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2D-WAVELETS BASED EFFICIENT SCHEME 

FOR SOLVING SOME PDEs 

 

Abstract 

We propose two-dimensional Hermite wavelet method for solving 

some applications of partial differential equations. Kronecker tensor 

product has been utilized to resolve and control huge matrices 

operations and calculations. Proposed method is based on the 

approximation of largest mixed derivatives of the given partial 

differential equation into a series of two-dimensional Hermite wavelet 

basis functions. To validate the efficiency and accuracy of the 

proposed technique, some numerical examples are presented. 
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Introduction 

Wavelets theory is one of the most recent and upcoming fields which has 

become very important for mathematical research as it is being used as a 

powerful tool for solving various types of differential equations. Hermite 

wavelet method (HWM) has been successfully implemented to get accurate 

solutions of linear and nonlinear boundary value problems of fifth and sixth 

order in [1]. By extension of the same method, other linear and nonlinear 

diversified physical problems of complex nature can also be solved. In [2], 

an approximate solution of a system of linear differential equations has been 

obtained by using the Haar wavelet method, whereas in [3], Haar wavelet 

bases and their spline derivatives have been utilized to find the numerical 

approximation of differential operators and thereafter applied to sketch 

solution of a linear diffusive equation. In [4], the wavelet solution of an 

evolution (parabolic-hyperbolic) problem has been defined using the Haar 

wavelet and then approximate solution, at a given fixed scale, results from 

the superimposition of a small set of fundamental wavelets, which also  

gives a physical interpretation to wavelets. In [5], the operational matrix of 

integration derived from Haar wavelets has been presented for solving 

lumped and distributed parameter systems and a new method using Haar 

wavelet based operational matrix has been developed for optimizing a 

dynamic system in [6]. A numerical method established with the help of 

Hermite wavelets has been favorably compared with optimal homotopy 

asymptotic method (OHAM) for solving the coupled system of nonlinear 

fractional differential equations like Jaulent-Miodek equations in [7]. In [8], 

a numerical approach based on Hermite wavelets has been presented to 

obtain the solution for Bratu’s problem, whereas in [9], a method has been 

proposed to solve PDEs with the help of two-dimensional Haar wavelets. 

In [10], Legendre wavelets have been utilized to obtain the solutions of 

partial differential equations (PDEs), whereas in [11], a numerical approach 

based on Hermite wavelets has been presented for solving the two-

dimensional hyperbolic telegraph equation and hyperbolic partial differential 

equations such as wave and sinh-Gordon equations. In [12], numerical 



2D-wavelets Based Efficient Scheme for Solving Some PDEs 29 

solution of nonlinear singular initial value problems with the help of Hermite 

wavelet operational matrix of integration has been presented and in [13], 

second-order nonlinear singular boundary value problems have been solved 

with the help of operational matrix of integration using Hermite wavelets 

and the results have been favorably compared with the exact solutions. In 

[14], Hermite wavelets based collocation method has been proved to be more 

efficacious than the Haar wavelet collocation method for solving nonlinear 

differential equations of Bernoulli’s type and in [15], a numerical technique 

based on Hermite wavelets has been presented for solving oscillatory 

electrical circuit equations. In [16], Haar wavelets have been used for the 

solution of fourth order nonlinear Kuramoto-Sivashinsky equation, whereas 

in [17], nonlinear Volterra integral equations of the first kind have been 

solved by the Haar wavelet method by converting them into linear Volterra 

integral equations of the second kind. In [18], an effective numerical method 

has been proposed for finding the solution of generalized Burger’s type 

equations by converting them into nonlinear ordinary differential equations 

and then solving the algebraic system of linear equations thus obtained by 

using Haar wavelet based collocation method. The accuracy of physicists 

Hermite wavelet method (PHWM) has been demonstrated to obtain the 

solutions of singular differential equations (SDEs) in [19], whereas in [20], 

Legendre wavelets have been efficiently applied for the solution of initial 

value problems of Bratu-type, which is widely applicable in fuel ignition of 

the combustion theory and heat transfer. 

