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CHOICE OF A BASIS TO SOLVE THE 

LANE-EMDEN EQUATION 

 

Abstract 

If the set of basis functions is chosen by overlooking physics of           

a problem, then the results can be misleading. It is shown that for the         

Lane-Emden equation, a set of functions with semi-infinite domain 

sometimes fails to produce results of desired accuracy. A qualitative 

analysis of the problem shows that the solution is bounded when m is 

an odd integer but is unbounded when m is even. Solution of the 

Lane-Emden equation with rational Legendre functions, as basis, is 

poorer in accuracy when 2=m  as compared with the one when 

3=m  with the same basis. Since the physically important region is 

contained in a finite interval, a set of scaled Legendre polynomials, as 

basis, produces results which are much more accurate on the interval 

of interest. 
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1. Introduction 

The spectral method is an important tool for the approximation of a 

function by employing members of an orthogonal set of polynomials. Let 

( ){ }∞ϕ 0xi  be a set of polynomials orthogonal on an interval I with respect to 

a weight function ( ).xw  Let an arbitrary function f be approximated on I as 

( ) ( ) ( )
=

ϕ−
n

i

i
n

i xaxf

0

.~  (1) 

Then the square of the error is minimized by choosing the coefficients ,ia  

ni ...,,1,0=  by solving the following system of equations: 

( ) ( ) ( )
=

+=ϕ=
n

i

ki
n

ik nkxaxf

0

,1...,,2,1,  (2) 

where ,1...,,1, += nkxk  are 1+n  zeros of the polynomial ( ).1 xn+ϕ            

The reason behind the success of the above scheme is that for any                   

set of orthogonal polynomials ( ){ } ,0
∞ϕ xi  corresponding to the integral 

orthogonality relation 

( ) ( ) ( ) =ϕϕ
I

ji xxxw ,0  if ,ji ≠  

there is a discrete orthogonality relation, 

( ) ( )
+
=

=ϕϕ
1

1
,0

n

k
kjkik xxW  if ,ji ≠  

where ,1...,,1, += nkxk  are defined as above. 

A nice introduction to the theory of the spectral methods may be          

found in the lecture notes of Gheorghiu [1] or Boyd [2]. This method has 

application in the areas of ordinary as well as partial differential equations. 

See, for example [1, 4]. 
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In this paper, we wish to highlight the importance of a proper choice of 

basis functions to solve an equation which models a physical problem. For 

this purpose, we choose the Lane-Emden equation, because its solutions 

depend critically on a parameter m. This equation describes temperature 

variation of a spherical gas cloud [13]. In its standard form, the problem 

reduces to the following initial value problem: 

( ) ( ) .00,10,0,0
2 =′=>=+′+′′ yyxyy
x

y
m  (3) 

Approximate solutions of the problem have been found by several 

authors, see for example [14, 15] and references therein. Parand et al. have 

solved this problem by spectral methods first by using the set of rational 

Legendre functions [16], and then by employing Hermite functions [17]. 

Primary reason for the preference of the above mentioned sets of functions 

appears to be the semi-infinite domain of these functions. As a result, 

collocation points are distributed on [ )∞,0  and the approximate result is 

supposed to represent solution of the Lane-Emden equation on [ ).,0 ∞  

However, when 2=m  or 4, solution of the problem (1) is unbounded while 

the opposite is true if m happens to be an odd integer. Thus the approximate 

solution is not likely to be very accurate in case of even m, especially for 

large x. Main interest lies in the region between the origin and the first zero 

of the solution, if it exists hence it is advisable to restrict the domain to        

an interval which contains [ ],,0 1z  where 1z  denotes the first zero of the 

solution. 

