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Abstract

We propose two-dimensional Hermite wavelet method for solving
some applications of partial differential equations. Kronecker tensor
product has been utilized to resolve and control huge matrices
operations and calculations. Proposed method is based on the
approximation of largest mixed derivatives of the given partial
differential equation into a series of two-dimensional Hermite wavelet
basis functions. To validate the efficiency and accuracy of the

proposed technique, some numerical examples are presented.
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Introduction

Wavelets theory is one of the most recent and upcoming fields which has
become very important for mathematical research as it is being used as a
powerful tool for solving various types of differential equations. Hermite
wavelet method (HWM) has been successfully implemented to get accurate
solutions of linear and nonlinear boundary value problems of fifth and sixth
order in [1]. By extension of the same method, other linear and nonlinear
diversified physical problems of complex nature can also be solved. In [2],
an approximate solution of a system of linear differential equations has been
obtained by using the Haar wavelet method, whereas in [3], Haar wavelet
bases and their spline derivatives have been utilized to find the numerical
approximation of differential operators and thereafter applied to sketch
solution of a linear diffusive equation. In [4], the wavelet solution of an
evolution (parabolic-hyperbolic) problem has been defined using the Haar
wavelet and then approximate solution, at a given fixed scale, results from
the superimposition of a small set of fundamental wavelets, which also
gives a physical interpretation to wavelets. In [5], the operational matrix of
integration derived from Haar wavelets has been presented for solving
lumped and distributed parameter systems and a new method using Haar
wavelet based operational matrix has been developed for optimizing a
dynamic system in [6]. A numerical method established with the help of
Hermite wavelets has been favorably compared with optimal homotopy
asymptotic method (OHAM) for solving the coupled system of nonlinear
fractional differential equations like Jaulent-Miodek equations in [7]. In [8],
a numerical approach based on Hermite wavelets has been presented to
obtain the solution for Bratu’s problem, whereas in [9], a method has been

proposed to solve PDEs with the help of two-dimensional Haar wavelets.

In [10], Legendre wavelets have been utilized to obtain the solutions of
partial differential equations (PDEs), whereas in [11], a numerical approach
based on Hermite wavelets has been presented for solving the two-
dimensional hyperbolic telegraph equation and hyperbolic partial differential

equations such as wave and sinh-Gordon equations. In [12], numerical
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solution of nonlinear singular initial value problems with the help of Hermite
wavelet operational matrix of integration has been presented and in [13],
second-order nonlinear singular boundary value problems have been solved
with the help of operational matrix of integration using Hermite wavelets
and the results have been favorably compared with the exact solutions. In
[14], Hermite wavelets based collocation method has been proved to be more
efficacious than the Haar wavelet collocation method for solving nonlinear
differential equations of Bernoulli’s type and in [15], a numerical technique
based on Hermite wavelets has been presented for solving oscillatory
electrical circuit equations. In [16], Haar wavelets have been used for the
solution of fourth order nonlinear Kuramoto-Sivashinsky equation, whereas
in [17], nonlinear Volterra integral equations of the first kind have been
solved by the Haar wavelet method by converting them into linear Volterra
integral equations of the second kind. In [18], an effective numerical method
has been proposed for finding the solution of generalized Burger’s type
equations by converting them into nonlinear ordinary differential equations
and then solving the algebraic system of linear equations thus obtained by
using Haar wavelet based collocation method. The accuracy of physicists
Hermite wavelet method (PHWM) has been demonstrated to obtain the
solutions of singular differential equations (SDEs) in [19], whereas in [20],
Legendre wavelets have been efficiently applied for the solution of initial
value problems of Bratu-type, which is widely applicable in fuel ignition of

the combustion theory and heat transfer.
Kronecker tensor product of two matrices

The Kronecker tensor product of two matrices A and B of the same order
m % n is defined as:
koyB kppB -+ ky,B
anp=|faf k2 B |

kaB kB - k,,B
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Between 1858 and 1868, Johann Georg Zehfuss carried out the
documented work on Kronecker products. In MATLAB, the command for

finding the Kronecker product of two matrices is kron(A, B).

Basic Concepts of Hermite Wavelets

Wavelets form a family of mathematical functions Y. ; obtained from

change of scale (dilation) and change of position (translation) of a single
function Y called the mother wavelet. If the dilation parameter ‘¢’ and
translation parameter ‘d’ are taken to vary continuously, then the family of

continuous wavelets can be denoted as:

Ve.a) = -4

j, ¢>0, dOR. (1)

Discretize the values of parameters ¢ and d as:
- .~k — -k
c=cy , d—ndoco, Co>1, d0>0.
The family of discrete wavelets is obtained as:

W o) =1 | 2@(ckt - ndy), Tc,d OR, c#0.

