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SOLUTIONS OF FRACTIONAL HYBRID 

DIFFERENTIAL EQUATIONS VIA 

FIXED POINT THEOREMS AND 

PICARD APPROXIMATIONS 

 

Abstract 

We investigate the following fractional hybrid differential equation: 

( ) ( )( )[ ] ( )( )
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where 
α

+0t
D  is the Riemann-Liouville differential operator order of 

,0>α  [ ],, 00 attJ +=  for some ,0 R∈t  ,0>a  ( ),,1 RR×∈ JCf  



Sahar Mohammad A. Abusalim 66 

( ),,2 RR×∈ α Jf pL  1≥p  and satisfies certain conditions. We 

investigate such equations in two cases: ( )1,0∈α  and .1≥α  In        

the first case, we prove the existence and uniqueness of a solution           

of (1.0), which extends the main result of [1]. Moreover, we show  

that the Picard iteration associated to an operator ( ) →× RJCT :  

( )R×JC  converges to the unique solution of (1.0) for any initial 

guess ( ).R×∈ JCx  In particular, the rate of convergence is .1−n  In 

the second case, we investigate this equation in the space of k times 

differentiable functions. Naturally, the initial condition ( ) 00 xtx =  is 

replaced by 
( )( ) ,00 xtx k =  10 , −≤≤ α pnk  and the existence and 

uniqueness of a solution of (1.0) is established. Moreover, the 

convergence of the Picard iterations to the unique solution of              

(1.0) is shown. In particular, the rate of convergence is .1−n  Finally, 

we provide some examples to show the applicability of the         

abstract results. These examples cannot be solved by the methods 

demonstrated in [1]. 

1. Introduction 

Fractional differential equations arise in many engineering and  

scientific disciplines such as physics, chemistry, biology, economics, control 

theory, signal and image processing, biophysics, blood flow phenomena,  

and aerodynamics (see [2-5] and references therein). The main advantage of 

using fractional nonlinear differential equations is related to the fact that         

we can describe the dynamics of complex non-local systems with memory.             

In this line of taught, the equations involving various fractional orders are 

essential from both theoretical and applied views of points. In this line of 

taught, the equations involving various fractional orders are essential from 

both theoretical and applied views of points. Moreover, applications of 

fractional order differential equations in modeling viral disease transmission 

have been widely used and many significant results related to the fractional 

differential equations were obtained (see, for example [6-9] and references 

therein). However, still, there are many open problems in this direction. 
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There are various definitions of fractional derivative, but in this work,           

we investigate fractional order differential equations defined by Riemann-

Liouville differential operator. The differential equations defined by 

Riemann-Liouville differential operators are very important in the modelling 

several real-life problems (see, for instance [10, 11]). Fractional order hybrid 

differential equations defined by Riemann-Liouville differential operators 

have been developing very fast in the last few years (see [12-14] and 

references therein). In the investigations of fractional order hybrid type 

differential equations, the hybrid type fixed point theorems are widely        

used. In this context, the hybrid type fixed point theorem refers to the 

Krasnoselskii-type fixed point theorem which is a combination of Banach’s 

and Schauder’s fixed point theorems. Next, we discuss some applications           

of Krasnoselskii-type fixed point theorems to the hybrid differential and        

hybrid fractional differential equations. In 2013, Dhage [12] and Dhage          

and Lakshmikantham [15] proved significant Krasnoselskii-type fixed point 

theorems and applied them to the following hybrid differential equation: 

( )
( )( ) ( )( )

( )
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 (1.1) 

where [ ],, 00 attJ +=  for some ,0,0 >∈ at R  and the functions ×Jf :1  

{ }0\RR →  and RR →×Jf :2  are continuous. Dhage and Jadhav [16] 

investigated the existence of solutions for hybrid differential equation 

( ) ( )( )[ ] ( )( )

( )





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∈=−

,
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00
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Rxtx

Jttxtftxtftx
dt
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 (1.2) 

by using a Krasnoselskii-type fixed point theorem, where →× RJf :1  

{ }0\R  is continuous and RR →×Jf :2  is a Carathéodory function.            

Xu [17] applied a Krasnoselskii-type fixed point theorem to investigate the 

solutions of the fractional boundary value problem 
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( ) ( )( ) [ ] ( )
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 (1.3) 

where α
D

C  is the Caputo fractional derivative and [ ] RR →×1,0:f  is a 

continuous function. In [1], Lu et al. investigated the following fractional 

hybrid differential equations: 

( ) ( )( )[ ] ( )( )

( )





∈=

∈=−α
+

,

,,,,

00

21
0

Rxtx

JttxtftxtftxD
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 (1.4) 

where ( )1,0∈α  and RR →×Jff :, 21  are continuous functions and 

satisfy certain conditions. In order to show the existence of the solutions           

of equation (1.4), a Krasnoselskii-type fixed point theorem was used. For         

the uniqueness of the solution, there was required a stronger condition. 

Krasnoselskii-type fixed point theorems are considered powerful tools in 

showing the existence of solutions of nonlinear hybrid differential equations, 

however, these tools are not sufficient to show the uniqueness of the 

solutions. Therefore, in the investigations of equations (1.1)-(1.4), the 

uniqueness of the solutions is not studied mostly, or studied under some 

extra conditions. Unfortunately, there are some shortcomings found in the 

proof of the existence of solutions of equation (1.4) demonstrated by Lu et 

al. in [1] and for the uniqueness of the solution, there was required a stronger 

condition as we have mentioned above. Moreover, naturally, we would like 

to ask the following important question: How to investigate equation (1.4) 

for all 0>α  in a “wider” class of functions? Motivated by the question 

above, in this work, we investigate equation (1.4) for all 0>α  and 

( ),,1 RR×∈ JCf  ( ),,2 RR×∈ α Jf pL  .1≥p  Obviously, we have to 

consider two cases: ( )1,0∈α  and 1≥α  separately. It is because the 

operator α
+0t

D  is well defined on the space of continuous functions when 

( ),1,0∈α  however, it is not sufficient to consider this space when ,1≥α  

i.e., we need to consider 1, −α pn  time differentiable functions, where pn ,α  
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is a positive integer depending on α  and .1≥p  In the case of ( ),1,0∈α            

we prove the existence and uniqueness of a solution of (1.4) under some 

conditions of 1f  and .2f  We use a coupled fixed point method which is 

different than the methods of the works mentioned above. This method 

allows us to investigate the uniqueness of solution of equation (1.4). The 

shortcomings in [1] can be corrected by using Lemma 2.7 stated below. We 

discuss about these shortcomings in the forthcoming sections in detail. Our 

first theorem extends the main existence theorem of [1]. Moreover, we show 

that the Picard iteration associated to an operator ( ) →R,: JCT  ( )R,JC  

converges to the unique solution of (1.4) for any initial guess ( )., RJCx ∈  

In particular case, we have shown that, the rate of convergence is .1−
n  In  

the case of ,1≥α  we investigate equation (1.4) in the space of 1, −α pn           

time differentiable functions. In this case, naturally, the initial condition 

( ) 00 xtx =  is replaced by ( )( ) ,00 xtx
k =  10 , −≤≤ α pnk  because our 

main equation is investigated in the space of 1, −α pn  time differentiable 

functions. Similar to first case, the existence and uniqueness of a solution         

of (1.4) is established. Moreover, the convergence of the Picard iterations          

to the unique solution of (1.4) is shown. In particular case, the rate of 

convergence is .1−
n  Finally, at the end of the paper, we provide some 

examples to show the applicability of the abstract results. These examples 

cannot be solved by the methods demonstrated in [1]. 