Kronecker tensor product of two matrices 

The Kronecker tensor product of two matrices A and B of the same order 

nm ×  is defined as: 
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Between 1858 and 1868, Johann Georg Zehfuss carried out the 

documented work on Kronecker products. In MATLAB, the command for 

finding the Kronecker product of two matrices is ( ).,kron BA  

Basic Concepts of Hermite Wavelets 

Wavelets form a family of mathematical functions dc,ψ  obtained from 

change of scale (dilation) and change of position (translation) of a single 

function ψ called the mother wavelet. If the dilation parameter ‘c’ and 

translation parameter ‘d’ are taken to vary continuously, then the family of 

continuous wavelets can be denoted as: 

 ( ) .,0,
1

, Rdc
c

dt

c
tdc ∈>






 −ψ=ψ  (1) 

Discretize the values of parameters c and d as: 

,, 000
kk

cnddcc
−− ==    .0,1 00 >> dc  

The family of discrete wavelets is obtained as: 

( ) ( ) .0,,,00
21

, ≠∈∀−ψ=ψ −
cRdcndtcct

k
nk  

Here nk ,ψ  form a wavelet basis of ( ).2
RL  

In particular, select 20 =c  and ,10 =d  then ( )tnk ,ψ  represents an 

orthonormal basis. Basis of Hermite wavelet is given as follows: 
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where ,1...,,1,0 −= Mm  and ( )thm  is the Hermite polynomial of degree 

m. Hermite polynomials, ( ),thn  are the solutions of Hermite’s differential 

equation given by 

,022 =+′−′′ nxxtx    ....,3,2,1,0=n  
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These polynomials are defined in the interval ( )∞∞− ,  and are derived from 

the Rodrigue’s formula 

( ) ( ) ( ).1
22

t

n

n
tn

n e
dt

d
eth

−−=  

By taking 1=k  and ( ),5,4,3,2,1,06 == mM  the six basis functions on 

[ )1,0  are given by 

( ) ,
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0,1 π
=ψ t  

( ) ( ),24
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=ψ tt  

( ) ( ),21616
2 2

2,1 +−
π

=ψ ttt  

( ) ( ),2369664
2 23
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2 2345
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Function Approximation 

Let ( )txu ,  be any integrable function. We suppose that it can be 

expanded in terms of infinite series of two-dimensional Hermite wavelet 

basis functions as: 

( ) ( ) ( )   
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where 
2211 ,,, qpqpC  are the constants of this infinite series known as wavelet 

coefficients. For numerical approximation, we truncate the above infinite 
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series up to a finite number of terms as follows: 

( ) ( ) ( )   
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where C and ψ  are matrices of order 12 1 ×−
M

k  defined as:  

( ) [ ]
1,20,21,10,1 11 ...,,...,,...,,

−− −−=
MM

T
kk CCCCxC  

and 

[ ] ,...,,...,,...,,
1,20,21,10,1 11

T

MM kk −− −− ψψψψ=ψ  

where T means the transpose of a matrix. 

Hermite Wavelet Method for Solving Diffusion Equation 

Consider the diffusion equation 
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with initial conditions ( ) ( ),0, 1 xfxv =  ( ) ( )tftv 2,0 =  and boundary 

conditions ( ) ( ),1, 3 xfxv =  ( ) ( ).,1 4 tftv =  Assume that kkk == 21  and 

.21 MMM ==  The wavelet solution is sought in the form 
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Integrating (5) with respect to t, from 0 to t, we obtain 
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where  

( ) ( ) ψ=
t
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0

,, .
2222

 

Integrating (5), twice with respect to x, from 0 to x, we obtain 
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where  
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Putting 1=x  in (8), we obtain  
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From (8) and (9), we obtain 
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Integrating (10) with respect to t, from 0 to t, we obtain 
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Substituting the values from (6) and (10) into (4), we obtain  
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Using collocation points lx  and ,lt  we obtain 
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( ) { ( )} { ( )}lqplqpllqpqp tPxtxT
22112211 ,,,,, ., ψ=  

and 

( ) ( ) ( ).., 21 llll tFxFtxF =  

In matrix form, it can be written as 
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From (13), we obtain wavelet coefficients. The wavelet solution is obtained 

by substituting the values of wavelets coefficients into (11). 

