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Abstract

In this paper, a class of nonlocal stochastic control systems with
Brownian motions and Poisson jumps is under consideration. In the
setting of suitable function spaces and under certain assumptions, the
finite-approximate controllability is discussed by means of variational
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method. After providing some properties of the variational functional,
we use Schauder Fixed Point Theorem to obtain the existence of mild
solutions. Finally, the finite-approximate controllability of the systems

is concluded.
1. Introduction

Controllability concepts for various deterministic and stochastic
semilinear evolution systems have been studied in many fields by means
of various methods. There are many different concepts of controllability for
evolution equations: approximate controllability, exact null controllability,
finite-approximate controllability and so on. There are many papers on
approximate controllability of semilinear evolution systems in infinite
dimensional spaces, see [1-8] and the references therein. Some authors
have studied exact controllability of differential control systems, see [9-13]
and the references therein. Finite-approximate controllability of fractional

semilinear evolution systems is studied in [14, 15].

Compared with the integer order calculus, fractional calculus, containing
differentiation and integration of an arbitrary real order, has a history of
more than three hundred years. Many real world phenomena can be better
described by using fractional operators. In fact, there are many applications
of fractional calculus in anomalous diffusion, random walk, nonlocal
elasticity, and memory materials, see [16-22] and the references therein. The
fractional calculus has been acknowledged as a promising mathematical tool
to efficiently characterize the historical memory and global correlation of

complex dynamic systems, phenomena or structures.
We are interested in the controllability of the following nonlocal
stochastic control problem:
dy + (-8)ydt = f(t, x, y)dt + Bvdt + o(r)dB(t),
+ ot x, y)(dr)* + j At 3 w)(du, 1), 1 0(0.7], x DO,

y(O, x) = yo(x), xQdo,
y(t, x) =0, x0 RM\O.

(1.1
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To better understand the meaning of problem (1.1), we explain the

symbols and notions concerning problem (1.1) in the following:

« © OR" is abounded domain.
. a D(%,l), vO(0,1), T 0(0, @) and N > 2y.

* (=A)Y is the fractional Laplacian operator.

* The drift terms fand g are functions from [0, T|x O xR to R.

e o(t) DA W, [2(0)) for any r0[0,T] and B is a W-valued
cylindrical Brownian motion, where W is a given real and separable Hilbert
space.

 Let V be a Hilbert space. Assume that control v [J LZ([O, 7], V) and
operator B0 £(V, I*(0)) which is the space of all bounded linear

operators from V to I’ (0).

e Let (U, B(U), e) be a o-finite measurable space. & is a function from

[0, T]*OxRxU to R. B denotes the compensated Poisson martingale

measure.

* (dt)® is a fractional differential in the sense of Jumarie [23].

Problem (1.1) strongly depends on the ranges of o, y and N. There are

two main contributions in this paper:

(1) Utilize a reasonable framework of mild solutions and overcome the
complex calculations caused by not only fractional differential operators
but also Brownian motions and Poisson jumps. Establish the existence and
uniqueness of the mild solution to nonlocal stochastic control problems by
Schauder Fixed Point Theorem.

(2) Establish sufficient conditions to the finite-approximate

controllability of nonlocal stochastic control problems by means of a
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variational method. Propose a variational functional and obtain some
properties of the variational functional. At last conclude the finite-

approximate controllability result.

The paper is organized as follows. In Section 2, we introduce basic
concepts and results. In Section 3, we prove the existence and uniqueness
of mild solution and establish the finite-approximate controllability of the

nonlocal stochastic control problems.
2. Preliminaries

In this section, we introduce basic concepts and results.
2.1. Brownian motions

Let (%, Z, P, %) be a complete probability space with a filtration

{'%}rD[O ) which satisfies usual conditions. A one-dimensional fractional

Brownian motion {B(t)}tD[O 7] is a Gaussian process which has zero mean

and its covariance is
Cov(s, t) = E[B(t), B(s)] = fs.

Brownian motions can be expressed by Wiener processes.

