) = xo OR,

where J = [to, ot a], for some ty) U R, a > 0, and the functions f; : J X
R - R0} and f, : J xR - R are continuous. Dhage and Jadhav [16]

investigated the existence of solutions for hybrid differential equation

L0 - Al x) = L0 ), ae 10,
x(to) = x OR,

(1.2)

by using a Krasnoselskii-type fixed point theorem, where f;:J xR -
R\{0} is continuous and f, : J xR - R is a Carathéodory function.

Xu [17] applied a Krasnoselskii-type fixed point theorem to investigate the

solutions of the fractional boundary value problem
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Cp%(t) = f(r. x(r)), r Of0, 1], a O (1, 2),

3
x(1) = U—I; x(s)ds, x'(0) = x'(1) =0, (1.3)

where € DY is the Caputo fractional derivative and f : [0, ] xR - R isa

continuous function. In [1], Lu et al. investigated the following fractional

hybrid differential equations:
Dy [x(0) = file. x()] = f2(e. (). O,
x(lo) = Xp OR,

(1.4)

where a 0(0,1) and f, f> : J xR - R are continuous functions and

satisfy certain conditions. In order to show the existence of the solutions
of equation (1.4), a Krasnoselskii-type fixed point theorem was used. For
the uniqueness of the solution, there was required a stronger condition.
Krasnoselskii-type fixed point theorems are considered powerful tools in
showing the existence of solutions of nonlinear hybrid differential equations,
however, these tools are not sufficient to show the uniqueness of the
solutions. Therefore, in the investigations of equations (1.1)-(1.4), the
uniqueness of the solutions is not studied mostly, or studied under some
extra conditions. Unfortunately, there are some shortcomings found in the
proof of the existence of solutions of equation (1.4) demonstrated by Lu et
al. in [1] and for the uniqueness of the solution, there was required a stronger
condition as we have mentioned above. Moreover, naturally, we would like
to ask the following important question: How to investigate equation (1.4)
for all a >0 in a “wider” class of functions? Motivated by the question
above, in this work, we investigate equation (1.4) for all a >0 and

AiOCU xR, R), f,0L5(J*xR,R), p=1. Obviously, we have to
consider two cases: o [J(0,1) and o =1 separately. It is because the

operator Dt(:) is well defined on the space of continuous functions when

+
ol (0, 1), however, it is not sufficient to consider this space when o =1,

i.e., we need to consider ny , — 1 time differentiable functions, where ny
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is a positive integer depending on o and p = 1. In the case of a (0, 1),
we prove the existence and uniqueness of a solution of (1.4) under some
conditions of f; and f,. We use a coupled fixed point method which is
different than the methods of the works mentioned above. This method
allows us to investigate the uniqueness of solution of equation (1.4). The
shortcomings in [1] can be corrected by using Lemma 2.7 stated below. We
discuss about these shortcomings in the forthcoming sections in detail. Our
first theorem extends the main existence theorem of [1]. Moreover, we show
that the Picard iteration associated to an operator T : C(J, R) - C(J, R)

converges to the unique solution of (1.4) for any initial guess x 0 C(J, R).

-1

In particular case, we have shown that, the rate of convergence is n . In

the case of a 21, we investigate equation (1.4) in the space of ng , —1
time differentiable functions. In this case, naturally, the initial condition
x(f9) = xo is replaced by x(k)(to) =xp, 0<k<ng ,—1 because our
main equation is investigated in the space of ng , —1 time differentiable

functions. Similar to first case, the existence and uniqueness of a solution
of (1.4) is established. Moreover, the convergence of the Picard iterations

to the unique solution of (1.4) is shown. In particular case, the rate of

1

convergence is n . Finally, at the end of the paper, we provide some

examples to show the applicability of the abstract results. These examples

cannot be solved by the methods demonstrated in [1].
2. Preliminaries

In this section, first we recall the definitions of the Riemann-Liouville
fractional integral and derivative, and then we provide a composition
relation between fractional differentiation and integration operators. Using
the composition relation, we prove the equivalency of the fractional
differential equation (1.4) to a fractional integral equation. Finally, we recall

the definitions of nonlinear weak contractions.
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2.1. Riemann-Liouville fractional integral and derivative
Definition 2.1 [18]. Let f O L;(a, b). The Riemann-Liouville fractional

integral 13+f of order a > 0, is defined as
(12 )( F(O().[ x—s)® f(s)ds, x>a.

Definition 2.2 [18]. The Riemann-Liouville fractional derivative D3+ f

of order a = 0, is defined as

(DS ) = prmay oo [ = sy (s}, x>
a+ r(m _ a) dxm u > )
where m = [a] +1.
Next, we consider two cases: o [ (0, 1) and o > 1.

2.1.1. Case a (0, 1)

Our next discussion is related to the following lemma which was
formulated in [1] as follows:

Lemma 2.3 [1]. Let 0 < o <1 and f O Li(a, b). Then

(A1) the equality (Dg+lg+f) (x) = f(x) holds;
(A2) the equality
1 a -1
(12,08, () = £() - L2 D gy
(o)

holds for almost everywhere on [a, b).