2. Preliminaries 

In this section, first we recall the definitions of the Riemann-Liouville 

fractional integral and derivative, and then we provide a composition  

relation between fractional differentiation and integration operators. Using 

the composition relation, we prove the equivalency of the fractional 

differential equation (1.4) to a fractional integral equation. Finally, we recall 

the definitions of nonlinear weak contractions. 
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2.1. Riemann-Liouville fractional integral and derivative 

Definition 2.1 [18]. Let ( ).,1 baLf ∈  The Riemann-Liouville fractional 

integral fIa
α

+  of order ,0>α  is defined as 

( ) ( ) ( ) ( ) ( ) >−αΓ= −αα
+

x

a
a axdssfsxxfI .,

1 1
 

Definition 2.2 [18]. The Riemann-Liouville fractional derivative fDa
α

+  

of order ,0≥α  is defined as 

( ) ( ) ( ) ( ) ( ) >−α−Γ= −α−α
+

x

a

m

m

m

a axdssfsx
dx

d

m
xfD ,,

1 1
 

where [ ] .1+α=m  

Next, we consider two cases: ( )1,0∈α  and .1≥α  

2.1.1. Case ( )1,0∈α  

Our next discussion is related to the following lemma which was 

formulated in [1] as follows: 

Lemma 2.3 [1]. Let 10 <α<  and ( ).,1 baLf ∈  Then 

(A1) the equality ( ) ( ) ( )xfxfID aa =α
+

α
+  holds; 

(A2) the equality 

( ) ( ) ( ) ( ) ( )
( ) ( ) 1

1
−α

α−
+α

+
α

+ −αΓ−= ax
afI

xfxfDI a
aa  

holds for almost everywhere on [ ]., ba  

The proof of this lemma was not given in [1] but it was cited in [18] 

where more general facts were proven. While formulating Lemma 2.3, two 

shortcomings were done by the authors of [1]. The first one (the minor) is, 

the equality (A1) holds for almost everywhere on [ ]., ba  The second one  

(the major) is not true in general because there can be found a function 
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( )baLf ,1∈  such that the equality (A2) does not hold. Since this is not the 

main result, we will not provide an example but we can give a brief idea of 

finding such a function for the benefit of the reader. We find a function 

[ ] R→φ ba,:  which is differentiable a.e. on [ ],, ba  [ ],, baACIa ∈φα
+  

( ) ( ) ,0=φα
+ aIa  and φα

+DIa  is not well defined ( ( )),,.i.e 1 baLD ∉φ  where 

[ ]baAC ,  is the class of absolutely continuous functions on [ ]ba,  and 

dxdD =  is the differential operator. It is not hard to find such a function. 

Then consider the following equation: ( ) ( ) ( ).1
xfIx a

α−
+=φ  This equation is 

known as Abel’s equation. This equation is solvable in ( )baL ,1  if and only 

if ∈φα
+aI  [ ]baAC ,  and ( ) ( ) 0=φα

+ aIa  (see Theorem 2.1, [18]). So, by           

our construction, there is ( )baLf ,1∈  such that ( ) ( ) ( ).1
xfIx a

α−
+=φ  By           

the definitions of ,α
+aD  the function ( ) ( ) ( ) ( ) == α−

+
α

+
α

+
α

+ xfDIIxfDI aaaa
1  

( ) ( )xDIa φα
+  is not well defined. On the other hand, the left hand side of 

(A2) is well defined which leads to a contradiction. Next, we state the 

corrected version of Lemma 2.3 as follows: 

Lemma 2.4. Let ( )1,0∈α  and ( ).,1 baLf ∈  Then 

(B1) the equality ( ) ( ) ( )xfxfID aa =α
+

α
+  holds for almost everywhere on 

[ ];, ba  

(B2) the equality 

( ) ( ) ( ) ( ) ( )
( ) ( ) 1

1
−α

α−
+α

+
α

+ −αΓ−= ax
afI

xfxfDI a
aa  

holds for almost everywhere on [ ],, ba  provided that [ ].,1
baACfIa ∈α−

+  

This lemma will be used below. For the proof of this lemma, see 

Theorem 2.4 in [18]. To simplify our experiments, we use the notation 

( ) ( ).,, xtfxxtf −=Φ  Our next discussion is related to the following 

lemma: 
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Lemma 2.5 [1]. Assume that ( )RR,×∈ JCf  and the function 

( )xtx f ,Φ֏  is increasing in R  for all .Jt ∈  Then, for any ( )R,JCy ∈  

and ( ),1,0∈α  the function ( )R,JCx ∈  is a solution of initial value 

problem 

 
[ ( )( )] ( )

( )





=

=Φα
+

,

,,

00

0

xtx

tytxtD ft  (2.1) 

if and only if ( )tx  satisfies the hybrid fractional integral equation 

( )( ) ( ) ( ) ( ) ( ) ∈−αΓ+Φ=Φ −αt

t
ff Jtdssystxttxt

0

.,
1

,,
1

00  (2.2) 

Unfortunately, there are some shortcomings found in the proof of 

Lemma 2.5. That is, after applying α
+0t

D  on both the sides of (2.2), the 

constant ( )00 , xtfΦ  does not disappear, but another function emerges due to 

the definition of .
0

α
+t

D  Indeed, let us consider the following simple example. 

If we take ( ) ( ) 1,1, ≡≡ tyxtf  for [ ],1,0=∈ Jt  then the function ( ) =tx  

( ) ( )tI 12 0
α
++  is a solution to (2.2) but not to (2.1). 

Our next aim is to rectify these shortcomings. First, we prove the 

following: 

Lemma 2.6. Let .0>α  If ( ),, RJCg ∈  then ( )R,
0

JCgI
t

∈α
+  and 

( ) ( ) .00
0

=α
+ tgI

t
 

Proof. For any Jzt ∈,  verifying ,zt >  we have 

( ) ( ) ( ) ( ) ( ) (( ) ( ) ) ( ) 




 −−−αΓ=− 
−α−αα

+
α

+
z

ttt
dssgszstzgItgI

0
00

111
 

( ) (( ) ) ( ) 




 −αΓ+ 
−αt

z
dssgst

11
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( )
( ) ( ) ( )

( ) ( )zg
zt

zg
zt ~ˆ

αΓα
−+αΓα

−−=
αα

 

( )
( )

( )
( ) ( ),ˆ00 zg
tztt













αΓα
−−αΓα

−+
αα

 

where ( )ztz ,ˆ 0∈  and ( )tzz ,~ ∈  which satisfy the mean value theorem. This 

implies that gI
t
α

+0
 is continuous. Furthermore, from the obvious inequalities 

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ,
maxmin

00
0

α∈α
+

α∈ −αΓα≤≤−αΓα tt
tg

tgItt
tg Jt

t
Jt  

we get ( ) ( ) .00
0

=α
+ tgI

t
 □ 

Now we state the corrected version of Lemma 2.5. This lemma will be 

also used below. 