Let {w;}'~, be an orthonormal basis of W and £ (W) be the space of all

bounded linear operators on W. Let A0 ZL(W) be a symmetric,

00
nonnegative operator and Aw; = A;w;, i =1, 2, ..., with trAd = Z)\,— < oo,
i=1

The infinite dimensional fractional Brownian motion {B (t)}tD[O 7] i

defined by

(o]

Ba() = > N 2w (1),

i=1

where {Bl}f’;l is a sequence of independent one-dimensional fractional
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Brownian motions. B4 has zero mean and covariance COV<B (1), p)
(B 4(s), v) = Cov(t, s)(Ap, v), for any ¢, sO[0,7] and p,vOW. In
this paper, we consider the cylindrical Brownian motion B, i.e., A; =1,
i=12, ...

Let ZZO (w, LZ(O)) be the space of Hilbert-Schmidt operators. An

operator g [J .,S,’ZO W, 12(0)) satisfies g 0 £(W, [>(0)) and

00
—12 — 2
IIgII%O —ZII gwilly <o
i=1

[oe]
Endowed with the inner product (g, g) 2= D (8w, §wi) 2.
i=1

(,2”20 w, 12(0)), <DD:|$20) is a separable Hilbert space. We recall the
following inequality:
Lemma 2.1 (See [18]). Let g:[0,T] » LW, 2(0)) and

jOT"g(s)”;Ods <. Then stochastic integral Jég(s)dB(s) is a well
2

defined I (O) -valued random variable and satisfies

EH [ ; 2(5)dB(s) ; = | ; || g(s)||;20 ds, ¢ 0o, T].

2.2. Poisson jumps
Let (U, B(U), ) be a o-finite measurable space and {T,} 100, ) be a

stationary Poisson point process which is defined on (Z, Z, P) and take

values in U. The compensated Poisson martingale measure B is defined as



6 Qiaobin Fu and Yonggiang Fu
B(du, 1) = 6(du, 1) - e(du)t, Ot O[0, ),
where 0 is a counting measure which is generated by {T[t}tD[O )" B has

zero mean and variance E[0(du, 1)]* = te(du).

Let M ;2([0, T]x U, I*(0)) be the space of & x B(U) measurable

processes with finite second moments and be equipped with the norm
[ o =B[ [ s, y: ) Pyelan)s
M4 odu' T2 '
,2 2
If hOM 5 ([0, T]xU, L7(0)), then
t ~
IO JU h(s, x, y; u)0(du, ds), Ot 0O [0, T]

is a LZ(Z; LZ(O)) -valued random process which has zero mean.

Furthermore, recall Theorem 6.1 in [24]:

Lemma 2.2. If hOM ;;2([0, T]xU, I*(0)), then the isomorphic
formula

2

t ~
EH IO -[U h(s, y; u)0(du, ds) 2

t
= T
= E.[o IU | As, v u) [y e(du)ds, O D [0, 7]

holds. Moreover, the following inequality holds:

2

J ; [, s, v: u)Ba. ds)

sup E‘

t0[0,7] I

T
. 2
< 4EIO IU | At y: u) |2, eldu)dr. 0T >o.



Finite-approximate Controllability 7
2.3. Fractional differentials and fractional Laplacian operators

The relationship between the fractional differential and the classical
differential of y is:

d% =T(a+1)df, 0<ac<l.

Here, “d%” and “d” are referred to as the fractional and classical

differentials, respectively. We have
Definition 2.3 (See [25]). Let a O (0, 1], and y denote a continuous

function. Then the integral of y with respect to (df)® is defined as

[ @) =af =5 5(6)ds

There are several approaches to define the fractional Laplacian

operators. We introduce the definition by means of Fourier transform F,

FICA)Y y(@)] =[PV Fy(x), yO(0,1).
Consider the following space-fractional diffusion equation:

{yt +(-0)y =0, (x ) ORY x(0, w),

2.1
y(x, 0) = yo(x), xORY,

By the theory of semigroups of bounded linear operators, the solution of

(2.1) can be written as
—+(=A)Y
¥(1) = (1) yo = e g,
while by means of Fourier transformation, we also have
_1, —4 512y 1, _Jdz 2y
v 1) = F T F () = F T Oyo(x) = K, Oy,
where K, is defined as

1
K, (x) = (2T[)N
8(x), if 1=0,

. _ 2y
jRN BN E T gE, if 1 20,
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It is obvious that if ¢ # 0, then

N
K (x)=1 K| |,
£2v

where

_ 1 ixg | & [2Y
K (x) (2T[)N IRNe e dt.