The proof of this lemma was not given in [1] but it was cited in [18]
where more general facts were proven. While formulating Lemma 2.3, two

shortcomings were done by the authors of [1]. The first one (the minor) is,

the equality (A1) holds for almost everywhere on [a, b]. The second one

(the major) is not true in general because there can be found a function



Solutions of Fractional Hybrid Differential Equations ... 71

f O Li(a, b) such that the equality (A2) does not hold. Since this is not the

main result, we will not provide an example but we can give a brief idea of

finding such a function for the benefit of the reader. We find a function
@:[a, b] -~ R which is differentiable a.e. on [a, b], 12,00 AC[a, b],
(13,9)(a) = 0, and IZ,D@ is not well defined (i.e. D@ L(a, b)), where
ACla, b] is the class of absolutely continuous functions on [a, b] and
D = d/dx is the differential operator. It is not hard to find such a function.
Then consider the following equation: @(x) = (7139 f)(x). This equation is
known as Abel’s equation. This equation is solvable in L;(a, b) if and only
if 19,00 AC[a, b] and (1J,9)(a) =0 (see Theorem 2.1, [18]). So, by
our construction, there is f 0 L (a, b) such that @(x) = (7139f)(x). By
the definitions of DY,, the function (I1%.D%,f)(x) = (1%.DI}3%F)(x) =

(12,D@)(x) is not well defined. On the other hand, the left hand side of

(A2) is well defined which leads to a contradiction. Next, we state the

corrected version of Lemma 2.3 as follows:

Lemma 2.4. Ler a 0 (0, 1) and f O Li(a, b). Then

(B1) the equality (D212, f)(x) = f(x) holds for almost everywhere on
[a, b];

(B2) the equality

(1808, 1) (3) = 79 - B ) (o - e

holds for almost everywhere on [a, b, provided that I @ f 0AC]a, b).

This lemma will be used below. For the proof of this lemma, see
Theorem 2.4 in [18]. To simplify our experiments, we use the notation

@4 (1, x) = x = f(, x). Our next discussion is related to the following

lemma:
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Lemma 2.5 [1]. Assume that f OC(J xR, R) and the function
X CDf(t, x) is increasing in R for all t O J. Then, for any y 0C(J, R)

and a 0(0,1), the function x OC(J, R) is a solution of initial value

problem

{D&[d)f(t, ()] = (). @.1)

x(t9) = xo,
if and only if x(t) satisfies the hybrid fractional integral equation

t

qaf(z,x(z)):qaf(zo,xo)+ﬁj (-5 y(s)ds, (OJ. (22

|
Unfortunately, there are some shortcomings found in the proof of

on both the sides of (2.2), the

+

Lemma 2.5. That is, after applying D;;
constant ® ; (t9, xp) does not disappear, but another function emerges due to

the definition of D% ,+- Indeed, let us consider the following simple example.
If we take f(f, x) =1, y(£) =1 for t OJ =0, 1], then the function x(¢) =

2 + (I1§41) (¢) is a solution to (2.2) but not to (2.1).

Our next aim is to rectify these shortcomings. First, we prove the
following:

Lemma 2.6. Let o >0. If g 0C(J, R), then I%+g O0C(J, R) and
(12 ,8) (1) = 0.

Proof. For any ¢, z 00 J verifying t > z, we have

12,90~ = rgg| [ (=9 == s(o)as |

IR G

Z
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__ (=% oy =)t
= —ar@) #O* Gy ¢

(1 -10)" _(z-1)" | /.
J{ tarz(()x) - Zarzg) }g(z)’

where 2 O (ty, z) and 7 O(z, ) which satisfy the mean value theorem. This

implies that I% +& 1s continuous. Furthermore, from the obvious inequalities

P - <600 = MR-
we get (Ig+g)(t0) = 0. O

Now we state the corrected version of Lemma 2.5. This lemma will be

also used below.
Lemma 2.7. Let o 0(0,1). Assume that fOC(J xR, R) and
the function y O L;(J, R) satisfies It(;er OcC(J, R) and (I;;+y) (to) = 0.

Then the function x(t) O C(J, R) is a solution of the fractional differential

equation
a -
{Dto+[q> £ X)) = () ae 10, 03
x(ty) = xo,
if and only if x(t) satisfies the fractional integral equation
@0 x0) = oy [ (=) 5(s)s 2.4)
A ra) y .

and f(to, x(to)) = Xp.

Proof. Let x(¢) be a solution of equation (2.3) with initial condition

a

o+ we have

x(f9) = xo- By the definition of D
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Dy [ (1. x(1))] = lﬂl‘ﬂ¢10 x(0)] = y().

It implies that the function Itlo_f [® f(t, x(t))] is absolutely continuous since

y(t) O L;(J, R). Using Lemma 2.4, we get

[q)f(t x(z

Ig+Df(+[¢f(l‘, x(¢))] = CDf(t, (1)) - t0+ ) 1))] |t=t0 (

t—10)%7L (2.5)

By Lemma 2.6, we have

Il_f‘[GJf(t, x(r)

since @ (7, x(r)) is continuous. From this and equality (2.5),
If‘ +Df‘+[d>f(t, x(1))] = @ £ (2, x(2)).