Hermite Wavelet Method for Solving Poisson Equations 

Consider the Poisson equation 

 ( ) { } [ ]1,0,,,
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Integrating (15) twice, with respect to x, from 0 to x, we obtain  
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Putting 1=x  in (17), we obtain 
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From (17) and (18), we obtain 
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Again, integrating (15) twice, with respect to y, from 0 to y, we obtain 
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Putting 1=y  in (21), we obtain 

( ) ( ) ( )
2

2

2

2

2

3 0,1,0,

x

xv

x

xv

yx

xv

∂
∂−

∂
∂=

∂∂
∂

 

( ) ( )   
− −

=

−

= =

−

=
ψ−

1

1 1

1

2 2

22112211

2

1

1

0

2

1

1

0

,,,,, .1.

k k

p

M

q p

M

q

qpqpqpqp QxC  (22) 

From (21) and (22), we obtain  
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1

0

,,,,

k k

p

M

q p

M

q

qpqpqp xC  

{ ( ) ( )}.1..
2222 ,, qpqp QyyQ −   (23) 

Integrating (23) twice, with respect to x, from 0 to x, we obtain 

( ) ( ) ( ) ( )
x

v

x

xv

x

yv

x

yxv

∂
∂−∂

∂+∂
∂=∂

∂ 0,00,,0,
 

( ) ( ) ( ) ( )








∂
∂+

∂
∂−

∂
∂−

∂
∂+

x

v

x

xv

x

v

x

xv
y

0,00,1,01,
.  

( )   
− −

=

−

= =

−

=
+

1

1 1

1

2 2

112211

2

1

1

0

2

1

1

0

,,,,

k k

p

M

q p

M

q

qpqpqp xPC  

{ ( ) ( )}1..
2222 ,, qpqp QyyQ −  (24) 

and 

( ) ( ) ( ) ( )0,00,,0, vxvyvyxv −+=  

( ) ( ) ( ) ( )








∂
∂+

∂
∂−

∂
∂−

∂
∂+

x

v
y

x

v
y

x

v

x

yv
x

0,0
.

1,0
.

0,0,0
.  

( ) ( ) ( ) ( ){ }0,00,1,01,. vxvvxvy +−−+  



2D-wavelets Based Efficient Scheme for Solving Some PDEs 39 

( )   
− −

=

−

= =

−

=
+

1

1 1

1

2 2

112211

2

1

1

0

2

1

1

0

,,,,

k k

p

M

q p

M

q

qpqpqp xQC  

{ ( ) ( )}.1..
2222 ,, qpqp QyyQ −  (25) 

Putting 1=x  in (25), we obtain  

( ) ( ) ( ) ( )








∂
∂+

∂
∂−

∂
∂−

∂
∂

x

v
y

x

v
y

x

v

x

yv 0,0
.

1,0
.

0,0,0
 

( ) ( ) ( ) ( )0,00,1,0,1 vvyvyv +−−=  

( ) ( ) ( ) ( ){ }0,00,1,01,. vxvvxvy +−−−  

( ) { ( ) ( )}   
− −
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−

= =

−

=
−−

1

1 1

1

2 2

2222112211

2

1

1

0

2

1

1

0

,,,,,, .1..1

k k

p

M

q p

M

q

qpqpqpqpqp QyyQQC  (26) 

From (25) and (26), we obtain 

( ) ( ) ( ) ( )0,00,,0, vxvyvyxv −+=  

( ) ( ) ( ) ( ){ }0,00,1,0,1. vvyvyvx +−−+  

( ) ( ) ( ) ( ){ }{ }0,00,1,01,.. vxvvxvyx +−−−  

( ) ( ) ( ) ( ){ }0,00,1,01,. vxvvxvy +−−+  

{ ( ) ( )}   
− −

=

−

= =

−

=
−+

1

1 1

1

2 2

22222211

2

1

1

0

2

1

1

0

,,,,, 1.

k k

p

M

q p

M

q

qpqpqpqp QyyQC  

{ ( ) ( )}.1..
2222 ,, qpqp QyyQ −  (27) 

Substituting the values from (19) and (23) into (14), we obtain  

[ ( ) ( )]   
− −

=

−

= =

−

=
+

1

1 1

1

2 2

221122112211

2

1

1

0

2

1

1

0

,,,,,,,,, ,,.

k k

p

M

q p

M

q

llqpqpllqpqpqpqp yxUyxRC  

( ),, ll yxG=  (28) 
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where 

( ) ( ) { ( ) ( )}1..,
2222112211 ,,,,,, qpllqplqpllqpqp QyyQxyxR −ψ=  

{ ( )} { ( )},.~
2211 ,, lqplqp yAxψ−  

( ) { ( ) ( )} ( )lqpqpllqpllqpqp yQxxQyxU
1122222211 ,,,,,, .1., ψ−=  

{ ( )} { ( )}lqplqp yxB
1122 ,, .~ ψ−  

and  

( ) ( ) ( ) ( ) ( )








∂
∂−

∂
∂−

∂
∂−=

2

2

2

2

2

2 0,1,
.