Associated with the coefficients, 
( )

,...,,1,0, nia
n

i =  which define an 

approximate expression at level n, we define a coefficient vector nA  in the 

following manner: 

 { ( ) ( ) ( ) }....,0,0,...,,, 10
n

n
nn

n aaaA =  (4) 
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Thus the first 1+n  elements of nA  are the coefficients in the expression (1) 

which defines an approximation for a function f on a given interval. All 

subsequent elements upto infinity are defined to be zero, i.e., 

 
( )

,0=n
ia  if .ni >  (5) 

For a good choice of a basis, the coefficient, 
( )

,
n

ia  at the nth level 

should not differ much from the coefficient 
( )1+n
ia  at the subsequent level 

for ....,,1,0 ni =  To formalize this concept, we define a proximity index 

....,,1,1 ∞=−= + nAAp nnn  (6) 

It was recently observed that, in certain problems, the accuracy of           

an approximate expression, at the nth level, obtained by a pseudo-spectral 

method does not improve monotonically with n, rather it follows a periodic 

pattern. Also a dip in the values of the proximity index is accompanied by a 

spike in the accuracy of the corresponding approximate expression. It should 

be of interest to see whether a similar phenomenon exists in the present case. 

2. Qualitative Analysis of the Lane-Emden Equation 

The Lane-Emden equation describes temperature variation of a spherical 

gas cloud [13]. In its standard form, the problem reduces to the following 

initial value problem: 

( ) ( ) .00,10,0,0
2 =′=>=+′+′′ yyxyy
x

y
m  (7) 

The equation has been treated in great detail by Bellman [18, Chapter 7]. 

Below we outline a few simple results. Theorem 1, which is the main result 

of this section, is not contained in Bellman. We write the equation in its self-

adjoint form: 

( ) ( ) ,00,10,2 =′=−= yyyxLy
m  (8) 
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where ( ) .2 ′′= yxLy  The Cauchy function for 0=Ly  is ( )
xs

sx
sxy

−=,  

[19, Chapter 5], therefore the Lane-Emden problem can be expressed in the 

integral form: 

( ) ( ) ( ) −−=
x

m
dssysxs

x
xy

0
.

1
1  (9) 

Also, the following results are easily obtained directly from the 

equations: 

( ) ( )−=′
x

m
dssys

x
xy

0

2

2
,

1
 (10) 

( )( ) ( )( ) ( ) +=++′+′ +x
m

m
xy

m
sy

s
xy

0

122
.

1

2

1

24
 (11) 

From (9), it is clear that when m is even, slope of the curve representing 

the solution monotonically decreases. If this curve crosses the x-axis, it will 

do so with a negative slope which continues to decrease. Thus the curve will 

never asymptotically approach a horizontal line, hence the solution must 

approach minus infinity as x becomes infinitely large. Also, the solution can 

vanish at most once in this case. 

On the other hand, if m is an odd integer, the point where the curve 

representing the solution intersects the x-axis is an inflection point of the 

curve. Both the solutions as well as their derivatives are bounded. Equation 

(10) shows that 

 ( ) ( ) .
1

2
,1 +≤′≤

m
xyxy  (12) 

Let ( )xyn  and ( ),xym  respectively, denote solutions of the Lane-Emden 

problem when the index equals n and m, then we have the following: 

Theorem 1. Let mn >  and [ ]a,0  be an interval on which both ( )xyn  

and ( )xym  are nonnegative. Then ( ) ( )xyxy mn ≥  for .0 ax ≤≤  
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Proof. Using (9), we obtain 

( ) ( ) ( ) ( ( )[ ] ( )[ ] ) −−−=−
x

m
m

n
nmn dssysysxs

x
xyxy

0

1
 

( ) ( ( )[ ] ( )[ ] ) −−−≥
x

n
m

n
n dssysysxs

x 0

1
 

( ) ( ) ( )( ) ( ) −−−=
x

mnmn dsyygsysysxs
x 0

,,
1

 

where ( ) ( )( )sysyg mn ,  is a function which is nonnegative for .0 as ≤≤  

For example if ,3=n  then ( ) ., 22
mmnnmn yyyyyyg ++=  The second line 

follows from the first because on [ ] ( ) .10,,0 ≤≤ xya m  Now assume 

( ) ( ) 0<− xyxy mn  on ( ]α,0  for some .a≤α  Letting α=x  in the above 

equation, we get 

 ( ) ( ) ( ) ( ) ( )( ) ( )
α

−−αα−≥α−α≥
0

,,
1

0 dsyygsysyssyy mnmnmn  (13) 

which is a contradiction, since the right hand side is clearly positive. Hence 

no such α  exists and the proof is complete. 