Taking into account this and applying I::) +

on both the sides of (2.3), we get

1.e.,
o a-l
(1, (1)) = - (a) j (r = )01 y(s) ds. 2.6)
Since x(ty) = x and (It?) ) (t9) = 0, substituting 7 = 1 in (2.6) yields

@ (19, x(t0)) = x0 = f (19, x(19)) = 0.
On the contrary, assume that x(z) satisfies (2.4) and xy = f(tg, x())-

Then applying Dt on both the sides of (2.4), we get

+

D2‘)+[¢f(t, x()] = y(r) ae rtOJ
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due to Lemma 2.4. Again, substituting ¢ = #; in equation (2.4), we have
® (19, x(t)) = x(19) = x9 = 0
because of (I;; .¥)(fp) = 0. The proof is completed. O

Note that for o = 1, the conclusion of Lemma 2.7 no longer holds. More
precisely, the continuity of fis not sufficient. In this case, in order to get an

analogical result, it is necessary to put some restrictions on f.
2.1.2. Case a =1

In this case, we deal with the following space of functions. Define

I9(J. R) = I9L,(J. R))
={f:J - R, f =I;;+¢,¢DLP(J, R), p = 1}.

We can easily see that I(I],(J, R) is a linear space and I%+¢ =0,

¢ 0 L, (/, R) only in the case ¢ = 0. Thus we may introduce the norm in

Z%(J. R) by relation
If o, =101, 2.7)

where | , is the L, -norm. A trivial verification shows that the space

7 g (/, R) with norm (2.7) is a Banach space. Our next goal is to extend

Lemma 2.7 for the case of o = 1. In achieving this goal, the following

theorem plays a key role.

Theorem 2.8 [18]. Let a > 0. Then

(C1) the equality (Dg+l 2‘+ f)(x) = f(x) holds for almost everywhere

on [a, b] for any summable function f:
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(C2) the equality
(Lg+Dgs f) () = f(x)
holds for almost everywhere on [a, b), provided that f 0 T ? ([a, b], R).

Here and below, for given o >1/p >0, we denote ng , =[a —1/p]
+1, where [[Jl is the integer part of a number. Now we state an extension of

Lemma 2.7 for a = 1.

Lemma 2.9. Ler a 21, p21and p>1/a. Ler yO LP(J, R) be a
function satisfying
k

a (1% ) ()

o =0, 0<k<ng,-L (2.8)

=1y
Assume that f(t, x(¢)) O Ig (J, R) for any x(t) O Ig (J, R). Then the

function x(t) 0T g(] , R) is a solution of the fractional differential equation

D%Jr[q)f(t, x(1)] = y(z) ae r0OJ,

(2.9)
x(k)(to) =xp, O0sksng,~-1
if and only if x(t) satisfies fractional integral equation
@6 x(0) = iy [ =907 y(s)ds (2.10)
A r(a) 0 .

YAI(F0)

a
drk

=x0. 0 k<ng , -1

=1
Proof. Let x(tf)0Z g (J, R) be a solution of equation (2.9) satisfying
x(k)(to) = X0, 0 < k < ng , — 1. Then by the assumption of the lemma, we

have f£(t, x(t)) O Ig(], R). We can get x(t) = f(z, x(t)) = CDf(t, x(2)) O
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Z%(J. R) since Z3(J, R) is a linear space. Thus, applying I;; on both the

sides of (2.9), we get
®p(r, x(1)) = (1) ()

due to Theorem 2.8. Replacing @ ¢ (1, x(r)) by x(r) = f(z, x(r)) in the last
equation and differentiating the resulting equation k times with respect to ¢

d*fe. x(n)|  _

at 7y, we get
k
dt

xp, 0 <k <ng ,—1. On the contrary,
=1y

k
assume that x(z) O Ig(], R) satisfies (2.10) and da7fe, X)) £t x(1))

= X0>
drk

1=ty

0 <k < ng, , —1. Then applying Dtc:) on both the sides of (2.10), we get

+

D%Jr[d)f (t, x(t))] = y(t) ae ¢OJ

k
due to Theorem 2.8. Again, by (2.8) and M

X0> 0<k<
dtk

=1y
ng,, —1, we get x(k)(to) =xp, 0<k<ng ,—1 which completes the

proof. U
2.2. Dominating and altering distance functions

Let Rg denote the set of all non-negative real numbers. The following

definitions will be used in the subsequent part of this paper.

Definition 2.10. A function A:R{j - R{ is called a dominating

function or, in short, D -function if it is an upper semi-continuous, non-

decreasing, A(r) < r for r >0, and A(0) = 0.
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Statement 2.11. If A : R; — R; and T:Rj — R( are D -functions,
then for any c¢j, ¢ >0 such that ¢ + ¢, <1, the function /A + ¢, T is

also a D -function.
Proof. The proof of this statement is straightforward. (]

Definition 2.12 [19]. A continuous and non-decreasing function

g Rg - ]R(J)r is said to be an altering distance function if

Pi) =0 « r=0.
3. Formulation of Main Results

In this section, we formulate our main results. Their proofs will be
given in the forthcoming sections. In order to formulate main results, we

consider the following two cases: o 0(0,1) and a = 1. Let a (0, 1),
p=21 and J = [to, ot a], for some 7y R, a > 0. Suppose that the

function f :J xR - R satisfies the following conditions:
(@) f(r, &) O L,(J, R) forany &(r) O C(J, R);
(az) 18,17t €0)l,=,, =0 forany &() O C(/. R).