Let the space
HY(0) = {f O@N): [ @+ 8] Zr(€)Pde <o
and u =0, a.e. in RN\O}

be endowed with the norm

| £ vy = 20V W' [y 1€ Y Fr ()P

where C(N,y) is a constant dependent on N and Y. Let HY(O) denote the

closure of Cg’(O) in HY(O). We recall the embedding result in [26].

Lemma 2.4 (See [26]). Let Yy (0, 1), the space H (\)/ (O) is compactly

embedded in Lz((’)), and
” f ”2 S C” f ”H(\)"

Fractional Laplacian can be extended to H (\)/ (0), ie., (-A)Y:H (\)/ (0)

- I3(0). Let {S(t)},50 be the semigroup generated by (-A)Y. Then

{S(t)}tZO is a Cy-contraction semigroup on LZ(O). On the other hand,

since the embedding from H (\)/ (0) to ? (O) is compact, we get
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Proposition 2.5. S(t): I’ 0) - ’ (O) is a compact operator for any
t20.

From [27], we have the following lemmas:

Lemma2.6. K 0 L°(RY)NC(RY) and lim K(x)=0.

| x|~
Lemma 2.7. | K(x)| < C(1 +|x )™ ™% and further K OLP(R") for
any p O[1, ®].
L -N-1 P NWN
emma 2.8. | 0K (x)| < C(1 +]| x|) and further OK O (L” (R™))
forany p O], o).

Let

T
(= [ K- BB, (s,

T
GT = I . K- BBKE_ ds,

where BY is the adjoint operator of B. It is easy to see that YT O

.,S,’(LZ(Z, Lz((’)))) and G' O LZ((’)) can be called the controllability
Gramian of the control problem (1.1). By the boundedness of K and B, we

can assume that for any t 0|0, T], || G' |, < M for some constant M.
2.4. Function spaces

Let I2(Z, I2(0)) be the set of all Z measurable random variables
such that

1212, = E{IZ[3} < .

We use notation Lzyt (o, T]; H(\)’ (0)) to denote the space of all F,-

adapted random processes such that
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T
Iy, = E{ [ EA ydr} <o
Ly -T HO

4

Let Cg =Cg ([0, T]; I2(©)) be the space of all continuous random

processes from [O, T] to Lz((’)), a.s., with essentially finite second moments

and be endowed with the following norm:

I vIE, = s B y(r, D3}
R (00, T] g

Let 2(T) be the set of all stochastic processes with the following

properties:
(1) y 0L (0. 7% H(©) N € (0. T £2(0)):
2 ¥(0, x) = yo(x), as., forall x 0 O;

(3) y(t, x) =0, as., forall (¢, x) O[0, T] x (RMN\O).
Then the definition of mild solutions is given by

Definition 2.9. We call y 0 2(T) a mild solution of problem (1.1) if for

any ¢ 0 [0, T], y satisfies the following formula:

t t
y =K, Oy + IO K,_, DBvds + IO K,_, Ofds
f ! a-1
+ IO K,_, OodB(s) + C(IO (t=s)"" K;—s Ogds

t ~
+ K._. OhB(du, ds), a.s.,
[ ], Ki-s OnBlau, ds)
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or equivalently,

)= IO Kl = 2)yole)ds + Jot Io K;—(x = 2) Bu(s) (z) dzds
d| 0 [ Kimsle =) £ (s, 22 5o, 2. 0)dzds
¥ J; IO K (x = 2)0(s)dzdB(s)
waf (=5 Kimglx = 2gls 2 3o 2 0)dads

t ~
+ JO IU JO K,_ (x = 2)h(s, z, ¥(s, z, w); u)dz0(du, ds), a.s.,
if each integral is well defined.

Definition 2.10. Let € be a finite dimensional subspace of L*(Z; I>(0))

and denote by Tic the orthogonal projection from I (% I’ (0)) onto €.
The system of the control problem (1.1) is said to be finite-approximately

controllable if for given any yq, yr U I? (% 1 (0)) and € > 0, there exists
a control v [ I ([0, T], V) such that the solution y, O C Z (o, T]; I? (0))

to the control problem (1.1) satisfies
I ye(T) = yr 2 <&
Teye(T) = Ty
3. Finite-approximate Controllability
We propose the following hypotheses on nonlinear functions f, g, ¢ and

(H1) For any ¢t [ [O, T], x OO and y OR, there exist a constant 3 >0
and positive functions A O L[0, T] and ® O L(O) such that f, g and &
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satisfy

| £t % ¥) P < A (x),
| (e, x, y)|> < B(x).
j e x i) Pe(du) < A1) D(x).