Here ;. , form a wavelet basis of I2(R).

In particular, select ¢y =2 and dp =1, then Yy . (t) represents an

orthonormal basis. Basis of Hermite wavelet is given as follows:

K+l
22 k, n—-1 n

W m(t) =1 Jm (271 = 20 +1), 1 =S e 2)
0, elsewhere,

where m =0,1, ... M —1, and h,, (t) is the Hermite polynomial of degree
m. Hermite polynomials, h,(¢), are the solutions of Hermite’s differential

equation given by

X' =2t +2nx =0, n=0,1,23, ...
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These polynomials are defined in the interval (—oo, ) and are derived from

the Rodrigue’s formula

)= (e L),

By taking k =1 and M =6 (m =0,1, 2,3, 4, 5), the six basis functions on
[0, 1) are given by

2
Wy 0(r) = Neh

_ 2
Wy () = ﬁ(‘“ -2),
qu,Z(t) 7(161 —-16r + 2),
qu,S(t) 7(641 _961‘2 +36l“2),

2 3 2

Wy 4(r) = 7(25& - 512¢7 + 3207 — 64t + 2),
Wy 5() = T(lozm —2560t* +2240¢% - 8002 +100¢ — 2).

Function Approximation

Let u(x,t) be any integrable function. We suppose that it can be

expanded in terms of infinite series of two-dimensional Hermite wavelet
basis functions as:

[o0) [e¢] [e¢] [o0)
u(x, 1) = Z Z Z Z Conar p2 a2 W pra (9)-Wpy g, (1),
=1 ;=0 py=1 ¢7=0

where C PLdLs Prs gy 1€ the constants of this infinite series known as wavelet

coefficients. For numerical approximation, we truncate the above infinite
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series up to a finite number of terms as follows:

k=1 pp—1 k=1 g

- Z Z Z Z CPMﬂapz»qqumaCh(x)'lppz,qz(f), (3)

p1=1q1=0 p2=1g,=0
where C and ) are matrices of order 257101 x 1 defined as:

T —
c (x) - [Cl,O, s Cl,M—l’ ey C C

k=1 g2 oo 2k—1,M_l]
and

- T
W= [0 o Wi =15 s wzk—l,o’ L|J2k—1’M_1] ;
where T means the transpose of a matrix.
Hermite Wavelet Method for Solving Diffusion Equation

Consider the diffusion equation

ov _ 0%y
=S {x, 4 O[0, 1] (4)
with initial conditions v(x, 0) = fj(x), (0, ) = f,(t) and boundary
conditions v(x, 1) = f3(x), v(1, #) = f4(¢). Assume that k; = k, = k and

M, =M, = M. The wavelet solution is sought in the form

oK=L pp—1 k=1 g

Z Z Z Z Corar. 2o a2 ¥ pr. g ()W, g, (0)- Q)

p1=1q1=0 p2=1g,=0

Integrating (5) with respect to ¢, from O to ¢, we obtain

oK=L pp—1 k=1 g

* Z Z Z Z Conar, s ¥y (X)-Ppy g, (1), (6)

p1=1¢1=0 p=1 g,=0
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where

t
Ppy.gy (1) = _[0 W p,. g, (0)dr.

Integrating (5), twice with respect to x, from O to x, we obtain

0%y 0%y
aiax & 1) = 5 (0 1)

2K pgp—1 2k=1 pr—g

* Z Z Z Z Coroar p2 a2 Pproat )Wy, (1) (D

P1=1¢1=0 p=1¢,=0

and

v v 02
E(X’ t) at (0’ t) a dx (0 t)

P VS I L |

* Z Z Z Z Covar, o @pat )Wy g (), (®)

P1=1¢1=0 p=1g,=0

where

tpet
Opy.q (1) = Iojo W p,.q, (1) drdr.
Putting x =1 in (8), we obtain

0%y ov
22 0.0=20.0-20.1)

2k1 2k1M1

Z Z Z Z Cor.ar. p2.029p1. 611( )'wpz,qz(t)' )]

p1=1¢1=0 p2=1¢,=0

From (8) and (9), we obtain

%( 1) = gv(o 1) + {(;v(l ) - gj(o t)}
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ok=1 a1 2k=1 a1