We denote by L7(J xR, R) the set of all functions f:J xR - R
satisfying the conditions (a;)-(a,). It is obvious that C(J xR, R) O

E?, (J xR, R). Consider the following fractional hybrid differential equation:

Dt‘z‘)Jr[tbf1 (t, x(t))] = fa(t, x(1)) ae tOJ,

x(19) = xo.

(3.1)

where a 0(0,1), p21, fi0C(J xR, R), and f, OL%(J xR, R). To

formulate our first main result, we need the following hypotheses.
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3.1. Hypotheses for fractional hybrid differential equation (3.1)
We assume:
(A1) fi(tg, x) = xo forall x OR.
(A2) f(t, 01 is non-decreasing, f, (¢, 0 is non-increasing for all ¢ [ J.

(A3) There exist D -functions Aj, Ay:Rj — Ry and constants

), ¢p 2 0 satisfying
|C(

C1+C2m51

such that the functions f;(t, [, i=1,2 satisfy the following weak

contraction conditions:
| fi(t, x) = fi(e, y) | < eN([x = y]), i=12,
forall t 0J and x, y OR.

(A4) There exist By, B, 0 C(J, R) such that

fi(e, By (2)) + I;Z)Jr[fz(la B2 ()] = By (r)

and

St Ba(r) + 1;3+[f2(l, Bi ()] = B (1)

We can now formulate our first main result.

Theorem A. Let a 0(0,1) and p =1. Assume that the functions
filc(J xR, R) and f, O E(;, (J xR, R) satisfy the hypotheses (A1)-(A4).
Then the fractional hybrid differential equation (3.1) has a unique solution

xD(t) OC(J xR). Furthermore, the sequence (xn(t))nDNO 0cC(J xR)

constructed as

50) = 7 50a )+ g L =97 s ma (s nz
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converges to xD(t) in the C°-norm for any initial guess xy(t) = x(¢) O
C(J xR), that is,

lim || x, - x"[ -0 = 0.

n -0

In particular, if D -functions N\;, N\, : RS - ]R(J; in hypothesis (A3)
satisfy Ny =Ny = /\‘,l( for some K >0, then there exists a constant
C = C(K, XQs xE» > 0 such that

0 C
5, - %00 < €

forall n 2 1.
Next, we consider the case o =2 1. In this case, to investigate equation

(3.1), the classes of functions C(J xR, R) and L% (J xR, R) are not

are defined on high degree

+

sufficient because the operators Dt(:) +

and 1°
fo

of smoothness functions. Let o =1, p =1 and p >1/a. Suppose that the

function f :J xR - R satisfies the following conditions:

(b)) f@ &) DO LP(J x R) for any &(r) O Ig (J xR).

(by) We have

AV R{0)))
di*

=0, 0<ks<ng,-1

=19
for any &(r) O Z5(J x R).

We denote by 2?,(] x R, R) the set of all functions f:J xR - R

satisfying the conditions (by)-(by). We also denote by C,(J xR, R) the

set of all functions f :J xR - R satisfying the following condition:



Solutions of Fractional Hybrid Differential Equations ... 81

f6. &) 0 Z5(J xR) for any () O C(J xR). Consider the following
fractional hybrid differential equation:
Dy @ (e x(0)] = for. x(r) ae 1O,

(3.2)
x(k)(to) =xp, O0sks<ng,-L

where a 21, p21, p>1/a, fi0CH(J xR, R), and f, OLS(J xR, R).
To formulate our second main result, we need the following hypotheses.
3.2. Hypotheses for fractional hybrid differential equation (3.2)

We assume:

(B1) For any x(¢) O Ig(], R), we have

d*fie, x(e) | _

X0
dr*

1=ty
for 0 <k <ng , -1
(B2) The functions f; and f, satisfy (A2).

(B3) There exist D -functions Aj, A,:R;j — Rj and constants

), ¢p 2 0 satisfying

c tc —|J|a
L 2T (a+1)

<1

such that for any x(¢), y(t) O Ig (J, R), we have
| @) = @YDy, < chillx =yl i=12

(B4) There exist By, B, O C(J, R) such that

fi(e, By(2)) + I%Jr[fz(f’ B2 ()] = By (r)
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and

file, Ba()) + I%J,[fz(f, Bi(0))] < B2 (2).

The following is our second main result.

Theorem B. Ler o 21, p 21 and p > 1/0. Assume that the functions
fiOCS(J xR, R) and f, OLS(J xR, R) satisfy the hypotheses (B1)-(B4).
Then the fractional hybrid differential equation (3.2) has a unique solution

x{t) O I?,(J, R). Furthermore, the sequence (x, (t))nDNO g I?,(J, R)

constructed as
- (! -1
50 = A 5 @)+ gy [, €= s xa()ds, w2
0
converges to x{t) in the || E"a p norm for any initial guess xo(t) = x(t) O

Ig (J, R), that is,

lim || x, = xg "a,p =0.

n -0

In particular, if D -functions N\;, N\, : RS - ]R(J; in hypothesis (B3)
satisfy Ny =Ny = /\‘,l( for some K >0, then there exists a constant
C = C(K, X, Xp 0, p) > 0 such that
<
n

| %0 = xolly, <

forall n 2 1.