(H2) For any tD[O, T], xOO and yOR, there exists a constant
L > 0 such that f, g and h satisfy

max{| f(z, x, y1) = f(t. x. y2) || g(t, x. y1) = g(t, x, y2) }

<My =2l

IU|h(t, X, V5 u) - h(t, X, V5 u)|e(du) < L| Yy~ ¥ |
(H3) 0:[0, T] - &) (W; [2(0)) satisfies

()12, < My, Cr0fo. 7],
2

where the constant M, > 0.
H4) k(kI +GT)™' 0 L(1?(0)) satisfies

I k(i +GT) ™| = 0as k - 0.

The finite-approximate controllability is based on the fact that the
finite-approximate controllability can be viewed as the limit of a sequence

of optimal control problems. More precisely, for € > 0, we introduce the

following functional:

I(v, w) = %E{JO I()T JO | BDKTD_t(x - 2)v(z, W) ||dzdtdx}

+ e (1 = 1e)v(z, ) [ 2 ~B{(v, H(w)},
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where

H(z) = H(z) + H(z),

T
Hy(z) = yr - IO JO Kp_ (x = 2) f(t, z, w(t, z, w))dzdt
- I()T IO Kp_(x = z)o(t, z)dzdB(t)
- (J(I()T (T -1)* _1-[(9 Kr_(x = 2)g(t, z, w(t, z, w))dzdt

- L)T JU IO K- (x = 2)h(t, z, wlt, z, 0); u)dz8(du, dr),

Hy(w) = =[ K= 2) o 2) ez
o
Lemma 3.1. The set W ={H(w) : w0 C£ ([0, T]; L2(O))} is relatively
compact in LZ(Z, r’ (0)).

Proof. For any ¢ [ [O, T], x0O and w0 Z, we have

j (e ., ) Pdx < A() j , @x)dx < C().

where C(t) is a constant dependent on ¢ only. Let {w,} be a sequence
in Cgr (o, T]; LZ(O)). By the compactness of S(t), there exists a

subsequence of {w,}, which is still denoted by {w,}, such that

&(t, x, w) = lim OKT—t(x -2)f(t, 7. w,(t, 7, W))dz ae.

n— o
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for some & [ L?% (o, T]; Lz((’))). As
2

‘J.O Kr_(x = 2)f(t, z, w, (2, z, w))dz

< A(r) j i K2(x)dx j , @(x)dx < CAQ).

where C is a constant independent of ¢, x and w, by Lebesgue Dominated

: 2 2
Convergence Theorem, in L 7z ([0, T]; 17(O)), we have

lim OKT_t(x -2)f(t, z, w,(t, 7, W))dz = &(t, x w),

n— o

ie.,in 2(Z, [2(0)),

lim JTJ Kr_(x=2) f(r, z, w(t, z w))dzdt=ITE(t x W)dt
0JO T= n o 0 ’ ’

n— o

In the same way, we can deal with the other terms and conclude that

there exists a subsequence of {w,}, which is still denoted by {w,}, such

that {H(w,,)} is convergent in ? (% ? (0)). g

Lemma 3.2. The operator H : Cr, (o, T]; I2(0)) - I2(=, I}(0)) is

continuous.
Proof. Assume that {w,} O Cr ([0, T}; *(0)) and {w,} - w in

Cr, ([o, T]; ’ (0)). By Cauchy inequality, we get
L 2
E JOIO IO K7 (x=2)| £, 2o w, (7, z, W) = £ (2, z, w(t, z, w))|“ dzdrdx

< LJRN KZ(X)dXE{IO J(,Tl w, (¢, z, W) —w(t, z, (,3)|2dzdt}

—>O,

as n - oo,
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In the same way, we can deal with the other terms and conclude that H is

continuous from Cz ([0, T]; I’ (0)) to LZ(Z, LZ(O)). (]

Lemma 3.3. The functional I 12 (z, r’ (0))xc F, ([0, T]; I’ (0)) - R
has the following properties:

(1) Ig is strictly convex and continuous with respect to v r (= I? (0))

forany wl Cg, (o, T]; LZ((’))).