I Y e

P1=191=0 pp=1 q5=0
AQpy, gy (¥) = 20y g (N} Wy 4, (0)- (10)
Integrating (10) with respect to #, from O to ¢, we obtain
v(x, t) = v(x, 0) + v(0, £) = v(0, 0) + x{v(1, £) = v(1, 0) = v(0, £) + v(0, 0)}

2K pgp—1 2k71 A

#2202 2 Cnama

p1=1q1=0 pr=1¢,=0
{Qpy,q (¥) = 20y g (O} Py, 4, (0). (1D
Substituting the values from (6) and (10) into (4), we obtain

2k pp—1 2k71 A

Z Z Z Z Corar. p2an U Qpy, gy (¥) = %0y g (U}

P1=1¢=0 pp=1 ¢,=0

Wpgp () =Wy gy (x)-Ppy g, (0)]

62

= 0 0) = G 0.0 = x{GH 00 - T 0.0, (12)

ot
Using collocation points x; and #;, we obtain
k=1 pp g okl py—
Z Z Z Z Corar. pa. 612 Sprar. . qz(xl’ )= TP1,611,P2,q2(xl’ )]
P1=1¢1=0 p2=1 ¢2=0
= F(xl, tl)’ (13)
where

Sprai, p2 a2 (3. 1) = {Qm,m () = X1 Lp,q (l)}‘lppz,qz (1)

=W, G} Wy 4, (1)}
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(xl’ tl) = {qul,ql (xl )} '{sz,qz (tl )}

T

P1-91, P2-92

In matrix form, it can be written as

where

and

[c][s - 1] =[F],

F:F1|:|F2.

35

Fx, 1) = F(x). Fa(ty).

S=widw, T=¥9Y0OP

The values of matrices W, W and P are defined as:

and

Wl,O' (1)
Wi m -1 (x7)
Wzk—lJ;,I_l(xl)
llh,q(&)
qu,Mi—l(xl)

wzk—l’M_l(xl)

Po(x)
Py-1(x)

sz—1’M_1(Xz)

Wl,O(j'CM -1)
Wl,M—l'(xM -1)
Wzk—1’M_1 (xpr-1)
qu,O(?CM -1)
qu,M—l.(xM -1)

wzk—l,M_l(xM—l)

P o(xpr-1)

Py (pr—1)

sz—l’M_l (xp1-1)

Mooty o) ]

VVl’M_l(x(ZIk_l).(M—l))

W2k_1,M—1 (x(zk—l).(M _1))_

qu,O(x(zk.—l)‘(M _1))

ll—'l,M—1()€(2.k—1).(1‘4_1))

quk—l,M_l(x(zk—l).(M_1))_

Pl,O(x(zkjl).(M )

Pl,M—l(x(z'k—l).(M_l))

Pyt gy (k1) (g 1)) |
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From (13), we obtain wavelet coefficients. The wavelet solution is obtained

by substituting the values of wavelets coefficients into (11).
Hermite Wavelet Method for Solving Poisson Equations

Consider the Poisson equation

0%y + 9%y
2

2 = f(x. ). {x y}0O[0. 1] (14)
X

with initial conditions v(x, 0) = g;(x), v(0, y) = g»(y) and boundary
conditions v(x, 1) = g3(x), v(I, ¥) = g4(y). Assume that k; = k5 = k and

M, =M, = M. Then the wavelet solution is sought in the form

2K pp—1 2K71 M

Z Z Z Z Corar.pr.a¥pr. 411( x). Wp,, qz(y) (15)

P1=1q1=0 pp=1 qp=0

Integrating (15) twice, with respect to x, from O to x, we obtain

a3v(x, y) _ a°v(0, y)
6x6y2 6x6y2

2k1 lelM—

Z Z Z Zcm a. p2. a2 Fpr, cn( )"“pzﬂz()’) (16)

p1=1¢1=0 p2=1 ¢,=0

and

0%v(x. y) _ 0%v(0. y) ,  0%(0. y)
6y2 6y2 axay

k=1 pp—1 2k pr—q

P1-41, P2» cq\ MY o gr\V)-
+Z Z Z ZC a, p2,02p1, a1 ()-U (»). an

P1=1 ¢1=0 pp=1gp=0
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Putting x =1 in (17), we obtain