4. Basic Notions of Fixed Point Theory and
a Coupled Fixed Point Theorem

We begin by recalling the notions of fixed point theory. The definitions

and theorems in this section are borrowed from [19].
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Definition 4.1 [19]. Let X be a nonempty setand A: X xX - X bea
mapping. Then an element (x, y) 0 X x X is called a coupled fixed point of

Aif
x=A(x, y) and y = A(y, x).

Definition 4.2 [19]. Let (X, X) be a partially ordered set and let
A: X xX — X be a mapping. Then we say that the mapping A has

the mixed monotone property if A is monotone non-decreasing in its first
argument and is monotone non-increasing in its second argument. That is,

forany x, y O X,

a0 0X, x 20 = Alx, y) 2 Alx, y)
and

v 20X,y 2 va = Alx, y1) = Alx, ys)-

Definition 4.3 [19]. Let (X, <) be a partially ordered set. We
define =, to be a partially order in X xX as follows. For any

(x, ¥), (w, v) O X x X, wesay (x, y) = (u, v) if x <u and y = v.

The following theorem plays a key role in the proof of Theorem A. We
denote by (X, d, <) a complete partially ordered metric space.

Theorem 4.4 [19]. Assume that the mapping A : X x X - X satisfies

the following conditions:

(1) there exist an altering distance function Y, an upper semi-continuous
function 0:[0, ) — [0, ), and a lower semi-continuous function ¢ : [0, %)

- [0, ) such that for all (x, y), (u, v) O X x X with (x, y) =, (u, v),

W(d(A(x. y). Alu, v)))

< B(max{d(x, u). d(y, v}}) = ¢p(max{d(x, u). d(y. v}}),
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where 6(0) = ¢(0) = 0 and Y(t) = 6(t) + ¢(¢) > 0 forall t > 0;

(2) there exist xy, yo U X such that xo =< A(xg, yo) and yy =
A(¥0, x0);

(3) A has the mixed monotone property,

(4) A is continuous.

Then A has a coupled fixed point (xD, y% O X x X. Moreover, if for
any (x, y), (u, v) O X x X, there exists (w, z) 0 X x X such that (x, y)

=5 (w, z) and (u, v) =5 (w, z), then (xD, x[5 is the unique coupled fixed
point of A.

Remark 4.5. Note that a weaker contraction condition (so-called
(W, 6, ) -weak contraction condition) has been successfully applied in

multidimensional fixed point theorems and their applications to the system
of matrices equations and nonlinear integral equations (see, for instance
[19-26]). Our previous studies encourage us to believe that the techniques

of multidimensional fixed point theorem under (U, 6, ) -weak contraction

conditions can be successfully applied in the investigations of fractional

hybrid differential equations.
5. Proof of Main Theorems

5.1. Proof of Theorem A

Proof. Existence. In this subsection, we denote by X the class of

continuous functions f :J - R and |0 the uniform norm in X, that
is, X =C(J,R) and || x| -0 = max,;|x(z)|. Obviously, (X, |-0) is a
Banach space. In this space, the partial order < is defined as follows: for the

given x(t), y(t) O X, we say

x(t) < y(2) iff x(¢) < y().
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By the assumptions of the theorem, fOC(JxR,R), f, O
E?,(J xR, R), a(0,1) and p = 1. Moreover, the functions f; and f,

satisfy hypotheses (A1)-(A4). From Lemma 2.7, it implies that x(t) is a

solution of equation (3.1) if and only if it satisfies the hybrid fractional

integral equation
)= 7o )+ gy [ (=97 ol ¥ 6D

and fi(9, x(f9)) = xo. Consider the operators F; : X - X, F5: X - X,
and A: X xX - X defined as follows:

i) = fle X0 ) = gy [ 0= 9 s v, 10

and A(x, y) = Fjx + F,y. We show that the operator A satisfies all

hypotheses of Theorem 4.4. First, we show that the operator A satisfies the
condition (1) of Theorem 4.4 with Y(z) = ¢, ¢(¢r) = 0 and

0) = A () + e2 e s Aal0)

Note that the function 0 is a D -function due to Statement 2.11. Let
(x, ), (u, v) O X x X with (x, y) =, (4, v). By hypothesis (A3), we have

| A(x(0), ¥(r) = Alu(), v(1)) |
<[ A x(0)) = file, u(®))]

+ﬁj‘; (=)' fals, ¥(s)) = fols, v(s))|ds

a

J
< il =) + o2ty Aally = vco)

< epAy(max{]| x —ul|-0, | y = v|-0})

|/ _ _
+ czm/\z(max{” x=ulc0,[y=v|-0}). (5.2)
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Taking maximum over ¢ from the left hand side, we obtain
W( Alx, y) = Alu, v) | c0)
< B(max{] x = 0. | = v | 0}) = d(max{] x = ufco. | y = v 0.

