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FINITE-APPROXIMATE CONTROLLABILITY OF 

NONLOCAL STOCHASTIC CONTROL SYSTEMS 

DRIVEN BY HYBRID NOISES 

 

Abstract 

In this paper, a class of nonlocal stochastic control systems with 

Brownian motions and Poisson jumps is under consideration. In the 

setting of suitable function spaces and under certain assumptions, the 

finite-approximate controllability is discussed by means of variational 
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method. After providing some properties of the variational functional, 

we use Schauder Fixed Point Theorem to obtain the existence of mild 

solutions. Finally, the finite-approximate controllability of the systems 

is concluded. 

1. Introduction 

Controllability concepts for various deterministic and stochastic 

semilinear evolution systems have been studied in many fields by means          

of various methods. There are many different concepts of controllability for 

evolution equations: approximate controllability, exact null controllability, 

finite-approximate controllability and so on. There are many papers on 

approximate controllability of semilinear evolution systems in infinite 

dimensional spaces, see [1-8] and the references therein. Some authors            

have studied exact controllability of differential control systems, see [9-13] 

and the references therein. Finite-approximate controllability of fractional 

semilinear evolution systems is studied in [14, 15]. 

Compared with the integer order calculus, fractional calculus, containing 

differentiation and integration of an arbitrary real order, has a history of 

more than three hundred years. Many real world phenomena can be better 

described by using fractional operators. In fact, there are many applications 

of fractional calculus in anomalous diffusion, random walk, nonlocal 

elasticity, and memory materials, see [16-22] and the references therein. The 

fractional calculus has been acknowledged as a promising mathematical tool 

to efficiently characterize the historical memory and global correlation of 

complex dynamic systems, phenomena or structures. 

We are interested in the controllability of the following nonlocal 

stochastic control problem: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ]

( ) ( )
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To better understand the meaning of problem (1.1), we explain the 

symbols and notions concerning problem (1.1) in the following: 

• N
R⊂O  is a bounded domain. 

• ( ) ( )∞∈∈γ





∈α ,0,1,0,1,

2

1
T  and .2γ>N  

• ( )γ∆−  is the fractional Laplacian operator. 

• The drift terms f and g are functions from [ ] R××OT,0  to .R  

• ( ) ( ( ))O20
2 , LWt L∈σ  for any [ ]Tt ,0∈  and B is a W-valued 

cylindrical Brownian motion, where W is a given real and separable Hilbert 

space. 

• Let V be a Hilbert space. Assume that control [ ]( )VTLv ,,02∈  and 

operator ( ( ))OB
2, LVL∈  which is the space of all bounded linear 

operators from V to ( ).2
OL  

• Let ( )( )eUU ,, B  be a σ-finite measurable space. h is a function from 

[ ] UT ××× RO,0  to .R  θ~  denotes the compensated Poisson martingale 

measure. 

• ( )α
dt  is a fractional differential in the sense of Jumarie [23]. 

Problem (1.1) strongly depends on the ranges of γα,  and N. There are 

two main contributions in this paper: 

(1) Utilize a reasonable framework of mild solutions and overcome the 

complex calculations caused by not only fractional differential operators         

but also Brownian motions and Poisson jumps. Establish the existence and 

uniqueness of the mild solution to nonlocal stochastic control problems by 

Schauder Fixed Point Theorem. 

(2) Establish sufficient conditions to the finite-approximate 

controllability of nonlocal stochastic control problems by means of a 
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variational method. Propose a variational functional and obtain some 

properties of the variational functional. At last conclude the finite-

approximate controllability result. 

The paper is organized as follows. In Section 2, we introduce basic 

concepts and results. In Section 3, we prove the existence and uniqueness        

of mild solution and establish the finite-approximate controllability of the 

nonlocal stochastic control problems. 

2. Preliminaries 

In this section, we introduce basic concepts and results. 

2.1. Brownian motions 

Let ( )tFF ,,, PΣ  be a complete probability space with a filtration 

{ } [ )∞∈ ,0ttF  which satisfies usual conditions. A one-dimensional fractional 

Brownian motion ( ){ } [ ]Ttt ,0∈β  is a Gaussian process which has zero mean 

and its covariance is 

( ) ( ) ( )[ ] .,,Cov tsstts =ββ= E  

Brownian motions can be expressed by Wiener processes. 

Let { }∞
=1iiw  be an orthonormal basis of W and ( )WL  be the space of all 

bounded linear operators on W. Let ( )WL∈A  be a symmetric, 

nonnegative operator and ,iii ww λ=A  ,...,2,1=i  with ∑
∞

=
∞<λ=

1

.tr

i

iA  

The infinite dimensional fractional Brownian motion { ( )} [ ]Tt
H

tB ,0∈A  is 

defined by 

( ) ( )∑
∞

=
βλ=

1

21
,

i

iii twtBA  

where { }∞
=β 1ii  is a sequence of independent one-dimensional fractional 
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Brownian motions. AB  has zero mean and covariance ( ) µ,Cov tBA  

( ) ( ) ,,,Cov, νµ=ν AA stsB  for any [ ]Tst ,0, ∈  and ., W∈νµ  In          

this paper, we consider the cylindrical Brownian motion B, i.e., ,1=λi  

....,2,1=i  

Let ( ( ))O20
2 , LWL  be the space of Hilbert-Schmidt operators. An 

operator ( ( ))O20
2 , LWg L∈  satisfies ( ( ))O2, LWg L∈  and 

∑
∞

=
∞<=

1

22
.