Lemma 2.7. Let ( ).1,0∈α  Assume that ( )RR,×∈ JCf  and                 

the function ( )R,1 JLy ∈  satisfies ( )R,
0

JCyI
t

∈α
+  and ( ) ( ) .00

0
=α

+ tyI
t

 

Then the function ( ) ( )R,JCtx ∈  is a solution of the fractional differential 

equation 

 
[ ( )( )] ( )

( )





=

∈=Φα
+

,

,a.e,

00

0

xtx

JttytxtD ft  (2.3) 

if and only if ( )tx  satisfies the fractional integral equation 

 ( )( ) ( ) ( ) ( )
−α−αΓ=Φ

t

t
f dssysttxt

0

11
,  (2.4) 

and ( )( ) ., 000 xtxtf =  

Proof. Let ( )tx  be a solution of equation (2.3) with initial condition 

( ) .00 xtx =  By the definition of ,
0

α
+t

D  we have 
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[ ( )( )] [ ( )( )] ( ).,, 1

00
tytxtDItxtD ftft

=Φ=Φ α−
+

α
+  

It implies that the function [ ( )( )]txtI ft
,1

0
Φα−

+  is absolutely continuous since 

( ) ( ).,1 RJLty ∈  Using Lemma 2.4, we get 

[ ( )( )] ( )( )
[ ( )( )]

( ) ( ) .
,

,,
1

0

1

00

00

−α=
α−
+α

+
α

+ −αΓ
Φ

−Φ=Φ tt
txtI

txttxtDI
ttft

fftt
 (2.5) 

By Lemma 2.6, we have 

[ ( )( )] 0,
00

1 =Φ
=

α−
+ tt

ft
txtI  

since ( )( )txtf ,Φ  is continuous. From this and equality (2.5), 

[ ( )( )] ( )( ).,,
00

txttxtDI fftt
Φ=Φα

+
α

+  

Taking into account this and applying α
+0t

I  on both the sides of (2.3), we get 

( )( ) ( ) ( ),,
0

tyItxt
tf
α

+=Φ  

i.e., 

 ( )( ) ( ) ( ) ( )
−α−αΓ=Φ

t

t
f dssysttxt

0

.
1

,
1

 (2.6) 

Since ( ) 00 xtx =  and ( ) ( ) ,00
0

=α
+ tyI

t
 substituting 0tt =  in (2.6) yields 

( )( ) ( )( ) .0,, 00000 =−=Φ txtfxtxtf  

On the contrary, assume that ( )tx  satisfies (2.4) and ( )( )., 000 txtfx =  

Then applying α
+0t

D  on both the sides of (2.4), we get 

[ ( )( )] ( ) JttytxtD ft
∈=Φα

+ a.e,
0
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due to Lemma 2.4. Again, substituting 0tt =  in equation (2.4), we have 

( )( ) ( ) 0, 0000 =−=Φ xtxtxtf  

because of ( ) ( ) .00
0

=α
+ tyI

t
 The proof is completed. □ 

Note that for ,1≥α  the conclusion of Lemma 2.7 no longer holds. More 

precisely, the continuity of f is not sufficient. In this case, in order to get an 

analogical result, it is necessary to put some restrictions on f. 

2.1.2. Case 1≥α  

In this case, we deal with the following space of functions. Define 

( ) ( ( ))RR ,:, JLJ pp
αα = II  

{ ( ) }.1,,,,:
0

≥∈ϕϕ=→= α
+ pJLIfJf pt

RR  

We can easily see that ( )R,Jp
α
I  is a linear space and ,0

0
=ϕα

+t
I  

( )R,JLp∈ϕ  only in the case .0=ϕ  Thus we may introduce the norm in 

( )R,Jp
α
I  by relation 

 ,:, pp
f ϕ=α  (2.7) 

where 
p⋅  is the pL -norm. A trivial verification shows that the space 

( )R,Jp
α
I  with norm (2.7) is a Banach space. Our next goal is to extend 

Lemma 2.7 for the case of .1≥α  In achieving this goal, the following 

theorem plays a key role. 

Theorem 2.8 [18]. Let .0>α  Then 

(C1) the equality ( ) ( ) ( )xfxfID aa =α
+

α
+  holds for almost everywhere 

on [ ]ba,  for any summable function f; 
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(C2) the equality 

( ) ( ) ( )xfxfDI aa =α
+

α
+  

holds for almost everywhere on [ ],, ba  provided that [ ]( ).,,1 Rbaf
α∈ I  

Here and below, for given ,01 >>α p  we denote [ ]pn p 1, −α=α  

,1+  where [ ]⋅  is the integer part of a number. Now we state an extension of 

Lemma 2.7 for .1≥α  

Lemma 2.9. Let ,1≥α  1≥p  and .1 α>p  Let ( )R,JLy p∈  be a 

function satisfying 

 
( ) ( )

.10,0 ,

0

0 −≤≤= α

=

α
+

p

tt

k

t
k

nk
dt

tyId
 (2.8) 

Assume that ( )( ) ( )R,, Jtxtf p
α∈ I  for any ( ) ( )., RJtx p

α∈ I  Then the 

function ( ) ( )R,Jtx p
α∈ I  is a solution of the fractional differential equation 

 
[ ( )( )] ( )

( )( )






−≤≤=

∈=Φ

α

α
+

10,

,a.e,

,00

0

p
k

ft

nkxtx

JttytxtD
 (2.9) 

if and only if ( )tx  satisfies fractional integral equation 

 ( )( ) ( ) ( ) ( )
−α−αΓ=Φ

t

t
f dssysttxt

0

11
,  (2.10) 

and 
( )( )

.10,
,

,0

0

−≤≤= α
=

p

tt
k

k

nkx
dt

txtfd
 

Proof. Let ( ) ( )R,Jtx p
α∈ I  be a solution of equation (2.9) satisfying 

( )( ) .10, ,00 −≤≤= α p
k

nkxtx  Then by the assumption of the lemma, we 

have ( )( ) ( ).,, RJtxtf p
α∈ I  We can get ( ) ( )( ) ( )( ) ∈Φ=− txttxtftx f ,,  
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( )R,Jp
α
I  since ( )R,Jp

α
I  is a linear space. Thus, applying α

0t
I  on both the 

sides of (2.9), we get 

( )( ) ( ) ( )tyItxt
tf
α

+=Φ
0

,  

due to Theorem 2.8. Replacing ( )( )txtf ,Φ  by ( ) ( )( )txtftx ,−  in the last 

equation and differentiating the resulting equation k times with respect to t  

at ,0t  we get 
( )( )

,
,

0

0

x
dt

txtfd

tt
k

k

=
=

 .10 , −≤≤ α pnk  On the contrary, 

assume that ( ) ( )R,Jtx p
α∈ I  satisfies (2.10) and 

( )( )
,

,
0

0

x
dt

txtfd

tt
k

k

=
=

 

.10 , −≤≤ α pnk  Then applying α
+0t

D  on both the sides of (2.10), we get 

[ ( )( )] ( ) JttytxtD ft
∈=Φα

+ a.e,
0

 

due to Theorem 2.8. Again, by (2.8) and 
( )( )

,
,

0

0

x
dt

txtfd

tt
k

k

=
=

 ≤≤ k0  

,1, −α pn  we get ( )( ) ,00 xtx
k =  10 , −≤≤ α pnk  which completes the 

proof. □ 

2.2. Dominating and altering distance functions 

Let +
0R  denote the set of all non-negative real numbers. The following 

definitions will be used in the subsequent part of this paper. 