9°v(0, y) _ 8%v(L, y) _ 9%v(0. y)
6x6y2 6y2 6y2

k=1 pp_p okl 4y

- Z Z Z Z Conar, o221t D Wy g, (¥)- (18)

r1=1¢1=0 p=1 ¢,=0

From (17) and (18), we obtain

azv(x, y) _ 62\/(0, y) + x{azv(l, y) azv(O, )’)}

6y2 6y2 6y2 6y2

2k1 2k1M—

3 Z > 2 Coama
p1=1q1=0 p2=1 ¢,=0

'{sz,qz (x) _X'sz,qz (1)}‘q'jp1,q1 (y) (19)

Again, integrating (15) twice, with respect to y, from O to y, we obtain

o3v(x, y) _ a3v(x, 0)
axzay 6x26y

PA VS I Ly V|

* Z Z Z Z Coat p2 W1 (%) Py, g5 (¥) (20)

P1=1 q1=0 pp=1¢,=0

and

62v(x, y) _ 62v(x, 0) ry 63v(x, 0)
0x? x> . axzay

A VS I L V|

* Z Z Z Z Corar p2.a2¥prar (9)-Cpy gy () 2D

p1=1 =0 pp=1¢,=0
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Putting y =1 in (21), we obtain

63v(x, 0) _ 62v(x, 1) azv(x, 0)
axzay 0x? 0x?

PANR VI L V|

- Z Z Z Z Corar p2a2¥prar (9)-Cpy. gy (1) (22)

p1=1 ¢1=0 pp=1¢,=0
From (21) and (22), we obtain

azv(x, y) _ azv(x, 0) iy, {62 v(x, 1) azv(x, 0)}

ox? o2 o2 o2

ok=l pr_q1 2kl -

* Z Z Z Zcpl q1, P2> Clzwm fﬂ( )

P1=1¢1=0 pp=1 ¢=0
£Qpy.0, (V) = 5.0p, 4, (O} (23)
Integrating (23) twice, with respect to x, from O to x, we obtain

av(x, y) _ av(0, y) N ov(x, 0) _ av(0, 0)
ox  Ox Ox Ox

N ov(x,1) _0ov(0,1) ov(x, 0) N av(0, 0)
Y1 ox 0x Ox Ox

A VS Ly V|

#2022 2 Coamartia®

P1=191=0 pp=1¢,=0
{01,,4,(¥) = 5.0p, 4, (1} (24)
and
v(x, y) =v(0, y) + v(x, 0) = (0, 0)

. ov(0, y) _0v(0,0) _ y.av(O, 1) N y.av(O, 0)
Ox 0x Ox Ox

+ y.{v(x, 1) - v(O, 1) - v(x, 0) + v(O, 0)}
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2k1 ZklMl

* Z Z Z Z Corar. p2.29p1. ql(x)

p1=1 =0 pp=1¢=0
{0s,,4,(¥) = .0, 4, (1} (25)
Putting x =1 in (25), we obtain

ov(0, y) _0v(0,0)  0v(0,1) N av(0, 0)
0x Ox Y ox Y ox

= (1, y) = v(0, y) = v(1L, 0) + v(0, 0)
- y{v(x, 1) = v(0, 1) = v(x, 0) + v(0, O)}

oK=L pp—1 251y

B Z Z Z Z Coar, 22022101 D4Qpy .05 (V) = 3.Qp, 4, (1)} (26)

n=1q1=0 p2=1¢>=0
From (25) and (26), we obtain
v(x, y) = v(0, y) + v(x, 0) = (0, 0)
+x.{v(1, y) = v(0, y) = v(1, 0) + v(0, O)}
- x{y{v(x, 1) = v(0, 1) = v(x, 0) + v(0, 0)}}
+ y{v(x, 1) = v(0, 1) = v(x, 0) + v(0, 0)}

2k1 2k1M1

Z Z Z Z Cora1, 2. qz{sz 612( )~ y‘sz,qz(l)}

pr1=1q1=0 pp=14,=0
‘{sz, ) (v) - Y-Pps.q (1} 27
Substituting the values from (19) and (23) into (14), we obtain

2Kl pp—1 oK1 g

Z Z Z Z Cm,fn,pz,cm'[Rm,f/ppz,cm(xl’ yl)+Up1,q1,p2,q2(xl’ i)l

p1=1q1=0 pp=1g,=0

= Gx, vp), (28)
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where

Rpl,ql,pz,q2 (xl’ yl) = l-IJpl,ql (xl)'{sz,q2 (yl) ~ 'Qp2,q2 (l)}
={lpp1,q1 (xl)}'{Apz,qz(yl)}’
Upl,ql,pz,qz ('xl’ yl) = {QPZan (Xl) - 'xl ‘Qp2,£I2 (1)}"“])1,511 (yl)

={Bpy, g, ({0, 4 (1)}

and

G(xp, y) = flx, y) -

azv(x, 0) {azv(x, 1) azv(x, 0)}
5 ")

o2 ox? ox?