20
2 i

L
iwgg

L
 

Endowed with the inner product ∑
∞

=
=

1

,~,~, 20
2

i
Lii wgwggg

L
 

( ( ( )) )0
2

,,, 20
2 L
L ⋅⋅OLW  is a separable Hilbert space. We recall the 

following inequality: 

Lemma 2.1 (See [18]). Let [ ] ( ( ))O20
2 ,,0: LWTg L→  and 

( )∫ ∞<
T

dssg
0

2
.

0
2L

 Then stochastic integral ( ) ( )∫
t

sdBsg
0

 is a well 

defined ( )O2
L -valued random variable and satisfies 

( ) ( ) ( ) [ ]∫∫ ∈∀=
t

L

t
TtdssgsdBsg

0

2
2

0
.,0,

0
2

2 L
E  

2.2. Poisson jumps 

Let ( )( )eUU ,, B  be a σ-finite measurable space and { } [ )∞∈π ,0tt  be a 

stationary Poisson point process which is defined on ( )P,, FΣ  and take 

values in U. The compensated Poisson martingale measure θ~  is defined as 
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( ) ( ) ( ) [ ),,0,,,
~ ∞∈∀−θ=θ ttduetdutdu  

where θ  is a counting measure which is generated by { } [ ).,0 ∞∈π
tt  θ~  has 

zero mean and variance [ ( )] ( ).,
~ 2

dutetdu =θE  

Let ([ ] ( ))O22,
,,0 LUTM

e ×
F

 be the space of ( )UBF ×  measurable 

processes with finite second moments and be equipped with the norm 

( ) ( )∫ ∫=
T

U LM
dsdueuyshh

e
0

22
.;,

22,
E

F

 

If ([ ] ( )),,,0 22,
OLUTMh

e ×∈
F

 then 

( ) ( ) [ ]∫ ∫ ∈∀θ
t

U
Ttdsduuyxsh

0
,0,,

~
;,,  

is a ( ( ))O22 ; LL Σ -valued random process which has zero mean. 

Furthermore, recall Theorem 6.1 in [24]: 

Lemma 2.2. If ([ ] ( )),,,0 22,
OLUTMh

e ×∈
F

 then the isomorphic 

formula 

( ) ( )
2

0 2
,

~
;,

L

t

U
dsduuysh∫ ∫ θE  

( ) ( ) [ ]∫ ∫ ∈∀=
t

U L
Ttdsdueuysh

0

2
,0,;,

2
E  

holds. Moreover, the following inequality holds: 

[ ]
( ) ( )

2

0,0 2
,

~
;,sup

L

t

UTt

dsduuysh∫ ∫ θ
∈

E  

( ) ( )∫ ∫ >∀≤
T

U L
Tdtdueuyth

0

2
.0,;,4

2
E  
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2.3. Fractional differentials and fractional Laplacian operators 

The relationship between the fractional differential and the classical 

differential of y is: 

( ) .10,1 ≤α<+αΓ=α
dfyd  

Here, ”“ α
d  and “d ” are referred to as the fractional and classical 

differentials, respectively. We have 

Definition 2.3 (See [25]). Let ( ],1,0∈α  and y denote a continuous 

function. Then the integral of y with respect to ( )αdt  is defined as 

( ) ( ) ( ) ( )∫ ∫
−αα −α=

t t
dssystdssy

0 0

1
.  

There are several approaches to define the fractional Laplacian 

operators. We introduce the definition by means of Fourier transform ,F  

[( ) ( )] ( ) ( ).1,0,
2 ∈γζ=∆− γγ

xyxy FF  

Consider the following space-fractional diffusion equation: 

 
( ) ( ) ( )

( ) ( )





∈=

∞×∈=∆−+ γ

.,0,

,,0,,0

0
N

N
t

xxyxy

txyy

R

R
 (2.1) 

By the theory of semigroups of bounded linear operators, the solution of 

(2.1) can be written as 

( ) ( ) ( ) ,00 yeytty
t γ∆−−== S  

while by means of Fourier transformation, we also have 

( ) ( ( )) ( ) ( ) ,, 00
1

0
1

22

yKxyeyetxy t
tt ∗=∗==

γγ ξ−−ξ−−
FFF  

where tK  is defined as 

( ) ( )
( )