Definition 2.10. A function ++ →Λ 00: RR  is called a dominating 

function or, in short, D -function if it is an upper semi-continuous, non-

decreasing, ( ) rr <Λ  for ,0>r  and ( ) .00 =Λ  
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Statement 2.11. If ++ →Λ 00: RR  and ++ → 00: RRϒ  are D -functions, 

then for any 0, 21 >cc  such that ,121 <+ cc  the function ϒ21 cc +Λ  is 

also a D -function. 

Proof. The proof of this statement is straightforward. □ 

Definition 2.12 [19]. A continuous and non-decreasing function 

++ →ψ 00: RR  is said to be an altering distance function if 

( ) .00 =⇔=ψ tt  

3. Formulation of Main Results 

In this section, we formulate our main results. Their proofs will be       

given in the forthcoming sections. In order to formulate main results, we  

consider the following two cases: ( )1,0∈α  and .1≥α  Let ( ),1,0∈α  

,1≥p  and [ ],, 00 attJ +=  for some ,0 R∈t  .0>a  Suppose that the 

function RR →×Jf :  satisfies the following conditions: 

( )1a  ( )( ) ( )R,, JLttf p∈ξ  for any ( ) ( );, RJCt ∈ξ  

( )2a  ( )( )[ ] 0,
00

=ξ =
α

+ ttt
ttfI  for any ( ) ( )., RJCt ∈ξ  

We denote by ( )RR,×α
JpL  the set of all functions RR →×Jf :  

satisfying the conditions ( ) ( ).a-a 21  It is obvious that ( ) ⊂× RR,JC  

( )., RR×α
JpL  Consider the following fractional hybrid differential equation: 

 
[ ( )( )] ( )( )

( )





=

∈=Φα
+

,

,a.e,,

00

210

xtx

JttxtftxtD ft  (3.1) 

where ( ),1,0∈α  ,1≥p  ( ),,1 RR×∈ JCf  and ( ).,2 RR×∈ α
Jf pL  To 

formulate our first main result, we need the following hypotheses. 
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3.1. Hypotheses for fractional hybrid differential equation (3.1) 

We assume: 

(A1) ( ) 001 , xxtf =  for all .R∈x  

(A2) ( )⋅,1 tf  is non-decreasing, ( )⋅,2 tf  is non-increasing for all .Jt ∈  

(A3) There exist D -functions ++ →ΛΛ 0021 :, RR  and constants 

0, 21 ≥cc  satisfying 

( ) 1
121 ≤+αΓ+

α
J

cc  

such that the functions ( ),, ⋅tfi  2,1=i  satisfy the following weak 

contraction conditions: 

( ) ( ) ( ) ,2,1,,, =−Λ≤− iyxcytfxtf iiii  

for all Jt ∈  and ., R∈yx  

(A4) There exist ( )R,, 21 JC∈ββ  such that 

( )( ) ( )( )[ ] ( )tttfIttf
t 12211 ,,
0

β≥β+β α
+  

and 

( )( ) ( )( )[ ] ( ).,, 21221
0

tttfIttf
t

β≤β+β α
+  

We can now formulate our first main result. 

Theorem A. Let ( )1,0∈α  and .1≥p  Assume that the functions 

( )RR,1 ×∈ JCf  and ( )RR,2 ×∈ α
Jf pL  satisfy the hypotheses (A1)-(A4). 

Then the fractional hybrid differential equation (3.1) has a unique solution 

( ) ( ).R×∈∗
JCtx  Furthermore, the sequence ( )( ) ( )R

N
×∈∈ JCtx

nn 0
 

constructed as 

( ) ( )( ) ( ) ( ) ( )( ) ≥−αΓ+= −
−α

−
t

t
nnn ndssxsfsttxtftx

0

,1,,
1

, 12
1

11  
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converges to ( )tx
∗  in the 0

C -norm for any initial guess ( ) ( ) ∈= txtx0  

( ),R×JC  that is, 

.0lim 0 =− ∗
∞→ Cn

n
xx  

In particular, if D -functions ++ →ΛΛ 0021 :, RR  in hypothesis (A3) 

satisfy 
4

21 κΛ=Λ=Λ  for some ,0>κ  then there exists a constant 

( ) 0,,: 0 >κ= ∗
xxCC  such that 

n

C
xx

Cn ≤− ∗
0  

for all .1≥n  

Next, we consider the case .1≥α  In this case, to investigate equation 

(3.1), the classes of functions ( )RR,×JC  and ( )RR,×α
JpL  are not 

sufficient because the operators α
+0t

D  and α
+0t

I  are defined on high degree 

of smoothness functions. Let ,1≥α  1≥p  and .1 α>p  Suppose that the 

function RR →×Jf :  satisfies the following conditions: 

( )1b  ( )( ) ( )R×∈ξ JLttf p,  for any ( ) ( ).R×∈ξ α
Jt pI  

( )2b  We have 

( ( )( )[ ])
10,0

,

,

0

0 −≤≤=
ξ

α

=

α
+

p

tt

k

t
k

nk
dt

ttfId
 

for any ( ) ( ).R×∈ξ α
Jt pI  

We denote by ( )RR,ˆ ×α
JpL  the set of all functions RR →×Jf :  

satisfying the conditions ( ) ( ).- 21 bb  We also denote by ( )RR,×α
JpC  the  

set of all functions RR →×Jf :  satisfying the following condition: 
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( )( ) ( )R×∈ξ α
Jttf pI,  for any ( ) ( ).R×∈ξ JCt  Consider the following 

fractional hybrid differential equation: 

 
[ ( )( )] ( )( )

( )( )






−≤≤=

∈=Φ

α

α
+

,10,

,a.e,,

,00

210

p
k

ft

nkxtx

JttxtftxtD
 (3.2) 

where ,1≥α  ,1≥p  ,1 α>p  ( ),,1 RR×∈ α
Jf pC  and ( ).,ˆ

2 RR×∈ α
Jf pL  

To formulate our second main result, we need the following hypotheses. 

3.2. Hypotheses for fractional hybrid differential equation (3.2) 

We assume: 

(B1) For any ( ) ( ),, RJtx p
α∈ I  we have 

( )( )
0

1

0

,
x

dt

txtfd

tt
k

k

=
=

 

for .10 , −≤≤ α pnk  

(B2) The functions 1f  and 2f  satisfy (A2). 