Since 0 is a D -function, we have

WO =80+ 80) = 1 - e ) - e )0 53)

for all + > 0. Hence the operator A satisfies the condition (1) of Theorem
4.4. Next, we show that the operator A satisfies the condition (2) of Theorem
4.4. Let xo(r) = By(z) and yo(t) = By (z). By hypothesis (A4), we have

A(xo(1). yo(1))

= Fi(xo(1)) + F2 (30 (1))
= hle. ) * g [, 09 alo Balo)s 2 Bi6) = ol

and

A(yo (1), x0(1))

= F(yo(1)) + Fa(x0(2))
= 0B * gy [ =9 o B £ Bo0) = o)

Hence A satisfies the condition (2). Hypothesis (A2) implies that A([]y) is
non-decreasing and A(x, [J is non-increasing, so A has the mixed monotone

property which satisfies the condition (3) of Theorem 4.4. Finally, A is
continuous due to inequality (5.2). Thus, it satisfies the condition (4) of
Theorem 4.4. We have shown that the operator A satisfies the conditions
(1)-(4) of Theorem 4.4. Therefore, A has a coupled fixed point, that is, there

exists an element (xD, yD) 0 X x X such that
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2= AR YY) and U= AR D).

Uniqueness. Next, we show that the operator A has the unique coupled
fixed point. For any (x(¢), y(¢)), (u(z), v(¢)) O X x X, we set

w(r) = max{x(¢), y(e). u(t). v(r)}
and
2(¢) = min{x(¢), y(2), u(e), v(r}}-
It is obvious that
x(t). u(t) < ot) and (). v(r) 2 2(1),
that is,

(x(), ¥(1)) =2 (w(), 2(1)) and (u(e), v(r)) =2 (w(2), 2(2)).

Hence, there exists a unique x”0 X such that
U= AR 5 (5.4)

due to Theorem 4.4. This implies that there exists a unique xD(t) U X such
that

0 = Al )+ gy [ = s s

By hypothesis (A1), we have f;(to, x{fy)) = xo. As a result, equation
(3.1) has a unique solution x{) in C(J, R) and the solution satisfies

xD(to) = xp. This proves the existence and uniqueness of the solution of
equation (3.1).
From the relation (5.4), it follows that the operator A has a unique

coupled fixed point (xD, xEﬁ satisfying

xH= A(xD, x%.
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From this, it implies that the coupled fixed point of A lies on the main
diagonal of X x X. This allows us to investigate the Picard iterations of A
on the main diagonal of X x X. Letusdenote by 7 : X — X the restriction
of A to the main diagonal of X x X, that is,

Tx = A(x, x).
For any initial guess xy = x, we construct the sequence (xn)nDNo’

where Ny = N U{0}, as follows:

Xp = Txn—l = A(xn—l’ xn—l)
L ! a-1
= At %)+ gy | T 6D,z

Recall that the sequence (xn)NO is called nth Picard iteration of T.

Next, we prove the second assertion of the theorem. Utilizing hypotheses
(A3), (A4) and equation (5.4), we get

| (1) = xH0) |
= A=t (1), x,-1(1)) = AGH), x{0) |
< | Ao (0) = REHD) [ +] Fa (-1 (0) = B (H0) |
=[ At xu1 (1)) = Al xH0)) |

g 1 = s kD = s D s

a
O J O
< M 50m1 = 20 + 0 g Aol et = 2 o)

< | xy-p = 27 0. (5.5)

Taking maximum over ¢ from the left hand side, we obtain

30 = 2700 < [ - = o
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Thus, the sequence (| x,, — xD||C0 )nEINO is a non-increasing sequence and

bounded below. Hence, there exists r = 0 such that

: O —
nlggo | x, —x[c0 =r.

It remains to show r =0. On the contrary, suppose that r > 0. From
equation (5.5), it follows that
|G

| x, = 2" lco < (| -1 - x [c0)+ e |—|( Ag (| X1 = x7 lc0)-

Mo+1)
(5.6)

Since the functions A; and A, are upper semi-continuous and the
sequences A (| x,-; - x° lco) and Ay(| x,-1 = X |c0) are bounded by

taking the limit n — o from (5.6), we get

r = lim || X, — xD ||C0

n — 00
a
< limsup| e Ay(| x,-1 = x ||c0)+62ﬁ/\2(|| Xy =% | c0)
n— 0o

< ¢ limsup[A | x,-; = x"[-0)]

)

) F( )thUP[/\z(" n-1" D”co)]

J a
< cl/\l(r) + 02%/\20). (57)

This is contrary to (5.3). Hence

. O —
lim [, = %co = 0.

Next, we prove the third assertion of the theorem. By assumption, there
exists a constant K > 0 such that
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t

A1) = Ny(r) = T+

It follows from (5.6) that

_ .0
” X, _xEI "CO < " Xp-1 — X ”CO

. (5.8)
1+ K] o = 2o

Without loss of generality, we can assume x, # x for all nO Nj.

Inequality (5.8) implies that

=l = leo

where A = ¢™¥. Iterating the last inequality, we get

o]
26, =270 I x50 = x|l c0

Solving for | x, = x” 0. we get

C
[ x, —xD||C0 < P

This completes the proof of Theorem A. (]

Remark 5.1. In recent paper [26], the main result has been proved by
using Lemma 2.5 which was incorrect. That shortcoming can be corrected by
using Lemma 2.7 and the same manner as in the proof of the existence part
of Theorem A.