=δ

≠ξ
π= ∫

γξ−ξ⋅

.0if,

,0if,
2

1 2

tx

tdee
xK

N

tix

N
t

R  
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It is obvious that if ,0≠t  then 

( ) ,

2

1
2

















=
γ

γ−

t

x
KtxK

N

t  

where 

( )
( ) ∫

ξ
π

=
γξ−ξ⋅

N
deexK

ix

N R

.
2

1 2

 

Let the space 

( ) ( ) ( ) ( )


 ∞<ξξξ+∈= ∫

γγ
N

dfLfH
N

R

R
222 1: FO  



= O\ina.e.,0and

N
u R  

be endowed with the norm 

( ) ( ) ( )∫ ξξξγ= γ−γ
N

dfNCf
H

R

,,2
221

F
O

 

where ( )γ,NC  is a constant dependent on N and .γ  Let ( )Oγ
0H  denote the 

closure of ( )O∞
0C  in ( ).Oγ

H  We recall the embedding result in [26]. 

Lemma 2.4 (See [26]). Let ( ),1,0∈γ  the space ( )Oγ
0H  is compactly 

embedded in ( ),2
OL  and 

.
02
γ≤

H
fCf  

Fractional Laplacian can be extended to ( ),0 O
γ

H  i.e., ( ) ( )Oγγ∆− 0: H  

( ).2
OL→  Let ( ){ } 0≥ttS  be the semigroup generated by ( ) .

γ∆−  Then 

( ){ } 0≥ttS  is a 0C -contraction semigroup on ( ).2
OL  On the other hand, 

since the embedding from ( )Oγ
0H  to ( )O2

L  is compact, we get 
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Proposition 2.5. ( ) ( ) ( )OOS
22: LLt →  is a compact operator for any 

.0≥t  

From [27], we have the following lemmas: 

Lemma 2.6. ( ) ( )NN
CLK RR ∩

∞∈  and ( ) .0lim =
∞→

xK
x

 

Lemma 2.7. ( ) ( ) sN
xCxK

2
1

−−+≤  and further ( )Np
LK R∈  for 

any [ ].,1 ∞∈p  

Lemma 2.8. ( ) ( ) 1
1

−−+≤∇ N
xCxK  and further ( ( ))NNp

LK R∈∇  

for any [ ].,1 ∞∈p  

Let 

( ) ( )∫ ⋅=⋅ ∗
−

∗
−

T

sTsT
T

dsKK
0

,BBϒ  

∫
∗

−
∗

−=
T

sTsT
T

dsKKG
0

,BB  

where ∗
B  is the adjoint operator of .B  It is easy to see that ∈T

ϒ  

( ( ( )))O
22 , LL ΣL  and ( )O2

LG
T ∈  can be called the controllability 

Gramian of the control problem (1.1). By the boundedness of K and ,B  we 

can assume that for any [ ],,0 Tt ∈  02
MG

t ≤  for some constant .0M  

2.4. Function spaces 

Let ( ( ))O22 , LL Σ  be the set of all F  measurable random variables ζ  

such that 

{ } .
2
2

2
2

∞<ζ=ζ E
L

 

We use notation ([ ] ( ))Oγ
0

2
;,0 HTL

tF
 to denote the space of all tF -

adapted random processes such that 



Qiaobin Fu and Yongqiang Fu 10 

( ) .,
22

0
2

∞<








⋅= ∫ τ− γ

T

HL
dttyy

t

E

F

 

Let ([ ] ( ))O2;,0 LTCC
tt FF =ɺ  be the space of all continuous random 

processes from [ ]T,0  to ( ),2
OL  a.s., with essentially finite second moments 

and be endowed with the following norm: 

[ ]
{ ( ) }.,sup

2
2

,0

2 ⋅=
∈

tyy
Tt

C
t

E
F

 

Let ( )TD  be the set of all stochastic processes with the following 

properties: 

(1) ([ ] ( )) ([ ] ( ));;,0;,0
2

0
2

OO LTCHTLy
tt
FF

∩
γ∈  

(2) ( ) ( ),,0 0 xyxy =  a.s., for all ;O∈x  

(3) ( ) ,0, =xty  a.s., for all ( ) [ ] ( ).\,0, O
N

Txt R×∈  

Then the definition of mild solutions is given by 

Definition 2.9. We call ( )Ty D∈  a mild solution of problem (1.1) if for 

any [ ],,0 Tt ∈  y satisfies the following formula: 

∫ ∫ ∗+∗+∗= −−
t t

ststt fdsKvdsKyKy
0 0

0 B  

( ) ( )∫ ∫ ∗−α+σ∗+ −
−α

−
t t

stst gdsKstsdBK
0 0

1
 

( )∫ ∫ θ∗+ −
t

U
st dsduhK

0
,,

~
 a.s., 
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or equivalently, 

( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ −+−=ω −
O O

B
t

stt dzdszsvzxKdzzyzxKxty
0

0,,  

( ) ( )( )∫ ∫ ω−+ −
t

st dzdszsyzsfzxK
0

,,,,
O

 

( ) ( ) ( )∫ ∫ σ−+ −
t

st sdzdBszxK
0 O

 

( ) ( ) ( )( )∫ ∫ ω−−α+ −
−αt

st dzdszsyzsgzxKst
0

1
,,,,

O
 

( ) ( )( ) ( )∫ ∫ ∫ θω−+ −
t

U
st dsdudzuzsyzshzxK

0
,,

~
;,,,,

O
 a.s., 

if each integral is well defined. 