From the above theory, we can draw the following conclusions 

concerning the solution ( )xy  of the Lane-Emden problem. 

(1) Let 
( )

...,,2,1,1 =mz
m

 denote the first zero, if it exists, of ( ).xym  If 

mn > , then 
( ) ( )

.11
mn

zz >  

(2) The exact solution ( ) 2

1

2
5 3

1
1

−






 += xxy  is known. It is bounded, 

positive on ( )∞,0  and asymptotically approaches zero. All solutions 

( ),xym  5≥m  have these properties. 

(3) The solution is unbounded only for 2=m  or .4=m  It is bounded 

for all other m. 
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3. Approximate Solution by Pseudo-spectral Methods 

Let ( ){ }∞ϕ 0xn  be a set of basis functions and let 

 ( ) ( ) ( )
=

ϕ=
n

i

i
n

in xaxu

0

 (14) 

be an approximate solution of the Lane-Emden problem. Fix m and define 

the residual ( )xRn  by 

( ) ( ) ( ) ( )( ) .m
nnnn xuxxuxuxxR +′+′′=  (15) 

In order to find the 1+n  coefficients, we need a system of 1+n  

equations. Two linear equations are found by applying the initial conditions 

to the approximate solution. This gives 

( ) ( ) =
=ϕ

n

i
i

n
ia

0
,10  (16) 

( ) ( ) =
=ϕ′

n

i
i

n
ia

0
.00  (17) 

Rest of the 1−n  equations are obtained by setting the residual to zero  

at 1−n  of the 1+n  nodes .1...,,2,1, += nixi  These nodes may be           

the zeros of ( )xn 1+ϕ  or ( ) ( ).1 xx nn +ϕ+ϕ  In the latter case, they are called 

Gauss-Radau nodes. In keeping with Parand et al. [16], we use the Gauss-

Radau nodes. Let 

 ( ) ....,,3,2,0 nixR in ==  (18) 

Then the system (16)-(18) is usually solved by Newton’s method. The 

process starts with a small value of n and the values obtained at each step 

serve as the initial values for the next step. 

Rational Legendre functions as basis 

Let ( ){ }∞
=0nn xP  be a set of Legendre polynomials. It is simply orthogonal 

on [ ].1,1−  Let 0>L  and define 

( ) .







+
−=

Lx

Lx
PxR nn  (19) 
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Then the set ( ){ }∞
=0nn xR  is called the set of rational Legendre functions. 

This set is orthogonal on [ )∞,0  with respect to the weight function ( ) =xw  

( )
.

2
2

Lx

L

+
 We choose .3=L  This means half of the collocation points are 

located in [ )3,0  while the rest lie in ( ).,3 ∞  We use this set as a basis to 

find a sequence of approximate solutions ( ){ }25
4=nn xu  for the Lane-Emden 

problem with 2=m  and display the results in Table 1. 