(B3) There exist D -functions ++ →ΛΛ 0021 :, RR  and constants 

0, 21 ≥cc  satisfying 

( ) 1
121 ≤+αΓ+

α
J

cc  

such that for any ( ) ( ) ( ),,, RJtytx p
α∈ I  we have 

( )( ) ( )( ) ( ) .2,1,,, ,, =−Λ≤⋅⋅−⋅⋅ αα iyxcyfxf
piipii  

(B4) There exist ( )R,, 21 JC∈ββ  such that 

( )( ) ( )( )[ ] ( )tttfIttf
t 12211 ,,
0

β≥β+β α
+  
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and 

( )( ) ( )( )[ ] ( ).,, 21221
0

tttfIttf
t

β≤β+β α
+  

The following is our second main result. 

Theorem B. Let ,1≥α  1≥p  and .1 α>p  Assume that the functions 

( )RR,1 ×∈ α
Jf pC  and ( )RR,ˆ

2 ×∈ α
Jf pL  satisfy the hypotheses (B1)-(B4). 

Then the fractional hybrid differential equation (3.2) has a unique solution 

( ) ( )., RJtx p
α

∗ ∈ I  Furthermore, the sequence ( )( ) ( )R
N

,
0

Jtx pnn
α

∈ ∈ I  

constructed as 

( ) ( )( ) ( ) ( ) ( )( ) ≥−αΓ+= −
−α

−
t

t
nnn ndssxsfsttxtftx

0

,1,,
1

, 12
1

11  

converges to ( )tx∗  in the 
p,α⋅ -norm for any initial guess ( ) ( ) ∈= txtx0  

( ),, RJp
α
I  that is, 

.0lim , =− α∗
∞→ pn

n
xx  

In particular, if D -functions ++ →ΛΛ 0021 :, RR  in hypothesis (B3) 

satisfy 
4

21 κΛ=Λ=Λ  for some ,0>κ  then there exists a constant 

( ) 0,,,,: 0 >ακ= ∗ pxxCC  such that 

n

C
xx

pn ≤− α∗ ,  

for all .1≥n  

4. Basic Notions of Fixed Point Theory and 

a Coupled Fixed Point Theorem 

We begin by recalling the notions of fixed point theory. The definitions 

and theorems in this section are borrowed from [19]. 
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Definition 4.1 [19]. Let X be a nonempty set and XXXA →×:  be a 

mapping. Then an element ( ) XXyx ×∈,  is called a coupled fixed point of 

A if 

( )yxAx ,=    and   ( )., xyAy =  

Definition 4.2 [19]. Let ( )�,X  be a partially ordered set and let 

XXXA →×:  be a mapping. Then we say that the mapping A has               

the mixed monotone property if A is monotone non-decreasing in its first 

argument and is monotone non-increasing in its second argument. That is, 

for any ,, Xyx ∈  

( ) ( )yxAyxAxxXxx ,,,, 212121 �� ∈  

and 

( ) ( ).,,,, 212121 yxAyxAyyXyy �� ∈  

Definition 4.3 [19]. Let ( )�,X  be a partially ordered set. We           

define 2�  to be a partially order in XX ×  as follows. For any 

( ) ( ) ,,,, XXvuyx ×∈  we say ( ) ( )vuyx ,, 2�  if ux �  and .vy �  

The following theorem plays a key role in the proof of Theorem A. We 

denote by ( )�,, dX  a complete partially ordered metric space. 

Theorem 4.4 [19]. Assume that the mapping XXXA →×:  satisfies 

the following conditions: 

(1) there exist an altering distance function ψ, an upper semi-continuous 

function [ ) [ ),,0,0: ∞→∞θ  and a lower semi-continuous function [ )∞ϕ ,0:  

[ )∞→ ,0  such that for all ( ) ( ) XXvuyx ×∈,,,  with ( ) ( ),,, 2 vuyx �  

( ) ( )( )( )vuAyxAd ,,,ψ  

( ) ( ){ }( ) ( ) ( ){ }( ),,,,max,,,max vyduxdvyduxd ϕ−θ≤  
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where ( ) ( ) 000 =ϕ=θ  and ( ) ( ) ( ) 0>ϕ+θ−ψ ttt  for all ;0>t  

(2) there exist Xyx ∈00,  such that ( )000 , yxAx �  and �0y  

( );, 00 xyA  

(3) A has the mixed monotone property; 

(4) A is continuous. 

Then A has a coupled fixed point ( ) ., XXyx ×∈∗∗  Moreover, if for           

any ( ) ( ) ,,,, XXvuyx ×∈  there exists ( ) XXzw ×∈,  such that ( )yx,  

( )zw,2�  and ( ) ( ),,, 2 zwvu �  then ( )∗∗
xx ,  is the unique coupled fixed 

point of A. 

Remark 4.5. Note that a weaker contraction condition (so-called 

( )ϕθψ ,, -weak contraction condition) has been successfully applied in 

multidimensional fixed point theorems and their applications to the system 

of matrices equations and nonlinear integral equations (see, for instance           

[19-26]). Our previous studies encourage us to believe that the techniques         

of multidimensional fixed point theorem under ( )ϕθψ ,, -weak contraction 

conditions can be successfully applied in the investigations of fractional 

hybrid differential equations. 

5. Proof of Main Theorems 

5.1. Proof of Theorem A 

Proof. Existence. In this subsection, we denote by X the class of 

continuous functions R→Jf :  and 0C⋅  the uniform norm in X, that         

is, ( )R,JCX =  and ( ) .max0 txx JtC ∈=  Obviously, ( )0, CX ⋅  is a 

Banach space. In this space, the partial order �  is defined as follows: for the 

given ( ) ( ) ,, Xtytx ∈  we say 

( ) ( )tytx �  iff ( ) ( ).tytx ≤  
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By the assumptions of the theorem, ( ),,1 RR×∈ JCf  ∈2f  

( ),, RR×α
JpL  ( )1,0∈α  and .1≥p  Moreover, the functions 1f  and 2f  

satisfy hypotheses (A1)-(A4). From Lemma 2.7, it implies that ( )tx  is a 

solution of equation (3.1) if and only if it satisfies the hybrid fractional 

integral equation 

( ) ( )( ) ( ) ( ) ( )( )
−α−αΓ+=

t

t
dssysfsttxtftx

0

,
1

, 2
1

1  (5.1) 

and ( )( ) ., 0001 xtxtf =  Consider the operators ,:,: 21 XXFXXF →→  

and XXXA →×:  defined as follows: 

( ) ( )( ) ( ) ( ) ( ) ( )( ) ∈−αΓ== −αt

t
JtdssysfsttyFtxtftxF

0

,,,
1

,, 2
1

211  

and ( ) ., 21 yFxFyxA +=  We show that the operator A satisfies all 

hypotheses of Theorem 4.4. First, we show that the operator A satisfies the 

condition (1) of Theorem 4.4 with ( ) ( ) 0, =ϕ=ψ ttt  and 

( ) ( ) ( ) ( ).
1 2211 t

J
ctct Λ+αΓ+Λ=θ

α
 

Note that the function θ  is a D -function due to Statement 2.11. Let 

( ) ( ) XXvuyx ×∈,,,  with ( ) ( ).,, 2 vuyx �  By hypothesis (A3), we have 

( ) ( )( ) ( ) ( )( )tvtuAtytxA ,, −  

( )( ) ( )( )tutftxtf ,, 11 −≤  

( ) ( ) ( )( ) ( )( ) −−αΓ+ −αt

t
dssvsfsysfst

0

,,
1

22
1

 