9%v(0, ) a%v(1, y;) _ 9%v(0, y;)
- - X. - =Gi(x).Gy(y).
ay2 ayz ayz 1( l) 2( l)

In matrix form,
[Cl[r +U] =[Gl
where
R=WUOA U=BOVY
and
G =G OG,.
The values of matrices A, W and B are defined as:

Ay o(x) Ay o(xpr-1) Al,O(x(zk—l).(M_l))

A= AI,M.—I(xl) AI,M—I.(XM—I) A1,M—1(X(2.k—1).(M_1)),

Azk—l7M_1(xl) Azk-l’M_l(xM-l) Azk'l,M—I(X(Zk_l).(M-l))_



I UJ1,9(XZ) lIJ1,0(fCM—1) llJ1,o(x(2k.—1).(M_1)) |
w=| Wl e Wb el )

Wt ) o W Cara) e W Gty )|
and

I B1,g(x1) BI,O()‘CM—l) Bl,O(x(zk‘—l).(M_l)) |
B = BI,M‘—I(XI) Bl,M—l‘(xM—l) BI,M—I(X(Z‘k—l)‘(M_I))
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sz—17M_1(x1)

sz—l’M_l(xM 1) sz‘17M-1(x(2k_l).(M —1))_

From (28), we obtain wavelets coefficients. The wavelet solution is obtained

by substituting the values of wavelets coefficients into (27).
Numerical Experiments

In this section, we perform some numerical examples to prove the
efficacy of the proposed numerical scheme based on Hermite wavelets. The
accuracy of the numerical results so obtained is verified from the following

relation:
Absolute Error = | ygyer = ¥ Approximate |

To establish the efficiency of the presented numerical scheme with
Hermite wavelet basis functions, a comparison study is also presented in this

research by using Haar wavelets.

Example 1. Consider the diffusion equation

1 0%

o {x, 7} Of0, 1]

ov
ot
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with initial conditions v(x, 0) = sin T, v(0, #) = 0 and boundary conditions
v(x,1) = e Lsinme, v(l, £) = 0. The exact solution is u(x, 1) = e .sin Tov.

The maximum absolute errors are given as:

Table 1. Maximum absolute errors of Example 1

{k, M} Maximum absolute errors
{1, 2 8.2341e-003
{1, 3} 5.1135e-004
{1, 4 2.8480e-004
{1, 5} 7.5619e-006
{1, 6} 5.0426e-006
{1, 7} 1.1721e-007

Table 1 shows the maximum values of absolute errors for different
values of k and M. Figure 1 shows the physical behavior of solutions of
Example 1.

Physical Behavior of Solutions of Example 1

N
OIS
BT
SIIIIIIIE
=
=

SIS
S e
ety
SN

PRI

e
S S
T
.‘:,::.3 e
oIl

Figure 1
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Example 2. Consider the Poisson equation

6—2; + 6—2; = —27C sin Tw sin T, {x, y} O[o, 1]

0x dy
with initial conditions v(x, 0) =0, v(0,¢) =0 and boundary conditions
v(x,1) =0, v(1, t) = 0. The exact solution is u(x, t) = sin Tt.sin Try. Table
2 shows the maximum values of absolute errors for different values of k£ and
M. Figure 2 shows the physical behavior of solutions of Example 2.

The maximum absolute errors are given as:

Table 2. Maximum absolute errors for Example 2

{k, M} Maximum absolute errors
{1, 2} 3.7362e-002
{1, 3 2.9600e-003
{1, 4 1.1705e-003
{1, 5} 2.0826e-005
{1, 6} 1.3503e-005
{L, 7 1.7728e-007

Physical Behavior of Solutions of Example 2

Figure 2
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Conclusion

The computational and graphical representation of numerical results

of the above illustrative examples exhibits that two-dimensional Hermite

wavelets are a powerful numerical tool for solving partial differential

equations such as diffusion equation and Poisson equation. The presented

work can prove to be very beneficial for the progress of further research in

the field of numerical analysis and differential equations.
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