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Abstract 

The problem of integrability of ordinary differential equations to        

find their exact solutions is a celebrated problem in the theory of 

differential equations which attracted attention of several workers in 

the area. This is due to the fact that: (a) differential equations are the 

most widely used continuous models of dynamic systems in physics, 

medicine, economics, biology and other sciences that study the 

surrounding reality, for which the explicit trajectory of the dynamic 

system’s behavior is important as the explicit solution contains in 

itself the maximum information about the behavior of the system;     

(b) an explicit solution of the equation is necessary to confirm the 

mathematical and physical intuition, to compare the solutions obtained 

by various approximate methods and to compare these methods.           

It is also worth noting that in the presence of various methods for 

obtaining an explicit form of solving differential equations, the 

advantage is given to simpler algorithms.  

This paper presents a method for finding an explicit form of the 

solution of one class of systems of linear ordinary differential 

equations of the first order with variable coefficients. Examples are 

given for illustration. This method includes elements of the well-

known classical methods of the theory of integration of ordinary 

differential equations: the Leonard Euler method, based on the roots 

of the characteristic equation, and the Jean Leron D’Alembert method 

of integrable combinations. 

1. Introduction 

In the field of mathematical sciences, the 18th century bequeathed to the 

19th century a great problem that has not been completely solved to this day 

is the integration of differential equations. To construct a physical theory of 

a dynamical system for scientists of the 19th century meant first of all to find 

differential equations describing the motion of all parts of the system under 

study, be it the planets of the solar system, or tiny particles of gas invisible 

to the eye. Laplace believed that the entire Universe from a mathematical 

point of view is just a huge set of differential equations. A mind capable of 

grasping and solving these equations at once could predict the future of the 
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world. Therefore, the ability to solve them, to integrate, as mathematicians 

say, was an urgent need of the time [1]. 

Of course, since then, mathematical science has gone far ahead. It has 

long been proven that not all ordinary differential equations, even of the  

first order, such as the Riccati equations [2], are integrable in quadratures.         

This circumstance contributed to the rapid development of methods for         

the approximate solutions of differential equations. At the same time,  

despite the great progress in this direction, which is essentially associated 

with computerization, the problem of determining the types of differential 

equations and their systems that can be integrated in quadratures remains 

relevant. 

The method presented in this work is an extension of the method of the 

authors used to find a solution to systems of non-homogeneous equations 

with constant coefficients [3, 4] for a certain class of systems of differential 

equations with variable coefficients. 

2. Solution of the Second Order Systems of the Linear Ordinary 

Differential Equations with Variable Coefficient at the Derivatives 

Consider a linear system of ordinary differential equations of the form: 

 
( ) ( )
( ) ( )

,

,

q x y ay bz f x

q x z cy dz g x

′ = + +
 ′ = + +

 (1) 

where the coefficients a, b, c, d are constants and q, f and g are given 

functions. Unknown functions are denoted by ( )y x  and ( ).z x  

Note that for ( )q x  identically equal to one, the system (1) is a standard 

system with constant coefficients, which can be solved both by classical 

methods [5, 6] and by the method described in [3, 4]. 

In accordance with the classical theory, despite the fact that there is a 

variable coefficient, let say that the characteristic equation of system (1) is 

the equation: 

 ( ) 0,∆ λ =  (2) 
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where the function ( )∆ λ  has the form:  

( ) ( ) ( ) .
a b

a d c b
c d

− λ
∆ λ = = − λ − λ − ⋅

− λ
 

The characteristic numbers of system (1) are the roots of equation (2). 

We show how, using the characteristic numbers, it is possible to find 

integrable combinations and, by using them, construct a solution to the 

specified system of differential equations. 

Theorem 2.1. If p and q are the roots of the characteristic equation (2) 

of the system (1), then the solution of system (1) is found from the system               

of algebraic equations ( )1; ,y kz F x C− =  ( )2; ,y mz G x C− =  where the 

coefficients k and m are the proportionality coefficients of the rows of              

the determinant ( ) ,∆ λ  and the functions ( )1;F x C  and ( )2;G x C  are 

functions determined by the free terms of equations of system (1) and its 

coefficients; 1 2,C C  are arbitrary constants. 

Proof. Let p and q be the characteristic numbers of the system (1). Then, 

in order to solve the system, at the first step, we subtract the function py 

from the left and right sides of the first equation of system (1) and pz from 

both sides of the second equation. This will lead us to the system:  

( ) ( ) ( )
( ) ( ) ( )

,

.

q x y py a p y bz f x

q x z pz cy d p z g x

′ − = − + +


′ − = + − +
 (3) 

Since p is the characteristic number, the determinant 
a p b

c d p

−
−

 is 

equal to zero, which means that the rows of this determinant are 

proportional. Let the proportionality factor be k. Multiply the second 

equation by k. Then the system will take the form: 

( ) ( ) ( )
( )[ ] ( ) ( )

,

.

q x y py a p y bz f x

k q x z pz kcy k d p z kg x

′ − = − + +


′ − = + − +
 



Solution of Some Linear Systems of Ordinary Differential ... 5 

Now, we subtract the second equation from the first and write it in the 

form: 

( ) [ ] [ ] ( ) ( ).q x y kz p y kz f x kg x′− − − = −  (4) 

Equation (4) is a linear ordinary differential equation of the first order         

with respect to the unknown function .y kz−  Integrating it, we obtain an 

expression for y kz−  in the form: 

( )1; ,y kz F x C− =  (5) 

where F is some definite function. 