(2) liminf inf Te(v. w) 5 o

IVl2 = wicy, (0.7} 20y V122

Proof. (1) It is obvious that I; 1is strictly convex with respect to

vOI2(%; 12(0)).
For any wUOCyg, (o, 7]); 12(0)), {v,} O I*(Z; I?(0)) such that

{v,} > vin LZ(Z; LZ(O)), we have

5] Jo [ B G e )

= | B, (x = 2)v(z, ) | dzdtdz}

_ T OO _ O O

=|E ol 0<KT_tBB Kr—, v,,v,)—(Ky_,BB K, Ov, v)dzdtdx
_ T OO

=|E IOIO IO(KT_,BB KE, Ov,, v, =)

+(Ky_BBKF_, O(v, = v), v)dzdidx H
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SIGT 18], vnllvn =1+ = vl] |z}
1 1
<|G" ||E{IO| v |2 #| v|2dz}§E{J.O| Vy — v|2dz}5
- 0,
as n — oo. Therefore, I is continuous with respect to v [ ? (% 1? (0)).

(2) We prove by contradiction. If not, then here exist sequences {v,}
2 2 2
0 L°(% L°(0)) and {w,} O Cr, ([0, T]: L7(0)) such that |v|.2 — oo,

but

iming Je0n Wa) o
n-oo ” Vi ”L2

By Lemma 3.1, the set

W ={H(Ww):wO Cr, (o, T); Z2(O))}

is relatively compact in ? (% 1? (0)), so there exists a subsequence, which

is still denoted by h(w),), such that
H(w,) - h strongly in I2(Z; I2(0)),
for some £ [J LZ(Z; 1? (0)).

vl’l
v 12

a subsequence, which is still denoted by {V,} such that {V,} weakly

Next, we normalize v, by ¥, = . As || ¥, [,2 =1, there exists

converges in LZ(Z; LZ(O)) to some V in LZ(Z; LZ(O)). The compactness
of S(t) implies that
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BDKTD_t OE{v,} - BDKTD_t OE{?} strongly in LZ(O).

According to the definition of I, we have

T
Is(V_ZW) - %E{j | BK7-, Ov, IIZdZ}
Iva I, ’

1

+
v 12

(el (7 = 1), 2 BT, H(w, ). G.D)

In view of the fact |[v, [,2 - o and equality (3.1) above, by Fatou

Lemma, we have

T
[ I18%-, OB(3)} P as

T
< liminf I NS CATR
- 0

T
< liminf E{JO | B%F_, 07, ||2dt}

n—
=0,

By assumption (H4), we have E{V} =0 according to [1] and further

v = 0. So we can deduce that
v, — 0 weakly in LZ(Z; LZ(O)).

Since & is a finite-dimensional space and Tz is compact, we get that

ey, — 0 in LZ(Z; LZ(O)) and so

lim || (7 = 7g)¥, | = 1.

n— oo
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Then
> liminf £0/: W)
new a2
> timinf (e (7 = )7, | = (7. H#(v,)
=g,
which is a contradiction. Now we conclude the result. O

Lemma 3.4. For any wl Cg, ([0, T]; I’ (0)), the functional I(Qw)
admits a unique minimum §¢ O I’ (Z; ’ (0)).

Proof. Lemma 3.3(2) implies that the functional I (Qw) : L2(Z; I2(0))

- R iscoercive, i.e., for any w [ C]_—t ([o, T]; LZ(O)),

Ig(v, w) S

lim inf > €.

[vlpz—o [vI2

Let {Vs,n} be a minimizing sequence of I¢(LJw). Because of the
coerciveness of Iz with respect to v, the sequence {vs’n} is bounded in
LZ(Z; I (O)). Then there exists a subsequence, which is still denoted by

{ve.n}. such that {vg ,} — V¢ weakly in [%(Z; 12(0)). By Fatou Lemma,

we have

Ig(Ve, w) < liminf Ig(vg ,, w) = inf I (v, w).
n— vy (= ? (0))

Thus, V¢ is a minimum. By the strict convexity of IS(D w), the minimum is

unique. ([

Hence, for any w O Cr, ([0, T]; I2(©)), the functional I4(Dw) admits

a unique minimum V. Define an operator 7 :Cr, (o, T]; I2(0)) -
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LZ(Z; ? (O)) by T¢:w — V. Then the operator 7 ¢ has the following

properties.