Definition 2.10. Let E  be a finite dimensional subspace of ( ( ))O22 ; LL Σ  

and denote by Eπ  the orthogonal projection from ( ( ))O22 ; LL Σ  onto .E  

The system of the control problem (1.1) is said to be finite-approximately 

controllable if for given any ( ( ))O22
0 ;, LLyy T Σ∈  and ,0>ε  there exists 

a control [ ]( )VTLv ,,02∈ε  such that the solution ([ ] ( ))O2;,0 LTCy
tF

∈ε  

to the control problem (1.1) satisfies 

( ) ,2 ε≤−ε LTyTy  

( ) .TyTy EE π=π ε  

3. Finite-approximate Controllability 

We propose the following hypotheses on nonlinear functions f, g, σ and 

h: 

(H1) For any [ ],,0 Tt ∈  O∈x  and ,R∈y  there exist a constant 0>β  

and positive functions [ ]TL ,0∈Λ  and ( )OL∈Φ  such that f, g and h 
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satisfy 

( ) ( ) ( ),,,
2

xtyxtf ΦΛ≤  

( ) ( ),,,
2

xyxtg Φβ≤  

( ) ( ) ( ) ( )∫ ΦΛ≤
U

xtdueuyxth .;,,
2

 

(H2) For any [ ],,0 Tt ∈  O∈x  and ,R∈y  there exists a constant 

0>L  such that f, g and h satisfy 

( ) ( ) ( ) ( ){ }2121 ,,,,,,,,,max yxtgyxtgyxtfyxtf −−  

,211 yyM −≤  

( ) ( ) ( )∫ −≤−
U

yyLdueuyxthuyxth .;,,;,, 2111  

(H3) [ ] ( ( ))O20
2 ;,0: LWT L→σ  satisfies 

( ) [ ],,0,2
2

0
2

TtMt ∈∀≤σ
L

 

where the constant .02 >M  

(H4) ( ) ( ( ))O21
LGI

T
L∈+κκ −

 satisfies 

( ) 0
1 →+κκ −T

GI  as .0+→κ  

The finite-approximate controllability is based on the fact that the          

finite-approximate controllability can be viewed as the limit of a sequence  

of optimal control problems. More precisely, for ,0>ε  we introduce the 

following functional: 

( ) ( ) ( )






 ω−= ∫ ∫ ∫

∗
−

∗
ε

O O
B

T

tT dzdtdxzvzxKwvI
0

,
2

1
, E  

( ) ( ) ( ){ },,, 2 wHvzvI
L

E−ωπ−ε+ E  
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where 

( ) ( ) ( ),21 zHzHzH +=  

( ) ( ) ( )( )∫ ∫ ω−−= −
T

tTT dzdtztwztfzxKyzH
0

1 ,,,,
O

 

( ) ( ) ( )∫ ∫ σ−− −
T

tT tdzdBztzxK
0

,
O

 

( ) ( ) ( )( )∫ ∫ ω−−α− −
−αT

tT dzdtztwztgzxKtT
0

1
,,,,

O
 

( ) ( )( ) ( ),,
~

;,,,,
0∫ ∫ ∫ θω−− −
T

U
tT dtdudzuztwzthzxK

O
 

( ) ( ) ( )∫ −−= ∗
O

.02 dzzyzxKwH T  

Lemma 3.1. The set { ( ) ([ ] ( ))}OF
2;,0: LTCwwHW

t
∈=  is relatively 

compact in ( ( ))., 22
OLL Σ  

Proof. For any [ ] O∈∈ xTt ,,0  and ,Σ∈ω  we have 

( )( ) ( ) ( ) ( )∫ ∫ ≤ΦΛ≤ω
O O

,,,,,
2

tCdxxtdxxtwxtf  

where ( )tC  is a constant dependent on t only. Let { }nw  be a sequence         

in ([ ] ( )).;,0 2
OF LTC

t
 By the compactness of ( ),tS  there exists a 

subsequence of { },nw  which is still denoted by { },nw  such that 

( ) ( ) ( )( )∫ ω−=ωξ −
∞→ O

dzztwztfzxKxt ntT
n

,,,,lim,,  a.e. 
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for some ([ ] ( )).;,0
22
OLTL

tF
∈ξ  As 

( ) ( )( )
2

,,,,∫ ω−−
O

dzztwztfzxK ntT  

( ) ( ) ( ) ( )∫ ∫ Λ≤ΦΛ≤
N

tCdxxdxxKt
R O

,2  

where C is a constant independent of t, x and ,ω  by Lebesgue Dominated 

Convergence Theorem, in ([ ] ( )),;,0
22
OLTL

tF
 we have 

( ) ( )( ) ( )∫ ωξ=ω−−
∞→ O

,,,,,,lim xtdzztwztfzxK ntT
n

 

i.e., in ( ( )),, 22
OLL Σ  

( ) ( )( ) ( )∫ ∫ ∫ ωξ=ω−−
∞→

T T

tT
n

dtxtdzdtztwztfzxK
0 0

.,,,,,lim
O

 