We repeat the procedure, taking q instead of p, and get  

 ( )2; ,y mz G x C− =        (6) 

where G is some definite function. 

Consider equalities (5) and (6) as an algebraic system with respect to the 

unknowns y and z. The solution to this algebraic system will be the general 

solution of the system of differential equations (1). □ 

In the next section, we illustrate Theorem 2.1 with examples. 

3. The Case of Different Characteristic Numbers 

Example 3.1. Consider the system of equations: 

 

2 7

2

5 8 ,

4 5 21.

x
x y y z e

x z y z

− ′ = + +


′ = + +
 (7) 

The characteristic numbers of system (7) are the roots of the equation: 

( ) ( ) 1 2

5 1
5 5 4 1 0 3; 7.

4 5

− λ
= − λ − λ − ⋅ =  λ = λ =

− λ
 

(1) Using the root 3,λ =  we rewrite system (7) in the form: 

2 7

2

3 2 8 ,

3 4 2 21.

x
x y y y z e

x z z y z

− ′ − = + +


′ − = + +
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We subtract the second equation from the doubled first equation and get  

( ) ( )2 72 3 2 16 21.x
x y z y z e

−′ ′− − − = −  

The solution of this equation is the function:  

7 32 4 7 .x x
y z e Ae

− −− = + +  

(2) We repeat the procedure, taking the second characteristic number 

7:λ =  

2 7

2

7 2 8 ,

7 4 2 21.

x
x y y y z e

x z z y z

− ′ − = − + +


′ − = − +
 

Add to the doubled first equation the second equation:  

( ) ( )2 72 7 2 16 21.x
x y z y z e

−′ ′+ − + = +  

Now, we integrate the last equation and get 

7 716
2 3 .x x

y z e Be
x

− −−+ = − +  

It remains to find y and z. To do this, we need to solve an algebraic system of 

equations of the form: 

7 3

7 7

2 4 7 ,

16
2 3 .

x x

x x

y z e Ae

y z e Be
x

− −

− −

 − = + +

 −
 + = − +


 

Adding these equations, we get  

7 3 716
4 4 4 .x x x

y e Ae Be
x

− − − 
= − + + − 
 

 

At the same time, the difference between these equations is a function:  

7 3 716
2 4 10 .x x x

z e Ae Be
x

− − − 
− = + + + − 

 
 



Solution of Some Linear Systems of Ordinary Differential ... 7 

So, it turns out that the solution of the system (7) is a pair of functions:  

7 3 7

7 3 7

4
1 1 0.25 0.25 ,

8
2 5 0.5 0.5 ,

x x x

x x x

y e Ae Be
x

z e Ae Be
x

− − −

− − −

  
= − + + + 
 


 

= − − − − + 
  

 

where A and B are arbitrary constants. 

In order to obtain a solution of the system (7), we used two linear 

combinations 2y z−  and 2 ,y z+  each of which was determined by the 

corresponding characteristic number. But what if the characteristic equation 

has only one multiple root? Let us consider this case in the following 

section. 

4. The Case of One Multiple Characteristic Number 

Example 4.1. Consider the system of equations: 

54 4 sin ,

2 .

tgx y y z x

tgx z y z

 ′⋅ = − +


′⋅ = +
 (8) 

Characteristic equation of the system: 

2
4 1

6 9 0
1 2

− λ −
= λ − λ + =

− λ
 

has only one multiple root equal to 3. 

Using this root, we can rewrite system (8) in the form: 

53 4 sin ,

3 .

tgx y y y z x

tgx z z y z

 ′⋅ − = − +


′⋅ − = −
 (9) 

Let us subtract the second equation of the system (9) from the first 

equation. This will give us the following equation: 
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( ) ( ) 53 4 sin .tgx y z y z x′ ′− − − =  

We have obtained a linear ordinary differential equation of the first 

order for the unknown function .y z−  We integrate it and get 

( )2 2 3sin cos sin .y z x x C x− = − +  (10) 

In order to complete the process of solving the system, we substitute        

the value of the function y z−  from (10) into the right side of any of the 

equations of system (9). For example, into the first equation: 

( )2 2 3 53 sin cos sin 4 sin .tgx y y x x C x x′⋅ − = − + +  

Now, we write the last equation in a form convenient for integration: 

2 2

3
5sin cos ;

sin

y
tgx x x C

x

  = − + 
 

 

3

3

coscos
5 sin cos .