0,
,,

x

xv

x

xv
y

x

xv
yxfyxG lllll  

( ) ( ) ( ) ( ) ( )..~,0,1
.

,0
212
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2

2

2

ll
lll yGxG
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yv

y

yv
x

y

yv −








∂
∂−

∂
∂−

∂
∂−  

In matrix form, 

[ ] [ ] [ ],. GURC =+  

where  

,AR ⊗Ψ=    Ψ⊗= BU  

and  

.21 GGG ⊗=  

The values of matrices A, Ψ and B are defined as:  

( ) ( ) ( ( ) ( ) )

( ) ( ) ( ( ) ( ) )

( ) ( ) ( ( ) ( ) )

,

1.21,211,21,2

1.21,111,11,1

1.20,110,10,1

1111

1

1

























=

−−−−−

−−−−−

−−

−−−−

−

−

MMMMlM

MMMMlM

MMl

kkkk

k

k

xAxAxA

xAxAxA

xAxAxA

A

⋯⋯

⋮⋱⋮⋱⋮

⋯⋯

⋮⋱⋮⋱⋮

⋯⋯
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( ) ( ) ( ( ) ( ))
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
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
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
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and  
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( ) ( ) ( ( ) ( ) )
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


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
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
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
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⋮⋱⋮⋱⋮
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⋮⋱⋮⋱⋮
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From (28), we obtain wavelets coefficients. The wavelet solution is obtained 

by substituting the values of wavelets coefficients into (27). 

Numerical Experiments 

In this section, we perform some numerical examples to prove the 

efficacy of the proposed numerical scheme based on Hermite wavelets. The 

accuracy of the numerical results so obtained is verified from the following 

relation: 

.ErrorAbsolute eApproximatExact |−|= yy  

To establish the efficiency of the presented numerical scheme with 

Hermite wavelet basis functions, a comparison study is also presented in this 

research by using Haar wavelets. 

Example 1. Consider the diffusion equation  

{ } [ ]1,0,,
1

2

2

2
∈

∂
∂

π
=∂

∂
tx

x

v

t

v
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with initial conditions ( ) ( ) 0,0,sin0, =π= tvxxv  and boundary conditions 

( ) ,sin.1, 1
xexv π= −  ( ) .0,1 =tv  The exact solution is ( ) .sin., xetxu

t π= −  

The maximum absolute errors are given as: 

Table 1. Maximum absolute errors of Example 1 

{ }Mk ,  Maximum absolute errors 

{ }2,1  8.2341e-003 

{ }3,1  5.1135e-004 

{ }4,1  2.8480e-004 

{ }5,1  7.5619e-006 

{ }6,1  5.0426e-006 

{ }7,1  1.1721e-007 

Table 1 shows the maximum values of absolute errors for different 

values of k and M. Figure 1 shows the physical behavior of solutions of 

Example 1. 

 

Figure 1 
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Example 2. Consider the Poisson equation 

{ } [ ]1,0,,sinsin2 2

2

2

2

2

∈πππ−=
∂
∂+

∂
∂

yxyx
y

v

x

v
 

with initial conditions ( ) ,00, =xv  ( ) 0,0 =tv  and boundary conditions 

( ) ,01, =xv  ( ) .0,1 =tv  The exact solution is ( ) .sin.sin, yxtxu ππ=  Table 

2 shows the maximum values of absolute errors for different values of k and 

M. Figure 2 shows the physical behavior of solutions of Example 2. 

The maximum absolute errors are given as: 

Table 2. Maximum absolute errors for Example 2 

{ }Mk ,  Maximum absolute errors 

{ }2,1  3.7362e-002 

{ }3,1  2.9600e-003 

{ }4,1  1.1705e-003 

{ }5,1  2.0826e-005 

{ }6,1  1.3503e-005 

{ }7,1  1.7728e-007 

 

Figure 2 
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Conclusion 

The computational and graphical representation of numerical results             

of the above illustrative examples exhibits that two-dimensional Hermite 

wavelets are a powerful numerical tool for solving partial differential 

equations such as diffusion equation and Poisson equation. The presented 

work can prove to be very beneficial for the progress of further research in 

the field of numerical analysis and differential equations. 
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