In the same way, we can deal with the other terms and conclude that 

there exists a subsequence of { },nw  which is still denoted by { },nw  such 

that ( ){ }nwH  is convergent in ( ( )).; 22
OLL Σ  □ 

Lemma 3.2. The operator ([ ] ( )) ( ( ))OOF
222 ,;,0: LLLTCH

t
Σ→  is 

continuous. 

Proof. Assume that { } ([ ] ( ))OF
2;,0 LTCw

tn ⊂  and { } wwn →  in 

([ ] ( )).;,0 2
OF LTC

t
 By Cauchy inequality, we get 

( ) ( )( ) ( )( )






 ω−ω−∫ ∫ ∫ −
O O

T

ntT dzdtdxztwztfztwztfzxK
0

22 ,,,,,,,,E  

( ) ( ) ( )∫ ∫ ∫ 





 ω−ω≤

N

T

n dzdtztwztwdxxKL
R

E
O 0

22 ,,,,  

,0→  

as .∞→n  
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In the same way, we can deal with the other terms and conclude that H is 

continuous from ([ ] ( ))OF
2;,0 LTC

t
 to ( ( ))., 22

OLL Σ  □ 

Lemma 3.3. The functional ( ( )) ([ ] ( )) R→×Σε OO F
222 ;,0,: LTCLLI

t
 

has the following properties: 

(1) εI  is strictly convex and continuous with respect to ( ( ))O22 ; LLv Σ∈  

for any ([ ] ( )).;,0 2
OF LTCw

t
∈  

(2) 
([ ] ( ))

( )
.

,
infinflim

222 ;,0

ε≥ε

∈∞→ LLTCwv v

wvI

tL OF

 

Proof. (1) It is obvious that εI  is strictly convex with respect to 

( ( )).; 22
OLLv Σ∈  

For any ([ ] ( )),;,0 2
OF LTCw

t
∈  { } ( ( ))O22 ; LLvn Σ⊂  such that 

{ } vvn →  in ( ( )),; 22
OLL Σ  we have 

( ) ( )


 ω−∫ ∫ ∫

∗
−

∗
O O

T

ntT zvzxKB
0

2
,E  

( ) ( )






ω−− ∗
−

∗
dzdtdzzvzxKB tT

2
,  







 ∗−∗= ∫ ∫ ∫

∗
−

∗
−

∗
−

∗
−

O O

T

tTtTnntTtT dzdtdxvvKBBKvvKBBK
0

,,E  



 −∗= ∫ ∫ ∫

∗
−

∗
−

O O

T

nntTtT vvvKBBK
0

,E  

( )


−∗+ ∗

−
∗

− dzdtdxvvvKBBK ntTtT ,  
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 −+−≤ ∫O dzvvvvvvG nnn

T
E  

2

1

22

1

22







 −







 +≤ ∫∫ OO

dzvvdzvvG nn
T

EE  

,0→  

as .∞→n  Therefore, εI  is continuous with respect to ( ( )).; 22
OLLv Σ∈  

(2) We prove by contradiction. If not, then here exist sequences { }nv  

( ( ))O22 ; LL Σ⊂  and { } ([ ] ( ))OF
2;,0 LTCw

tn ⊂  such that ,2 ∞→
L

v  

but 

( )
.

,
inflim

2
ε<ε

∞→ Ln

nn

n v

wvI
 

By Lemma 3.1, the set 

{ ( ) ([ ] ( ))}OF
2;,0: LTCwwHW

t
∈=  

is relatively compact in ( ( )),; 22
OLL Σ  so there exists a subsequence, which 

is still denoted by ( ),nwh  such that 

( ) hwH n →  strongly in ( ( )),; 22
OLL Σ  

for some ( ( )).; 22
OLLh Σ∈  

Next, we normalize nv  by .~
2Ln

n
n v

v
v =  As ,1~

2 =
Lnv  there exists             

a subsequence, which is still denoted by { }nv~  such that { }nv~  weakly 

converges in ( ( ))O22 ; LL Σ  to some v~  in ( ( )).; 22
OLL Σ  The compactness 

of ( )tS  implies that 
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{ } { }vKBvKB tTntT
~~

EE ∗→∗ ∗
−

∗∗
−

∗  strongly in ( ).2
OL  

According to the definition of ,εI  we have 

( )