5.2. Proof of Theorem B

Proof. In this subsection, our notation is slightly different from the
above section. Here as space X, we take 7 (1]7 (J , R) and as a norm, we take

| [ﬂa, - A trivial verification shows that the space (x.| E"a, p) is a Banach
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space. The partial order =< remains the same as in the previous section. We

prove this theorem, similar to those of the preceding section. By assumptions

of Theorem B, the functions f; O Cg(] xR, R) and f, O Eg(] xR, R)

satisfy hypotheses (B1)-(B4). From Lemma 2.9, it follows that x(¢) 0 7 g

is a solution of equation (3.1) if and only if it satisfies the hybrid integral

equation
o) = 7l )+ gy [ =T Rl s 69)

and

d* fi(z, (1))

= X0,
di*

=1

for all 0 <k < Ng,p ~ 1. The same as the previous section, consider the

operators Fj: X - X, F,:X - X and A: X XX - X defined as

follows:

Fl0) = £i(0, x(),
A0 = gy [ (= s (s, v

and A(x, y) = Fjx + F,y. We can easily check that the operator A satisfies

all hypotheses of Theorem 4.4, with the exception of (2), in the space
(x.| [ﬂa’ p). The reason for not satisfying hypothesis (2) of Theorem 4.4

is the functions By, B, O C(J, R) in hypothesis (B4), might not be in
7 g (J, R). Therefore, to prove the first assertion of the theorem, it only
remains to find functions ﬁl, @2 Uz g (J, R) such that (B4) holds. In order
to find such [§1 and ﬁz, we use hypotheses (B2) and (B4). Taking [§1 =
A, By). B, := A(B,. B)) for By, B, O C(J, R) in hypothesis (B4), yields
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B B, DIG(J. R) since fi(t, x(1)) DZG(J, R) and f, O LS(J xR, R).

Moreover, (81, B,) <, (B;. B,) due to (B4). On the other hand, from the

hypothesis (B2), it follows that the operator A4 : X X X — X X X defined
as

Alx. y) = (A(x, y), Ay, x))

is non-decreasing with respect to =<,. This together with last inequality

gives
A@Br. Br) =2 AB. Bo).
It means that
B < AB;, By) and B, = ARy, By).

We conclude that there exist ﬁl, Gz Oz ?,(J , R) such that

file, By(0) + I%Jr[fz(f’ Ba (] = By()
and
file, By(0) + 1,?)+[f2(l, B < B, ().

Hence the operator A satisfies all hypotheses of Theorem 4.4. So A has a
coupled fixed point, that is, there exists a point (x yp) 0 X % X such that

xg=Alxg yo) and yg= AQg X
Analysis similar to that in the proof of Theorem A, in part Uniqueness,
shows that x5 = yg Consequently, xp satisfies equation (5.9) and belongs
to Z5(J, R) since f; OCS(J xR, R) and f, OL3(J xR, R). By (B1),
we have

d*file. x0))|

k
dt 1=tgy
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for all 0 < k < ny , — 1. This proves the theorem. The proof of the second

and third assertions of this theorem follows exactly the same way that of
Theorem A. (]

6. Illustrative Example and Comparison of Results

In this section, we first provide an example to show the applicability of
Theorem A. Moreover, we compare our results with the main result of [1].
As we mentioned in Introduction, an existence theorem for the fractional
hybrid differential equation (1.4) was proved by Lu et al. in [1] under

different hypotheses. In their work, the contraction condition for f; was

chosen as follows:

(A3a) There exist constants M = L > 0 such that

Lx-y]|

| A x) = file y)] < MA[x-y]

forall t 0J and x, y OR.

The conditions (A3) posed on the map f; and (A3a) do not imply from

each other. Next, we provide an example which satisfies (A3) but does not
satisfy (A3a) forany M =2 L > 0.

Example 6.1. Let J = [0, 1]. Consider the following fractional hybrid

differential equation:
1
D2[x(¢) - te' ! tanh(x(1))] = £, 6.1)
x(0) =0,

where ¢ [0 J. We show that equation (6.1) has a unique solution in C(J, R).

Denote

fi(t, x) = te' Ttanh(x) and  fo(t, x) = 2.
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Clearly, f, OLY(J xR, R), f; 0C(J xR, R) and f;(0, x) =0 for
all x OR. It is not difficult to see that fi(z, QI is increasing and f; (¢, I is
non-increasing. We can easily show that f; satisfies the hypothesis (A3)

with constant ¢; =1, thatis,

| fi(t, x) = fi(, y)[ < tanh( x = y )

for all + 0 J. Now we show that f; does not satisfy the hypothesis (A3a).