( ) ( ) ( )00 2211 1 CC
vy

J
cuxc −Λ+αΓ+−Λ≤

α
 

( { })00 ,max11 CC vyuxc −−Λ≤  

( ) ( { }).,max
1

0022 CC
vyux

J
c −−Λ+αΓ+

α
 (5.2) 
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Taking maximum over t from the left hand side, we obtain 

( ( ) ( ) )0,, CvuAyxA −ψ  

( { }) ( { }).,max,max 0000 CCCC vyuxvyux −−ϕ−−−θ≤  

Since θ  is a D -function, we have 

( ) ( ) ( ) ( ) ( ) ( ) 0
1 2211 >Λ+αΓ−Λ−=ϕ+θ−ψ

α
t

J
ctctttt  (5.3) 

for all .0>t  Hence the operator A satisfies the condition (1) of Theorem 

4.4. Next, we show that the operator A satisfies the condition (2) of Theorem 

4.4. Let ( ) ( )ttx 10 β≡  and ( ) ( ).20 tty β≡  By hypothesis (A4), we have 

( ) ( )( )tytxA 00 ,  

( )( ) ( )( )tyFtxF 0201 +=  

( )( ) ( ) ( ) ( )( ) ( ) ( ) =β≥β−αΓ+β= −αt

t
txtdsssfstttf

0
0122

1
11 ,

1
,  

and 

( ) ( )( )txtyA 00 ,  

( )( ) ( )( )txFtyF 0201 +=  

( )( ) ( ) ( ) ( )( ) ( ) ( ) =β≤β−αΓ+β= −αt

t
tytdsssfstttf

0

.,
1

, 0212
1

21  

Hence A satisfies the condition (2). Hypothesis (A2) implies that ( )yA ,⋅  is 

non-decreasing and ( )⋅,xA  is non-increasing, so A has the mixed monotone 

property which satisfies the condition (3) of Theorem 4.4. Finally, A is 

continuous due to inequality (5.2). Thus, it satisfies the condition (4) of 

Theorem 4.4. We have shown that the operator A satisfies the conditions       

(1)-(4) of Theorem 4.4. Therefore, A has a coupled fixed point, that is, there 

exists an element ( ) XXyx ×∈∗∗,  such that 
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( )∗∗∗ = yxAx ,    and   ( )., ∗∗∗ = xyAy  

Uniqueness. Next, we show that the operator A has the unique coupled 

fixed point. For any ( ) ( )( ) ( ) ( )( ) ,,,, XXtvtutytx ×∈  we set 

( ) ( ) ( ) ( ) ( ){ }tvtutytxt ,,,max=ω  

and 

( ) ( ) ( ) ( ) ( ){ }.,,,min tvtutytxtz =  

It is obvious that 

( ) ( ) ( )ttutx ω≤,    and   ( ) ( ) ( ),, tztvty ≥  

that is, 

( ) ( )( ) ( ) ( )( )tztwtytx ,, 2�    and   ( ) ( )( ) ( ) ( )( ).,, 2 tztwtvtu �  

Hence, there exists a unique Xx ∈∗  such that 

 ( )∗∗∗ = xxAx ,  (5.4) 

due to Theorem 4.4. This implies that there exists a unique ( ) Xtx ∈∗  such 

that 

( ) ( ( )) ( ) ( ) ( ( ))
∗−α∗∗ −αΓ+=

t

t
dssxsfsttxtftx

0

.,
1

, 2
1

1  

By hypothesis (A1), we have ( ( )) ., 0001 xtxtf =∗  As a result, equation 

(3.1) has a unique solution ( )tx
∗  in ( )R,JC  and the solution satisfies 

( ) .00 xtx =∗  This proves the existence and uniqueness of the solution of 

equation (3.1). 

From the relation (5.4), it follows that the operator A has a unique 

coupled fixed point ( )∗∗
xx ,  satisfying 

( )., ∗∗∗ = xxAx  



Sahar Mohammad A. Abusalim 88 

From this, it implies that the coupled fixed point of A lies on the main 

diagonal of .XX ×  This allows us to investigate the Picard iterations of A 

on the main diagonal of .XX ×  Let us denote by XXT →:  the restriction 

of A to the main diagonal of ,XX ×  that is, 

( )., xxATx =  

For any initial guess ,0 xx =  we construct the sequence ( ) ,
0N∈nnx  

where { },00 ∪NN =  as follows: 

( )111 , −−− == nnnn xxATxx  

( )( ) ( ) ( ) ( )( ) ≥−αΓ+= −
−α

−
t

t
nn ndssxsfsttxtf

0

.1,,
1

, 12
1

11  

Recall that the sequence ( )
0Nnx  is called nth Picard iteration of T. 

Next, we prove the second assertion of the theorem. Utilizing hypotheses 

(A3), (A4) and equation (5.4), we get 

( ) ( )txtxn
∗−  

( ) ( )( ) ( ( ) ( ))txtxAtxtxA nn
∗∗

−− −= ,, 11  

( )( ) ( ( )) ( )( ) ( ( ))txFtxFtxFtxF nn
∗

−
∗

− −+−≤ 212111  

( )( ) ( ( ))txtftxtf n
∗

− −= ,, 111  

( ) ( ) ( )( ) ( ( ))
∗

−
−α −−αΓ+

t

t
n dssxsfsxsfst

0

,,
1

212
1

 

( ) ( ) ( )00 122111 1 CnCn xx
J

cxxc
∗

−
α

∗
− −Λ+αΓ+−Λ≤  

.01 Cn xx
∗

− −≤  (5.5) 

Taking maximum over t from the left hand side, we obtain 

.00 1 CnCn xxxx
∗

−
∗ −≤−  
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Thus, the sequence ( )
0

0
N∈

∗− nCn xx  is a non-increasing sequence and 

bounded below. Hence, there exists 0≥r  such that 

.lim 0 rxx
Cn

n
=− ∗

∞→
 

It remains to show .0=r  On the contrary, suppose that .0>r  From 

equation (5.5), it follows that 

( ) ( ) ( ).
1

000 122111 CnCnCn xx
J

cxxcxx
∗

−

α
∗

−
∗ −Λ+αΓ+−Λ≤−  

 (5.6) 

Since the functions 1Λ  and 2Λ  are upper semi-continuous and the 

sequences ( )011 Cn xx
∗

− −Λ  and ( )012 Cn xx
∗

− −Λ  are bounded by 

taking the limit ∞→n  from (5.6), we get 

0lim
Cn

n
xxr

∗
∞→

−=  

( ) ( ) ( )







−Λ+αΓ+−Λ≤ ∗

−
α

∗
−

∞→
00 122111 1

suplim CnCn
n

xx
J

cxxc  

[ ( )]0111 suplim Cn
n

xxc
∗

−
∞→

−Λ≤  

( ) [ ( )]0122 suplim
1 Cn

n

xx
J

c
∗

−
∞→

α
−Λ+αΓ+  

( ) ( ) ( ).
1 2211 r

J
crc Λ+αΓ+Λ≤

α
 (5.7) 