 ∗= ∫ ∗

−
∗ε T

ntT

L
n

nn dtvKB
v

wvI

0

2

2 2

1,

2

E  

( ( ) { ( ) }).,~~1
2

2
nnLn

Ln
wHvvI

v
E−π−ε+ E  (3.1) 

In view of the fact ∞→2
Lnv  and equality (3.1) above, by Fatou 

Lemma, we have 

{ }∫ ∗∗
−

∗T

tT dtvKB
0

2~
E  

{ }∫ ∗≤ ∗
−

∗
∞→

T

ntT
n

dtvKB
0

2~inflim E  







 ∗≤ ∫

∗
−

∗
∞→

T

ntT
n

dtvKB
0

2~inflim E  

.0=  

By assumption (H4), we have { } 0~ =vE  according to [1] and further 

.0~ =v  So we can deduce that 

0~ →nv  weakly in ( ( )).; 22
OLL Σ  

Since E  is a finite-dimensional space and Eπ  is compact, we get that 

0~ →π nvE  in ( ( ))O22 ; LL Σ  and so 

( ) .1~lim =π−
∞→

n
n

vI E  
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Then 

( )
2

,
inflim

Ln

nn

n v

wvIε
∞→

>ε  

( ( ) ( ) )nnn
n

wHvvI ,~~inflim −π−ε≥
∞→

E  

,ε=  

which is a contradiction. Now we conclude the result. □ 

Lemma 3.4. For any ([ ] ( )),;,0 2
OF LTCw

t
∈  the functional ( )wI ,⋅ε  

admits a unique minimum ( ( )).;ˆ 22
OLL Σ∈ϕε  

Proof. Lemma 3.3(2) implies that the functional ( ) ( ( ))O22 ;:, LLwI Σ⋅ε  

R→  is coercive, i.e., for any ([ ] ( )),;,0 2
OF LTCw

t
∈  

( )
.

,
inflim

22
ε≥ε

∞→ Lv v

wvI

L

 

Let { }nv ,ε  be a minimizing sequence of ( )., wI ⋅ε  Because of the 

coerciveness of εI  with respect to v, the sequence { }nv ,ε  is bounded in 

( ( )).; 22
OLL Σ  Then there exists a subsequence, which is still denoted by 

{ },, nvε  such that { } εε → vv n ˆ,  weakly in ( ( )).; 22
OLL Σ  By Fatou Lemma, 

we have 

( ) ( )
( ( ))

( ).,inf,inflim,ˆ
22 ;

, wvIwvIwvI
LLv

n
n

ε
Σ∈

εε
∞→

εε =≤
O

 

Thus, εv̂  is a minimum. By the strict convexity of ( ),, wI ⋅ε  the minimum is 

unique. □ 

Hence, for any ([ ] ( )),;,0 2
OF LTCw

t
∈  the functional ( )wI ,⋅ε  admits     

a unique minimum .ˆεv  Define an operator ([ ] ( )) →ε OT F
2;,0: LTC

t
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( ( ))O22 ; LL Σ  by .ˆ: εε → vwT  Then the operator εT  has the following 

properties. 

Lemma 3.5. There exists εM  such that ( ) εε ≤ Mw
L

2T  for any ∈w  

([ ] ( )).;,0 2
OF LTC

t
 

Proof. By Lemma 3.3(2), there exists a constant ,0>εM  such that 

([ ] ( ))

( )
,

2

,
inf

22
;,0

ε≥ε

∈ LLTCw v

wvI

t
OF

 if .2 ε> Mv
L

 

On the other hand, by the definition of ,εT  we have 

( ( ) ) ( ) ,0,0, =≤ εεε wIwwI T  for all ([ ] ( )),;,0 2
OF LTCw

t
∈  (3.2) 

from which we conclude that 

( ) ,2 εε ≤ Mw
L

T  for all ([ ] ( )).;,0 2
OF LTCw

t
∈  

In fact, if there exists ([ ] ( ))OF
2

0 ;,0 LTCw
t

∈  such that ( ) 20 L
wεT  

,ε> M  then 

( ( ) )
( ) ([ ] ( ))

( )
,

2

,
inf

;

222 ;,00

00 ε≥≥ ε

∈ε
εε

LLTCwL v

wvI

w

wwI

t
OF

T

T
 

which contradicts (3.2). □ 

Lemma 3.6. For any { } ([ ] ( ))OF
2;,0 LTCw

tn ⊂  and ∈w  

([ ] ( )),;,0 2
OF LTC

t
 

{ } wwn →  in ([ ] ( ))OF
2;,0 LTC

t
 

implies 

( ) ( ) .0lim 2 =− εε
∞→ Ln

n
ww TT  
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Proof. By Lemma 3.5, we get the boundedness of { } { ( )}.ˆ , nn wv εε = T  