Lemma 3.5. There exists M such that | T ¢(w) |2 < Mg for any w L
2
cr, (0, T 2(0)).
Proof. By Lemma 3.3(2), there exists a constant M¢ > 0, such that

inf (v, w)
wlCr, (0.7} 12(0)) v

On the other hand, by the definition of 7 ¢, we have
Ie(T ¢(w). w) < I(0. w) = 0, forall wO Cr ([0, Tk L2(0)).  (3.2)
from which we conclude that

| Te(w) |2 < Mg, forall w0 Cg, (0. T): L2(0)).

In fact, if there exists wy 0 Cr, ([0, T]; 12(0)) such that || 7 ¢(wp) | 2

> M, then
IS(TS(WO); W()) > inf IS(V’ W) > €
[ 7 ¢(wo) "L2 wicr, (0.7} *(0)) v ||L2 2
which contradicts (3.2). O

Lemma 3.6. For any {w,} O Cr, ([o, T]; LZ(O)) and wU
cr, (0. 7% 2(O)),
fo — win Cr, (0, 71 12(0))
implies

lim [ 7¢(0,) = Te(w) |2 =0.

n -0
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Proof. By Lemma 3.5, we get the boundedness of {‘Gs,n} ={T¢(w,)}.
Suppose that {‘Gs,n} weakly converges to Vg as n — oo. Then, by the

definitions of I, and 7 ¢, we have

Ig(Vg, w) < I (Ve, w) < liminf I(V . wy)
n — 0o

< lim Ig(Vg, w,) = I (Dg, w),
n — 0o

from which we know that
Is(‘;s’ W) = Ie(gs’ W)

and further ¥ is also a minimum of I¢([Jw). By the uniqueness of the

minimum, we conclude that V¢ = V¢. So

lim I¢ (e . wy) = Le(Ve. w),
n — oo

T T
tim | | BUKTL O, [P = j 1B, 08 [Pt

n— o

lim (% ,, H(w,)) = (b, H(w)),

n— o
I (7 =1e) e |2 < lir{nigfll (I = 1) Ve n [ 2-
These relations show that

nlinio I (- T[S)‘;s,n "L2 = (1 - 1)V ||L2’

from which we conclude that {‘Gs, 4} strongly converges to Vg in view of the

fact that I (% 1? (O)) is a Hilbert space. g
L 2(s. 12 . .
et vo, yr O L°(Z; L7(O)) be fixed. Define an operator

% : Cr, (0.7 2(0)) - Cx, (0. 7} 2(0))
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as

(Tey) (t, x, ) = IO K (x = 2)yo(z)dz + I; jo K, (x  2)Brg(s, y)dzds
' I;IO Ki—s(x=2) f(s, 2. ¥(s, 2, w))dzds
* J(Z IO K,_s(x = z)o(s)dzdB(s)

waf (=) King(e = 2alo 2 5(s. 2 @l)asds

+ J; IU JO K,—(x = 2)h(s, z. y(s, z, w); u)dzB(du, ds),

where v (s, y) = BDKF_S O7¢(y). It is immediate that a mild solution of

the equation

dy + (=0) ydt = f(t, x, y)dt + Bvg(t, y)dr + o(t)dB(t)
+glx @) + [ hex yiu)Blan) 33

is a solution of the operator equation y = %,y which will be obtained by

means of Schauder Fixed Point Theorem.