sin sinsin

xy x
x x C

x xx

  = ⋅ − + 
 

 

We integrate this equation and get the value of the function ( ):y x  

[ ]2 2

3
2.5 sin sin 0.5 sin sin ;

sin

y
x ln x x Cln x B

x
= − − + +  

{ ( ) }2 33sin 1 sin sin .y x C ln x B x= + − +  

In order to determine the value of z, it is enough to perform an 

elementary algebraic operation: 

( ) { ( ) }2 33sin 1 sin sinz y y z x C ln x B x= − − = + − +  

( )2 2 3sin cos sinx x C x− − +  

( ( ) )2 3sin 1 1 sin sin .x C C ln x B x= + − + − +  

Thus, it turns out that the following is the solution to system (8): 

( ) { ( ) }2 33sin 1 sin sin ,y x x C ln x B x= + − +  
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( ) { ( ) }2 3sin 1 1 sin sin ,z x x C C ln x B x= + − + − +  

where B and C are arbitrary constants. 

We managed to obtain the solution of the system (8) due to the fact          

that the linear combination of solutions y z−  turned out to be on the right        

side of the transformed system (8) in the system (9). Perhaps this is a lucky 

break. Repeating, practically word for word, the proof of the corresponding 

statement for the systems with constant coefficients [3, 4], it can be shown 

that in the case of multiple roots of the characteristic equation, the linear 

combination of solutions of the system, determined by the characteristic 

number, will always be on the right side of the transformed system. 

5. The Case of Complex Characteristic Numbers 

Example 5.1. Consider the system of equations: 

65 2 ,

5 .

xy y z x

xz y z

 ′ = + +


′ = − +
 (11) 

The characteristic numbers of system (11) are the roots of the equation:  

( ) ( ) ( ) 1 2

5 1
5 5 1 1 0 5 ; 5 .

1 5
i i

− λ
= − λ − λ − − ⋅ =  λ = + λ = −

− − λ
 

(1) Using the root 5 ,iλ = +  we rewrite system (11) in the form: 

( )
( )

65 2 ,

5 .

xy i y iy z x

xz i z y iz

 ′ − + = − + +


′ − + = − −
 

Subtracting from the 1st equation the 2nd, multiplied by i, we get  

( ) ( ) ( ) 65 2 .x y iz i y iz x′ ′− − + − =  

The solution to the resulting equation is the function: 

( ) 6 51 .iy iz i x Ax
+− = + +  
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(2) We repeat the procedure, taking the second characteristic number 

5 :iλ = −   

( )
( )

65 2 ,

5 .

xy i y iy z x

xz i z y iz

 ′ − − = + +


′ − − = − +
 

Add to the 1st equation the 2nd, multiplied by i:  

( ) ( ) ( ) 65 2 ,x y iz i y iz x′ ′+ − − + =  

and integrating, we get  

( ) 6 51 .i
y iz i x Bx

−+ = − +  

It remains to find y and z. To do this, we need to solve the system:  

( )
( )

6 5

6 5

1 ,

1 .

i

i

y iz i x Ax

y iz i x Bx

+

−

 − = + +


+ = − +
 

Adding the equations, we get 6 5 52 2 .i i
y x Ax Bx

+ −= + +  

The difference between the equations of the system is a function  

6 5 52 2 .i i
iz ix Ax Bx

+ −− = + −  

So, it turns out that the following pair constitutes the solution to the system 

(11):   

[ ]
[ ]

6 5

6 5

0.5 ,

0.5 .

i i

i i

y x x Ax Bx

z x x i Ax Bx

−

−

 = + +


= − + −
 

In order to find the solution, we select the real and imaginary parts of the 

functions ( )y x  and ( ):z x  

( ) ( )( ) ( ) ( )( )[ ]
( ) ( )( ) ( ) ( )( )[ ]

6 5

6 5

0.5 cos ln sin ln ,

0.5 sin ln cos ln .

y x x A B x i A B x

z x x A B x i A B x

 = + + + −


= − + − + + −
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Since the original system is specified in real functions, we write the 

answer in the form: 

( ) ( )( ) ( )( )( )
( ) ( )( ) ( )( )( )

6 5
1 2

6 5
1 2

cos ln sin ln ,

sin ln cos ln .

y x x x C x C x

z x x x C x C x

 = + +


= − + − +
 

6. Conclusion 

The results of this work demonstrate a powerful synergy effect arising 

from the combination of the approaches of Euler and D’Alembert to            

solve systems of linear ordinary differential equations. In this case, it is 

demonstrated how the combined approach allows one, without special 

theoretical difficulties, to pass from systems with constant coefficients to a 

certain class of systems of linear ordinary differential equations of the first 

order with variable coefficients. Note that the presence of an explicit form  

of solutions to systems of this kind allows expanding the possibilities of 

qualitative analysis of the behavior of their solutions. In particular, the 

examples given in the article allow us to simulate a situation in which the 

terms with derivatives degenerate when approaching the left boundary of the 

segment [ ]0; .a  
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