Suppose that { }nv ,ˆε  weakly converges to εv~  as .∞→n  Then, by the 

definitions of εI  and ,εT  we have 

( ) ( ) ( )nn
n

wvIwvIwvI ,ˆinflim,~,ˆ ,εε
∞→

εεεε ≤≤  

( ) ( ),,ˆ,ˆlim wvIwvI n
n

εεεε
∞→

=≤  

from which we know that 

( ) ( )wvIwvI ,~,ˆ εεεε =  

and further εv~  is also a minimum of ( )., wI ⋅ε  By the uniqueness of the 

minimum, we conclude that .ˆ~
εε = vv  So 

( ) ( ),,ˆ,ˆlim , wvIwvI nn
n

εεεε
∞→

=  

∫ ∫ ε
∗

−
∗

ε
∗

−
∗

∞→
∗=∗

T T

tTntT
n

dtvKBdtvKB
0 0

22
, ,ˆˆlim  

( ) ( ) ,,ˆ,ˆlim , wHvwHv nn
n

εε
∞→

=  

( ) ( ) .~inflim~
22 , Ln

n
L

vIvI ε
∞→

ε π−≤π− EE  

These relations show that 

( ) ( ) ,ˆˆlim 22, LLn
n

vIvI εε
∞→

π−=π− EE  

from which we conclude that { }nv ,ˆε  strongly converges to εv̂  in view of the 

fact that ( ( ))O22 ; LL Σ  is a Hilbert space. □ 

Let ( ( ))O22
0 ;, LLyy T Σ∈  be fixed. Define an operator 

([ ] ( )) ([ ] ( ))OO FF
22 ;,0;,0: LTCLTC

tt
→εT  
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as 

( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ε−ε −+−=ω
O O

B
t

stt dzdsysvzxKdzzyzxKxty
0

0 ,:,,T  

( ) ( )( )∫ ∫ ω−+ −
t

st dzdszsyzsfzxK
0

,,,,
O

 

( ) ( ) ( )∫ ∫ σ−+ −
t

st sdzdBszxK
0 O

 

( ) ( ) ( )( )∫ ∫ ω−−α+ −
−αt

st dzdszsyzsgzxKst
0

1
,,,,

O
 

( ) ( )( ) ( )∫ ∫ ∫ θω−+ −
t

U
st dsdudzuzsyzshzxK

0
,,

~
;,,,,

O
 

where ( ) ( )., yKysv st ε
∗
−

∗
ε ∗= TB  It is immediate that a mild solution of 

the equation 

( ) ( ) ( ) ( ) ( )tdBtdtytvdtyxtfydtdy σ++=∆−+ ε
γ

,,, B  

( ) ( ) ( ) ( )∫ θ++ α
U

duuyxthdtyxtg
~

;,,,,  (3.3) 

is a solution of the operator equation yy ε= T  which will be obtained by 

means of Schauder Fixed Point Theorem. 

Lemma 3.7. Under the assumptions (H1), (H2), (H3) and (H4), for           

any ,0>ε  there exists 0>εr  such that ( )( ) ( ),,0,0 εεε ⊂ rBrBT  where 

( ) { ([ ] ( )) }.:;,0,0
2

εε ≤∈= rwLTCwrB
tt CF

OF  

Proof. Assume that the conclusion is not true. Then there exists 0>ε  

such that for any ,0>= εrr  there exists a function ( ),,0 rBwr ∈  but 

( ) ( ),,0 rBwr ∉εT  i.e., there exists [ ]Tt ,0∈  such that ( )( )







∫ ε
O

dxwr
2

TE  

.2
r>  For such t, we can get 
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( )( )






< ∫ ε
O

dxwr r
22

TE  

( ) ( )












−≤ ∫ ∫O O
dxdzzyzxKt

2

06E  

( ) ( )












−+ ∫ ∫ ∫ ε−
O O

B dxdzdsysvzxK
t

st

2

0
,6E  

( ) ( )( )












ω−+ ∫ ∫ ∫ −
O O

dxdzdszsyzsfzxK
t

st

2

0
,,,,6E  

( ) ( ) ( )












σ−+ ∫ ∫ ∫ −
O O

dxsdzdBszxK
t

st

2

0
6E  

( ) ( ) ( )( )












ω−−α+ ∫ ∫ ∫ −
−α

O O
dxdzdszsyzsgzxKst

t

st

2

0

1
,,,,6 E  

( ) ( )( ) ( )