This is contrary to (5.3). Hence 

.0lim 0 =− ∗
∞→ Cn

n
xx  

Next, we prove the third assertion of the theorem. By assumption, there 

exists a constant 0>κ  such that 
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( ) ( ) .
121 t

t
tt κ+=Λ=Λ  

It follows from (5.6) that 

 .
1 0

0
0

1

1

Cn

Cn
Cn

xx

xx
xx ∗

−

∗
−∗

−κ+

−
≤−  (5.8) 

Without loss of generality, we can assume ∗≠ xxn  for all .0N∈n  

Inequality (5.8) implies that 

,
1

exp
1

exp
00 1














−
−λ≤















−
− ∗

−
∗

CnCn xxxx
 

where .κ−=λ e  Iterating the last inequality, we get 

.
1

exp
1

exp
00 0














−
−λ≤















−
− ∗∗

C

n

Cn xxxx
 

Solving for ,0Cn xx
∗−  we get 

.0
n

C
xx

Cn ≤− ∗  

This completes the proof of Theorem A. □ 

Remark 5.1. In recent paper [26], the main result has been proved by 

using Lemma 2.5 which was incorrect. That shortcoming can be corrected by 

using Lemma 2.7 and the same manner as in the proof of the existence part 

of Theorem A. 

5.2. Proof of Theorem B 

Proof. In this subsection, our notation is slightly different from the 

above section. Here as space X, we take ( )R,Jp
α
I  and as a norm, we take 

., pα⋅  A trivial verification shows that the space ( )
p

X ,, α⋅  is a Banach 
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space. The partial order �  remains the same as in the previous section. We 

prove this theorem, similar to those of the preceding section. By assumptions 

of Theorem B, the functions ( )RR,1 ×∈ α
Jf pC  and ( )RR,2 ×∈ α

Jf pL  

satisfy hypotheses (B1)-(B4). From Lemma 2.9, it follows that ( ) α∈ ptx I           

is a solution of equation (3.1) if and only if it satisfies the hybrid integral 

equation 

( ) ( )( ) ( ) ( ) ( )( )
−α−αΓ+=

t

t
dssysfsttxtftx

0

,
1

, 2
1

1  (5.9) 

and 

( )( )
,

,
0

1

0

x
dt

txtfd

tt
k

k

=
=

 

for all .10 , −≤≤ α pnk  The same as the previous section, consider the 

operators ,:1 XXF →  XXF →:2  and XXXA →×:  defined as 

follows: 

( ) ( )( ),,11 txtftxF =  

( ) ( ) ( ) ( )( ) ∈−αΓ= −αt

t
JtdssysfsttyF

0

,,
1

2
1

2  

and ( ) ., 21 yFxFyxA +=  We can easily check that the operator A satisfies 

all hypotheses of Theorem 4.4, with the exception of (2), in the space 

( )., , p
X α⋅  The reason for not satisfying hypothesis (2) of Theorem 4.4         

is the functions ( )R,, 21 JC∈ββ  in hypothesis (B4), might not be in 

( )., RJp
α
I  Therefore, to prove the first assertion of the theorem, it only 

remains to find functions ( )R,ˆ,ˆ
21 Jp

α∈ββ I  such that (B4) holds. In order 

to find such 1β̂  and ,ˆ
2β  we use hypotheses (B2) and (B4). Taking =β :ˆ

1  

( ),, 21 ββA  ( )122 ,:ˆ ββ=β A  for ( )R,, 21 JC∈ββ  in hypothesis (B4), yields 
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( )R,ˆ,ˆ
21 Jp

α∈ββ I  since ( )( ) ( )R,,1 Jtxtf p
α∈ I  and ( ).,2 RR×∈ α

Jf pL  

Moreover, ( ) ( )21221
ˆ,ˆ, ββββ �  due to (B4). On the other hand, from the 

hypothesis (B2), it follows that the operator XXXX ×→×:A  defined 

as 

( ) ( ) ( )( )xyAyxAyx ,,,, =A  

is non-decreasing with respect to .2�  This together with last inequality 

gives 

( ) ( ).ˆ,ˆ, 21221 ββββ AA �  

It means that 

( )211
ˆ,ˆˆ ββ≤β A    and   ( ).ˆ,ˆˆ

122 ββ≥β A  

We conclude that there exist ( )R,ˆ,ˆ
21 Jp

α∈ββ I  such that 

( ( )) [ ( ( ))] ( )tttfIttf
t 12211

ˆˆ,ˆ,
0

β≥β+β α
+  

and 

( ( )) [ ( ( ))] ( ).ˆˆ,ˆ, 21221
0

tttfIttf
t

β≤β+β α
+  

Hence the operator A satisfies all hypotheses of Theorem 4.4. So A has a 

coupled fixed point, that is, there exists a point ( ) XXyx ×∈∗∗,  such that 

( )∗∗∗ = yxAx ,    and   ( )., ∗∗∗ = xyAy  

Analysis similar to that in the proof of Theorem A, in part Uniqueness, 

shows that .∗∗ = yx  Consequently, ∗x  satisfies equation (5.9) and belongs 

to ( )R,Jp
α
I  since ( )RR,1 ×∈ α

Jf pC  and ( ).,2 RR×∈ α
Jf pL  By (B1), 

we have 

( )( )
0

1

0

,
x

dt

txtfd

tt
k

k

=
=

∗  
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for all .10 , −≤≤ α pnk  This proves the theorem. The proof of the second  

and third assertions of this theorem follows exactly the same way that of 

Theorem A. □ 

6. Illustrative Example and Comparison of Results 

In this section, we first provide an example to show the applicability of 

Theorem A. Moreover, we compare our results with the main result of [1]. 

As we mentioned in Introduction, an existence theorem for the fractional 

hybrid differential equation (1.4) was proved by Lu et al. in [1] under 

different hypotheses. In their work, the contraction condition for 1f  was 

chosen as follows: 

(A3a) There exist constants 0>≥ LM  such that 

( ) ( )
yxM

yxL
ytfxtf −+

−≤− ,, 11  

for all Jt ∈  and ., R∈yx  

The conditions (A3) posed on the map 1f  and (A3a) do not imply from 

each other. Next, we provide an example which satisfies (A3) but does not 

satisfy (A3a) for any .0>≥ LM  

Example 6.1. Let [ ].1,0=J  Consider the following fractional hybrid 

differential equation: 

 [ ( ) ( )( )]
( )






=

=− −

,00

,tanh 312

1

x

ttxtetxD
t

 (6.1) 

where .Jt ∈  We show that equation (6.1) has a unique solution in ( )., RJC  

Denote 

( ) ( )xtextf
t tanh, 1

1
−=    and   ( ) ., 3

2 txtf =  
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Clearly, ( ) ( )RRRR ,,, 1
5.0

12 ×∈×∈ JCfJf L  and ( ) 0,01 =xf  for 

all .R∈x  It is not difficult to see that ( )⋅,1 tf  is increasing and ( )⋅,2 tf  is 

non-increasing. We can easily show that 1f  satisfies the hypothesis (A3) 

with constant ,11 =c  that is, 

( ) ( ) ( )yxytfxtf −≤− tanh,, 11  

for all .Jt ∈  Now we show that 1f  does not satisfy the hypothesis (A3a). 