For this, it is enough to prove the following statement:

Statement 6.2. For any M > 0, there exist #y [J J and T > O such that

Mt
| filtg, D] 2 M +1

forall 0 <1 < T,
Proof. For given M >0 and | T| < 172, consider the function

Dy (1) = (M +71) f1(1, T) = MT = (M + 1) tanh(T) - MT

=M +1))

n=l1

=(M +T)(T —T—33+0(T5)J - Mt

2
_2, Mt 1 3
=1 (1 =3 "3 +0(t )]

where B, is the Bernoulli numbers. It can be easily shown that for any

M >0, there exists Ty > 0 such that

2
Mt T 3
1 3 3 o(t°)=0
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forall 0 < T < 1. It implies that

Mt
A1) 2 =

for all 0 < T < T, which completes the proof of the statement. (]

We now turn to check the hypothesis (A4). The hypothesis (A4) is
satisfied with B;(1) =0 and B,(r) =1+ 2/+/T Indeed, it can be easily
shown that fi(z, B;(¢)) = f1(t, 0) = 0 and

20 =)

;3
Al B + 102126 B ()] = r((l).S) Jo «/St ilss

for all ¢ O J. On the other hand, we have fi(t, B,(t)) <1 and

3
e Bae) + 3L BN S 1+ oy [ o S 1% 7 = Ba)

0~Nt—-s

for all ¢+ O J. Thus, hypothesis (A4) is satisfied. It follows from Theorem A
that the hybrid differential equation (6.1) has a unique solution. However,

this equation cannot be solved by the methods demonstrated in [1].

We continue comparing the main result of [1] with our result. In [1], for

f>, the following condition was required:

(A3b) There exists a continuous function & 0 C(J, R) such that

| f2(2, x)| < h(2)
forall tO0J and x OR.

Generally, the conditions (A3) posed on the map f, and (A3b) do not
imply from each other. Our next goal is to construct an example satisfying
hypotheses (A1)-(A4) but not (A3b).

Example 6.3. Again we take J = [0, 1]. Denote by X the set of all

continuous and non-negative functions, and consider in it the following
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fractional hybrid differential equation:

1
DE[x(t) - 0.5sin(t) arctan(x(¢))] = k(¢) - @ tanh(x(z)), 6.2)

x(0) =0,

where 1 0J and k() = 0% if 10(0,1] and k(r) = 0 if ¢ = 0. Denote

Jm
=

matter to see f5(f, &(r)) O Lj(J xR, R) for any &(r) O C(J, R). It implies

fi(t, x) = 0.5sin(t)arctan(x) and £ (¢, x) = k() = —— tanh(x). It is a simple

that fo, 0 L3°(J xR, R). Let &(/) 0 C(J, R). An easy computation shows
that
1021421, €0 = 102[04] = 16 [ranh (§(1))]
= T 01— 18 Teann(E()

Hence I§2[f(t W) OCW, R) and IS[f(t ()] ‘1:0 =0 since

tanh(2()) O C(J, R). Thus f, O £}°(J xR, R). We show that f; and f,
satisfy hypotheses (A1)-(A4). It is clear that f;(z, [J is increasing, f5(¢, 0 is
decreasing and £1(0, x) = 0 for all x OR. We claim that f; and f, satisfy

the hypothesis (A3) with D -functions A? and Al and constants cq =05

and ¢, =TT 4, respectively. Indeed, for any x, y O R+, we can easily get
2 p y y X,y 0 yg

| 1@, x) = f1(z, y)| < 0.5 arctan(x) — arctan(y) |

Xy

< 0.5arctan
1+ xy

< 0.5arctan| x — y|

= 0.5/ (| x - )

and for f,, it is clear from above example. Similarly, as in the above

examples, we can show that inequalities
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St By(2)) + I;;Jr[fz(f’ B2(c)] 2 B ()
and

Sl Ba(2) + I;;Jr[fz(f’ B1 ()] < B2 (1)

hold for By(r) =0 and B,(r) =1+ T(0.6)/T(1.1). Hence the hypotheses

(A1)-(A4) are satisfied. Therefore, equation (6.2) has a unique solution in

C(J, R). However, this equation cannot be solved by methods demonstrated
in [1] because f> does not satisfy (A3b). Conversely, suppose that there is
hOC(J, R) such that

| 2, x)| < h(r)

for all +O0J and xOR. It is known that # is bounded since it is

continuous. This is impossible because k(t) is unbounded.

7. Conclusion

In this paper, we have investigated fractional hybrid differential equation
(1.0). We have considered two cases: a (0, 1) and o = 1. In the first case,
we prove the existence and uniqueness of a solution of (1.0). This theorem
extends the main result of [1]. Moreover, we show that the Picard iteration

associated to an operator T : C(J, R) - C(J, R) converges to the unique
solution of (1.0) for any initial guess x (0 C(J, R). In particular, the rate of
convergence is n~!. In the second case, we have considered this equation in
the space of k times differentiable functions. Naturally, the initial condition
x(f9) = x¢ is replaced by x(k)(to) = X9, 0 <k < ny , —1. We have shown
the existence and uniqueness of a solution of (1.0). The proof of the main
theorems is based on a coupled fixed point method which is different from

the methods of the previous works mentioned above. This method allowed

us not only to investigate the existence of the solution but it is allowed us to
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investigate the uniqueness of solution of equation (1.4) also. We believe that
this method will be applied to investigate the existence and uniqueness of the
solutions of other nonlinear integral and differential equations. Moreover, it
is shown the convergence of the Picard iterations to the unique solution of

(1.0) and in particular, the rate of convergence is nl.

Finally, we have
provided two examples to show the applicability of the abstract results.

These examples cannot be solved by the methods demonstrated in [1].
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