θω−+ ∫ ∫ ∫ ∫ −
O O

dxdsdudzuzsyzshzxK
t

U
st

2

0
,

~
;,,,,6E  

∑
=

=
6

1

.6:

i

iI  

Let us estimate ,6...,,1, =iIi  one by one. We have 

( ) ( )∫ ∫≤
N

dzzydxxKI
R O

,
2

0
2

1  

( ) ,2
0

222
22 2

MMyGI
L

t
εε ≤≤ T  

( ) ( ) ( )∫ ∫ ∫ ΦΛ≤
N

T
dxxdttdxxKI

R 0

2
3 ,

O
 

( )∫≤
N

dxxKMMI
R

,2
324  
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( ) ( ) ( )∫ ∫ Φ+β≤
N

dxxdxxKTI
R O

,1 2
5  

( ) ( ) ( )∫ ∫ ∫ ΦΛ≤
N

T
dxxdttdxxKI

R 0

2
6 ,

O
 

from which we conclude that 

 ,
~

ε≤ Mr  (3.4) 

where εM
~

 is a constant dependent on ε  only. Dividing both the sides of 

(3.4) by r and taking limit as ,∞→r  we obtain that 

,01 ≤  

which is a contradiction. So ( )( ) ( )εε ⊂ rBrB ,0,0T  for some .εr  □ 

Theorem 3.8. Under the conditions (H1), (H2), (H3) and (H4), the 

system (3.3) has a mild solution in ([ ] ( )).;,0 2
OF LTC

t
 

Proof. Similar to Lemmas 3.1 and 3.2, ( )( )εε rB ,0T  is relatively 

compact in ([ ] ( ))OF
2;,0 LTC

t
 and εT  is continuous on ([ ] ( )).;,0 2

OF LTC
t

 

Hence εT  is a completely continuous operator on ([ ] ( )).;,0 2
OF LTC

t
  

From the Schauder Fixed Point Theorem, εT  has a fixed point in 

([ ] ( )).;,0 2
OF LTC

t
 In other words, for any ,0>ε  there exists a solution 

([ ] ( ))OF
2;,0 LTCy

t
∈ε  to equation (3.3). □ 

Theorem 3.9. Under the conditions (H1), (H2), (H3) and (H4), the 

system (1.1) is finite-approximately controllable on [ ].,0 T  

Proof. By Lemma 3.3(1), the strict convexity of εI  implies that 

( )εε yvI ,  has a unique critical point εv̂  which minimizes ( ),, εε yvI  i.e., 

( ( ))O22 ;ˆ LLv Σ∈ε    and   ( )
( ( ))

( ).,min,ˆ
22

;
εε

Σ∈
εεε = yvIyvI

LLv O
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Then for any ( ( ))O22 ; LLv Σ∈  and ,R∈λ  we have 

( ) ( ).,ˆ,ˆ εεεεεε λ+≤ yvvIyvI  

Dividing the above inequality by ,0>λ  we have 

[ ( ) ( )]εεεεεε −λ+λ≤ yvIyvvI ,ˆ,ˆ
1

0  







 ∗λ+∗∗= ∫ ∫

∗
−

∗∗
−

∗
ε

∗
−

∗T T

tTtTtT dtvKBdtvKBvKB
0 0

2

2
,ˆE  

( ) ( ) ( )
( ){ }ε

εε −λ
π−−λ+π−

ε+ yHv
vIvvI

LL ,
ˆˆ 22

E
EE

 

and letting ,0+→λ  we obtain 

( ){ }εyHv,E  







 ∗∗≤ ∫

∗
−

∗
ε

∗
−

∗T

tTtT dtvKBvKB
0

,ˆE  

( ) ( ) ( )
λ

π−−λ+ϕπ−
ε+ εε

→λ +

22 ˆˆ
inflim
0

LL
vIvI EE

 

( ) .,ˆ 2
0

L

T

tTtT vIdtvKBvKB Eπ−ε+






 ∗∗≤ ∫

∗
−

∗
ε

∗
−

∗
E  

Repeating the procedure for the case ,0<λ  we finally get 

( ) ( ) .,,ˆ 2
0

L

T

tTtT vIyHvdtvKBvKB Eπ−ε≤






 −∗∗∫ ε

∗
−

∗
ε

∗
−

∗
E  

On the other hand, we have 

( )∫ ∫ εε
∗

−
∗

−
∗

ε
∗

−
∗ ∗=∗∗

T T

tTtTtT dtvytBuKdtvKBvKB
0 0

,,,,ˆ  

( ) ( ) ( )∫ −−= ∗
ε

O
dzzyzxKyyH TT 0  
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( ) ( )∫ ∫ ε− −−
T

tT dzdtyztfzxK
0

,,
O

 

( ) ( ) ( )∫ ∫ σ−− −
T

tT tdzdBztzxK
0

,
O

 

( ) ( ) ( )∫ ∫ ε−
−α −−α−

T

tT dzdtyztgzxKtT
0

1
,,

O
 

( ) ( ) ( )∫ ∫ ∫ θ−− ε−
T

U
tT dtdudzuyzthzxK

0
.,

~
;,,

O
 

From the arguments above, we conclude that 

( ){ } ( ) 2,
LT vIvyTy Eπ−ε≤−εE  

holds for any ( ( )),; 22
OLLv Σ∈  which implies that 

( ) ,2 ε≤−ε LTyTy  

( ) .TyTy EE π=π ε  

This concludes the finite-approximate controllability. □ 
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