For this, it is enough to prove the following statement: 

Statement 6.2. For any ,0>M  there exist Jt ∈0  and 00 >τ  such that 

( ) τ+
τ≥τ

M

M
tf ,01  

for all .0 0τ<τ<  

Proof. For given 0>M  and ,2π<τ  consider the function 

( ) ( ) ( ) ( ) ( ) τ−ττ+=τ−ττ+=τΦ MMMfMM tanh,11  

( ) ( )
( )

∞

=

− τ−τ−τ+=
1

122
22

!2

122

n

nn
nn

M
n

B
M  

( ) ( ) τ−







τ+τ−ττ+= MOM

5
3

3
 

( ) ,
33

1 3
2

2








τ+τ−τ−τ= O

M
 

where nB  is the Bernoulli numbers. It can be easily shown that for any 

,0>M  there exists 00 >τ  such that 

( ) 0
33

1 3
2

≥τ+τ−τ− O
M
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for all .0 0τ<τ<  It implies that 

( ) τ+
τ≥τ

M

M
f ,11  

for all 00 τ<τ<  which completes the proof of the statement. □ 

We now turn to check the hypothesis (A4). The hypothesis (A4) is 

satisfied with ( ) 01 ≡β t  and ( ) .212 π+≡β t  Indeed, it can be easily 

shown that ( )( ) ( ) 00,, 111 ==β tfttf  and 

( )( ) ( )( )[ ] ( ) ( ) β=≥
−Γ=β+β +

t
t

st

dss
ttfIttf

0
1

3

22
5.0

011 0
5.0

1
,,  

for all .Jt ∈  On the other hand, we have ( )( ) 1, 21 ≤β ttf  and 

( )( ) ( )( )[ ] ( ) ( ) β=
π

+≤
−Γ+≤β+β +

t
t

st

dss
ttfIttf

0
2

3

12
5.0

021
2

1
5.0

1
1,,  

for all .Jt ∈  Thus, hypothesis (A4) is satisfied. It follows from Theorem A 

that the hybrid differential equation (6.1) has a unique solution. However, 

this equation cannot be solved by the methods demonstrated in [1]. 

We continue comparing the main result of [1] with our result. In [1], for 

,2f  the following condition was required: 

(A3b) There exists a continuous function ( )R,JCh ∈  such that 

( ) ( )thxtf ≤,2  

for all Jt ∈  and .R∈x  

Generally, the conditions (A3) posed on the map 2f  and (A3b) do not 

imply from each other. Our next goal is to construct an example satisfying 

hypotheses (A1)-(A4) but not (A3b). 

Example 6.3. Again we take [ ].1,0=J  Denote by X the set of all 

continuous and non-negative functions, and consider in it the following 
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fractional hybrid differential equation: 

( ) ( ) ( )( )[ ] ( ) ( )( )

( )







=

π−=−

,00

,tanh
4

arctansin5.02

1

x

txtktxttxD  (6.2) 

where Jt ∈  and ( ) 4.0−= ttk  if ( ]1,0∈t  and ( ) 0=tk  if .0=t  Denote 

( ) ( ) ( )xtxtf arctansin5.0,1 =  and ( ) ( ) ( ).tanh
4

,2 xtkxtf
π−=  It is a simple 

matter to see ( )( ) ( )RR,, 12 ×∈ξ JLttf  for any ( ) ( )., RJCt ∈ξ  It implies 

that ( ).,5.0
12 RR×∈ Jf L  Let ( ) ( )., RJCt ∈ξ  An easy computation shows 

that 

( )( )[ ] [ ] ( )( )[ ]tItIttfI ξ−=ξ +
−

++ tanh, 5.0
0

4.05.0
02

5.0
0  

( )
( ) ( )( )[ ].tanh

1.1

6.0 5.0
0

1.0
tIt ξ−Γ

Γ= +  

Hence ( )( )[ ] ( )R,,2
5.0

0 JCttfI ∈ξ+  and ( )( )[ ] 0,
0

2
5.0

0 =ξ
=+

t
ttfI  since 

( )( ) ( ).,tanh RJCt ∈ξ  Thus ( ).,5.0
12 RR×∈ Jf L  We show that 1f  and 2f  

satisfy hypotheses (A1)-(A4). It is clear that ( )⋅,1 tf  is increasing, ( )⋅,2 tf  is 

decreasing and ( ) 0,01 =xf  for all .R∈x  We claim that 1f  and 2f  satisfy 

the hypothesis (A3) with D -functions 2Λ̂  and 1Λ̂  and constants 5.01 =c  

and ,42 π=c  respectively. Indeed, for any ,, 0
+∈ Ryx  we can easily get 

( ) ( ) ( ) ( )yxytfxtf arctanarctan5.0,, 11 −≤−  

yx
xy

yx −≤+
−≤ arctan5.0

1
arctan5.0  

( )yx −Λ= 2ˆ5.0  

and for ,2f  it is clear from above example. Similarly, as in the above 

examples, we can show that inequalities 
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( )( ) ( )( )[ ] ( )tttfIttf
t 12211 ,,
0

β≥β+β α
+  

and 

( )( ) ( )( )[ ] ( )tttfIttf
t 21221 ,,
0

β≤β+β α
+  

hold for ( ) 01 ≡β t  and ( ) ( ) ( ).1.16.012 ΓΓ+≡β t  Hence the hypotheses 

(A1)-(A4) are satisfied. Therefore, equation (6.2) has a unique solution in 

( )., RJC  However, this equation cannot be solved by methods demonstrated 

in [1] because 2f  does not satisfy (A3b). Conversely, suppose that there is 

( )R,JCh ∈  such that 

( ) ( )thxtf ≤,2  

for all Jt ∈  and .R∈x  It is known that h is bounded since it is 

continuous. This is impossible because ( )tk  is unbounded. 

7. Conclusion 

In this paper, we have investigated fractional hybrid differential equation 

(1.0). We have considered two cases: ( )1,0∈α  and .1≥α  In the first case, 

we prove the existence and uniqueness of a solution of (1.0). This theorem 

extends the main result of [1]. Moreover, we show that the Picard iteration 

associated to an operator ( ) ( )RR ,,: JCJCT →  converges to the unique 

solution of (1.0) for any initial guess ( )., RJCx ∈  In particular, the rate of 

convergence is .1−
n  In the second case, we have considered this equation in 

the space of k times differentiable functions. Naturally, the initial condition 

( ) 00 xtx =  is replaced by ( )( ) ,00 xtx
k =  .10 , −≤≤ α pnk  We have shown 

the existence and uniqueness of a solution of (1.0). The proof of the main 

theorems is based on a coupled fixed point method which is different from 

the methods of the previous works mentioned above. This method allowed 

us not only to investigate the existence of the solution but it is allowed us to 
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investigate the uniqueness of solution of equation (1.4) also. We believe that 

this method will be applied to investigate the existence and uniqueness of the 

solutions of other nonlinear integral and differential equations. Moreover, it 

is shown the convergence of the Picard iterations to the unique solution of 

(1.0) and in particular, the rate of convergence is .1−
n  Finally, we have 

provided two examples to show the applicability of the abstract results. 

These examples cannot be solved by the methods demonstrated in [1]. 
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