Table 1. Convergence for the rational Legendre functions, 2=m  

n 
Proximity 

index 

( ) ( )tutu n
t

−
≤≤ 50

max  ( ) ( )[ ] −
5

0

2dttutu n  
Location of the 

first zero 

4 0.233327 0.0292798 0.00139989 4.57333 

5 1.24966 0.0101751 0.000123557 4.35131 

6 0.297183 0.0365693 0.000542606 4.47947 

7 1.01127 0.0259539 0.000290643 4.38915 

8 0.350996 0.0376806 0.000527263 4.51454 

9 0.161265 0.0333052 0.000349242 4.45086 

10 1.74167 0.0200174 0.000114241 4.40586 

11 2.05692 0.0114619 0.000178643 4.2892 

12 2.78926 0.0365666 0.000753846 4.41111 

13 3.44182 0.0250355 0.000836198 4.55891 

14 7.55011 0.0189436 0.000442732 4.33291 

15 8.51485 0.0392917 0.00229154 4.06477 

16 1.90194 0.0258961 0.0005041 4.53317 

17 0.950711 0.0173157 0.000131082 4.42356 

18 3.40476 0.0193844 0.000239182 4.46971 

19 6.29386 0.0177251 0.000331708 4.43223 

20 0.469752 0.0153862 0.00010614 4.35814 

21 3.24371 0.014954 0.00011152 4.41453 

22 3.26882 0.0174042 0.000108038 4.3971 

23 7.35233 0.0207061 0.000244302 4.46549 

24 19.449 0.0135399 0.000189781 4.44872 

25 3.15838 0.0288659 0.000964772 4.2463 
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It is clear that: 

(1) The truncation error does not decrease as the number of terms, n, in 

the approximate solution increases. For ,10=n  maximum deviation of the 

approximate solution from the MATHEMATICA generated numerical 

solution is 0.0200 which is less than 0.0207 for .23=n  

(2) There appears to be no correlation between the proximity index and 

other entries of the table, which are measures of the accuracy of the 

approximate solution. 

The poor level of convergence was expected in the light of the 

qualitative analysis of Section 2, since the solution ( )xy2  was shown to be 

unbounded on [ )∞,0  which leads to a large interpolation error. 

Rational Legendre functions as basis, 3=m  

We use the same set of basis functions, with ,3=L  and repeat the 

above calculations for the Lane-Emden problem with .3=m  Results are 

presented in Table 2. There is remarkable gain in accuracy for any n as 

compared with the corresponding result in Table 1. We note that 

(1) The interval over which the maximum deviation and the integral      

of the square of discretization error are being considered is double in length 

as compared with the one in Table 1. However, the maximum deviation          

for 8=n  over [ ]10,0  is only 0.002, an order of magnitude less than the 

corresponding result for 2=m  over [ ].5,0  The same holds for other entries 

of the table. 

(2) The truncation error does not decrease monotonically with n. 

However, no periodic pattern is discernible. 

(3) The best result occurs for ,24=n  where the proximity index is at its 

lowest and rest of the bench marks appear to be at their best. 

Superiority of the results for the Lane-Emden problem with 3=m  over 

those for 2=m  is obviously due to the fact that the solution in the first case 

is bounded which is not the case for .2=m  
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Table 2. Convergence for the rational Legendre variables, 3=m  

n 
Proximity 

index 

( ) ( )tutu n
t

−
≤≤ 100

max  ( ) ( )[ ] −
10

0

2 dttutu n  
Location of the 

first zero 

4 0.569181 0.085488 0.00798008 6.87111 

5 0.32664 0.0294279 0.00133518 7.13709 

6 0.125567 0.0417983 0.00647965 6.27012 

7 0.111105 0.0146701 0.000390386 6.8724 

8 0.200473 0.00200499 0.0000142829 6.93704 

9 0.101023 0.00662752 0.000123083 6.80788 

10 0.112639 0.00981965 0.000160349 6.96266 

11 0.0688939 0.0056047 0.0000837939 7.02797 

12 0.0870926 0.00136887 5.63536 × 10–6 6.89557 

13 0.191389 0.00307848 0.0000128457 6.92568 

14 0.0301019 0.000686243 1.00176 × 10–6 6.91026 

15 0.0611039 0.000267723 1.74298 × 10–7 6.89587 

16 0.0508278 0.0010208 1.35758 × 10–6 6.90875 

17 0.0869031 0.0012116 3.17855 × 10–6 6.91163 

18 0.194333 0.000791822 1.37807 × 10–6 6.88983 

19 0.133893 0.00130068 2.93767 × 10–6 6.91754 

20 0.0442609 0.00202164 9.13353 × 10–6 6.90385 

21 0.0614723 0.00220189 0.000011131 6.86311 

22 0.078738 0.00193925 6.44782 × 10–6 6.87266 

23 0.0957474 0.000892308 1.76617 × 10–6 6.90101 

24 0.0122488 0.000129399 5.04586 × 10–8 6.89963 

25 0.0235659 0.000327454 1.59284 × 10–7 6.89426 

Scaled Legendre polynomials as basis, 2=m  

Lane-Emden problem originally arose in the physics of stellar structure. 