Lemma 3.7. Under the assumptions (H1), (H2), (H3) and (H4), for
any € >0, there exists 1, >0 such that T(B(0, ) O B(0, ry), where

B0, 1) = (w0 Cr, (0.7} 2(O): | wle,., < )

Proof. Assume that the conclusion is not true. Then there exists € > 0

such that for any r =r >0, there exists a function w, U B(O, r), but
T (w,) O B(0, r), i.e., there exists ¢ 0 [0, T] such that E{j o (T (w,))? dx}

> 2. For such t, we can get
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2 < E{ I (‘Is(wr))zdx}
2dx}

t
J.O J.(’) K,_ (x = 2)Bve(s, y)dzds

< 6E{J.O‘ J.O K, (x = 2)yo(z)dz

¥ 6E{:O

+ 6E{j0 [0 Kimslo =2 s 2 5 22 ) s
. 2

+ 6E{. o dx}

+ 6GE{J.O J.t(t - s)G_IJ.O K, (x=2)g(s, z, ¥(s, z, w))dzds

2
dx}

2
dx}

[ [ Kyl = 2)0ls)dedB(s)

0

2
dx}
2
dx}

ot ~
OIU IO K, (x = 2)h(s, z, y(s, z, w); u)dz6(du, ds)

Let us estimate /;, i =1, ..., 6, one by one. We have
I < j K2(x)dx j | yo(2) Pz,
RN o

I < " G' "%” Ts()’) "iz s MSZM(%’

b [y K2 OT NG| @),

14 < M2M3J.RN KZ(X)dX,
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Is <B(L+T) j i K2(x)dx j , @(x)ds,

I < [y K2 OT NG| @),

from which we conclude that
r< Ms, (3.4)

where M ¢ 18 a constant dependent on € only. Dividing both the sides of

(3.4) by r and taking limit as » — oo, we obtain that

1<0,
which is a contradiction. So T(B(0, 7)) O B(0, r;) for some 7. g

Theorem 3.8. Under the conditions (H1), (H2), (H3) and (H4), the
system (3.3) has a mild solution in Cr (o, T]; I 0)).

Proof. Similar to Lemmas 3.1 and 3.2, T (B(0, ry)) is relatively
compact in Cy, (o, T]; LZ(O)) and T is continuous on Cy, ([0, T]; I’ (0)).
Hence % is a completely continuous operator on Cr, (o, T]; LZ(O)).
From the Schauder Fixed Point Theorem, %, has a fixed point in

Cr, ([o, T]; r’ (0)). In other words, for any € >0, there exists a solution

ye UCE, (o, T]; I (0)) to equation (3.3). g

Theorem 3.9. Under the conditions (H1), (H2), (H3) and (H4), the
system (1.1) is finite-approximately controllable on [0, T].

Proof. By Lemma 3.3(1), the strict convexity of [ implies that

I¢(v, y¢) has a unique critical point ¥ which minimizes I¢(v, y¢), i.e.,

Ve U Lz(z§ LZ(O)) and I¢(Ve, ve) = min Ie(v, ye)-
VLA (2 12(0))
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Then for any v U LZ(Z; LZ(O)) and A O R, we have
Ig (P, ye) < Ie(Pe +Av, ye).

Dividing the above inequality by A > 0, we have

0= X[Is(ﬁs +Av, )’8) - Ie(‘;sn )’s)]
T T
= E{ | | (BUKTL, D6, BKT, Ov)ar + % | NS Sl ||2dt}

e | (I =ng) (e +Av) ||)€2 —| (1 - mg)e |2 - E{(v, H(ye))}

and letting A — 0%, we obtain

E{(v, H (ye )}

T
< E{Jo (BT, 07, YKL, Dv)dt}

et L TE) @+ M) 2 =1 (= )i |2
Aot A

T
< E{JO (BYKY., 0%, Bk, Dv)dt} +g| (I -Te)v 2.
Repeating the procedure for the case A < 0, we finally get

w17 %D s poD _ < _
0 (B"Kr—; OV, BKp—, Ovydr = (v, H(ye))p| < €| (I —1¢)v [ 2.

On the other hand, we have
T 00 cn pOpO _ (7, .o
jo (BT, O, BT, Ovyar = I (K= DBug(t. ye). v) .

Hye) = yr = [ K7(x = 2)o(e)ds
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- IZ IO Ky, (x = 2) f(t, 2, y¢)dzdt
T
- IO IO Kp_(x = z)o(t, z)dzdB(t)
“af =07 Ky = a2

- I()T IU IO Kr—,(x = 2)h(t, z, ve; u)dz0(du, di).
From the arguments above, we conclude that
| E{(ye(T) =y, v} < €] (1 - Tig)v ] 2
holds for any v U I (% 1? (0)), which implies that
| ye(T) = yr |2 <&
Teye(T) = Mg yr.

This concludes the finite-approximate controllability. (]
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