The first zero ,1z  say, of the solution of Lane-Emden problem is 

proportional to the radius of the star, therefore the region beyond 1z  is of 

little physical interest. For the same reason a Lane-Emden problem with 

5>m  is devoid of physical interest since the solution does not vanish at all. 
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We have seen that for ,2=m  the approximate solution, found by employing 

rational Legendre functions as a basis, is poor in accuracy on [ ]5,0  which 

indeed happens to be the interval on which physics would like it be as 

accurate as possible. In order to achieve this objective, we shall use, as basis, 

the set of scaled Legendre polynomials ( ){ } ,0
∞
=ii xSP  where 

( ) ,1
2







 −=

p

x
PxSP ii  (20) 

for .0>p  This set of polynomials is simply orthogonal on [ ].,0 p  We 

choose 6=p  and find a set of approximate solutions for the Lane-Emden 

problem with .2=m  Results are presented in Table 3. The accuracy is 

superior by several orders of magnitude. It increases monotonically until 

.17=n  Beyond that, entries in the third and fourth columns appear to 

oscillate slightly about the values at .17=n  However, for ,18≥n  numerical 

integration using Gaussian quadrature, with increasing number of nodes, 

does not produce a convergent sequence. This indicates that we have reached 

the roundoff plateau. 

Table 3. Convergence for the translated Legendre polynomials, 2=m  

n Proximity index 
( ) ( )tutu n

t
−

≤≤ 60
max  ( ) ( )[ ] −

6

0

2dttutu n  
Location of the 

first zero 

4 0.0403619 0.0495227 0.00148828 4.594513642 

5 0.0185134 0.0184143 0.000180824 4.302005300 

6 0.00914559 0.0138726 0.0000319557 4.367199411 

7 0.00181412 0.00370478 1.4129 × 10–6 4.353509186 

8 0.000423812 0.000182853 4.59788 × 10–8 4.353155536 

9 0.000296566 0.000472107 2.12375 × 10–8 4.352435228 

10 0.0000709972 0.00015906 1.43119 × 10–9 4.352862975 

11 0.0000100162 6.16252 × 10–6 2.18322 × 10–11 4.352871343 

12 9.21333 × 10–6 0.0000146217 1.51152 × 10–11 4.352884036 

13 2.55969 × 10–6 5.82808 × 10–6 1.38332 × 10–12 4.352876116 

14 2.44975 × 10–7 1.09733 × 10–7 1.68913 × 10–14 4.352874440 
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15 2.70333 × 10–7 3.69867 × 10–7 1.19933 × 10–14 4.352874407 

16 8.62672 × 10–8 2.19345 × 10–7 3.88206 × 10–15 4.352874524 

17 7.61286 × 10–9 4.92069 × 10–8 2.38322 × 10–15 4.352874607 

18 7.5252 × 10–9 4.71518 × 10–8 2.39128 × 10–15 4.352874599 

19 2.7574 × 10–9 5.27375 × 10–8 2.40315 × 10–15 4.352874599 

20 2.90678 × 10–10 4.60559 × 10–8 2.39624 × 10–15 4.352874595 

21 1.99324 × 10–10 4.64095 × 10–8 2.39679 × 10–15 4.352874596 

22 8.44095 × 10–11 4.68503 × 10–8 2.39714 × 10–15 4.352874596 

23 1.11283 × 10–11 4.66329 × 10–8 2.39696 × 10–15 4.352874596 

24 5.02218 × 10–12 4.66632 × 10–8 2.39698 × 10–15 4.352874596 

25 2.49079 × 10–12 4.66739 × 10–8 2.39699 × 10–15 4.352874596 

4. Conclusions 

We highlight the importance of a proper choice of basis functions to 

solve an equation which models a physical problem. For this purpose, Lane-

Emden equation is chosen as its solutions depend critically on a parameter. 

This equation describes temperature variation of a spherical gas cloud [13]. 
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