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Abstract

Such qualitative issues which bound up with existence of a solution
for the inverse problem of systems analysis as realization solvability
(sufficient conditions) of the operator functions of the polylinear
regulator for a non-stationary hyperbolic system, which contains given
(finite/countable/continual) nonlinear bundles of infinite-dimensional
controlled dynamic processes in the capacity of admissible solutions
in a separable Hilbert space, are investigated.

0. Introduction

The theory of differential realization represents (and will probably
represent in the future) a rather active domain of mathematical
investigations. In the present context, this paper implies continuation of
investigations conducted in the domain indicated [1-3]. Meanwhile, this
paper has been constructed in some sense as a philosophical sketch. The
point is that its principal objective presumes investigation of the existential
proving of existence of special operator functions' of the invariant polylinear
regulator for a non-stationary hyperbolic system; although, some of the
results may be extended also to stationary cases [4-7]. Invariance of the
regulator presupposes that the scrutinized (modeled) hyperbolic system shall
contain a fixed finite family of nonlinear dynamic bundles-processes in the
class of feasible solutions; furthermore, each bundle is unbounded with
respect to the power (finite/countable/continual) and induced by its

(individual) regulator.

"This circumstance reduces the problem of structural identification of the system’s
nonlinear regulator (understood as a posteriori realization of its general polylinear structure)
to a more tangible solvability problem of realization of the adaptation (adjusted a posteriori)
operator functions presuming multiplicative representation of i-linear additive terms of this
construction; another (more radical) approach is bound up with identification of operators
from i-multiple tensor products of Hilbert spaces, in particular, subspaces of the Fock space

[8].
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1. Terminology and Problem Statement

From now on, (X.[dy). (¥.[dy). (Z.[d,). i=1..n, are
real separable Hilbert spaces (the property of pre-Hilbertability [8] is
determined by norms || E[]X, | Eﬂy, | [ﬂz), U:=YXxZ x---xZ, is a Hilbert

space product with the norm

1/2
— 2 2
L | P (ETE Y BT

L(Y, X) is a Banach space with the operator norm | [ L(v. x) of all linear

continuous operators acting from Y into X (similarly, (Z(X, X), || Ol L(x X))
and (L(Z;, X), | [ﬂL(Z X)))’ X' is the ith Cartesian degree of space X,

Z(x | Z;) is the space of all continuous i-linear (polylinear) mappings

from X into Z;.

Let T:=[tg,t;] be a segment of a numerical line R with the
Lebesgue measure W; and [}, be 0-algebra of all p-measurable subsets from
T. When (.3, |]) denotes some Banach space below, LP(T, u, B),
p O[l, ®) denotes a Banach factor space of classes of p-equivalence

for all the Bochner integrable [8] mappings f :7T — .5 with norm

Space I(X k z ) is linear (as the spaces of functions with the values laying in the vector
space Z: addition and multiplication by a scalar is conducted pointwisely), furthermore,
BO I(Xk, Z) is understood as a relation z = B(x, ..., x,) between the ordered systems
(%1, ..., x;) of elements from X and the elements from Z, which is linear with respect to
each x;, other elements being fixed, and for some ¢ <0, it satisfies || B(x, ..., x¢) |,
< x|y xlly: this is equivalent: for each i and for any X, ..., X;_1, X;41, o X O X,

it is true that x; = B(x, ..., x;, ..., %) O L(X, Z).
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I/p
(-[T” f(x) ||pu(dr)j <o0; Ley(T, W, -B) denotes a space of all (equivalent

class) p-measurable and p-substantially bounded functions from T into .3.

Furthermore, henceforth, ACl(T, X) is a set of all functions ¢:7 - X,

whose first derivative is absolutely continuous on T (with respect to measure

W), moreover, for the purpose of simplicity, let us introduce the denotation
M= ACY(T, X) x Ly(T' w, ¥) % Ly(T 1, 1) X+ Ly (T’ W, Z,).
Denote by

Hy = Ly(T, W Y)x Ly(T. W, Zy) % - x Ln (T, W, Z,,)

a space-product with the topology induced by the norm

1/2
1050 )y = ([, 10500 (DB (s ) T

obviously, H, is a Hilbert space (due to [8] the construction of norm
)
Next, consider the Banach space-product
Ly = Ly(T, p, LYY, X)) Ly(T. W, L2y, X)) % - x Lo (T, . L(Z,,, X))

for p-equivalence classes of ordered systems of operator functions with the

norm

1/2
1Bosen Bl =( [ (18601 * Xy B )]

Let there be given operator functions Ay, A O L(T, W, L(X, X)),
Ay O Ly (T, Y, L(X, X)); p-almost everywhere on T operator Ay(z), t O T,
is self-conjugated and strongly positive definite; furthermore, fixed are the

natural number 7, i-linear mappings B; (X, Z;),i=1,..,n and

Ny O{(x, u, By(x), ..., B,(x, ..., x)) O M}, Card N; < exp0y,
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N, O{(x, u, B{(x), ..., B,,(x, ..., x)) O M}, Card Ny < exp0y, (1)

represent two fixed variants of behavior of the scrutinized dynamic system
with trajectories x, programmed control u# and positional feedbacks (forms)
By (x), e By, (x, ey x), furthermore, Ny (1 N, = O; henceforth, Card Nj is

power of the set (bundle) N;, U -aleph-zero. It is clear that
Bi(x, ... x) O Lo(T, W, Z;), i=1,..,n,
(x, u, Bl(x), ey Bn(x, ey x)) O Nj, j=12.

Let us also agree to differentiate in the denotations between the

vector function (x, u, By(x), ..., B, (x, ..., x)) O as a class of equivalence
(mod u) and a definite representative of this class, i.e., an “individual”

vector function ¢ — (x(t), u(t), B;(x(2)), ..., B, (x(z), ..., x(¢))).

Furthermore, we assume that in reality, the controlled dynamic bundles

Ny, N, are solutions of one hyperbolic system with different polylinear

regulators:

[(BOI’ . Bnl) O L2 : D(X, u, BI(X), . Bn(x, ceey .X)) O Nl’
Azdzx/dt2 + Aydx/dt + Agx = Boju + Zi:l nBilBl-(x, ey X),
[(B()z, veey an) a L2 . D(x, u, Bl(x), ceey Bn(x, ceey .X')) a N2,

Ayd®x]dr® + Adx/dt + Agx = Bopu + ) BBy, . %),

i=1,...

(Bot» - Buy) # (Bops s Bi2): ()

from now on, on account of Lemma 1 [1], as regards the analytical
construction of the x-solution, we follow the provisions of Section 121 in
[9].

Consider the following problem: Determine (in terms of trajectories

of the joint bundle N;U N,) the analytical conditions of existence of
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the ordered system of operator functions (B(;r s e B,:r )OL,, for which

differential realization of the dynamic bundle N, := Ny U N, of the form

Ayd®x]dr® + Adx/dt + Agx = Bou + )

(x, u, Bl(x), - Bn(x, . x)) ONg; 3)

is implementable. Meanwhile, statement of the converse problem (3) gives a
number of theoretical schemes’, which correctly explain the physics reality.
Furthermore, this approach is a way to development of a new kind of
mathematical intuition. Such an intuition is based on the “differential - a

posteriori” modeling of complex hyperbolic systems [10].

Remark 1. Note that there are no structural obstacles® for extending the
results obtained and described below onto the qualitative theory of
realization of the invariant regulator of hyperbolic system (3), which

includes into its content polylinear operators, i.e., programmed positional
links from Z(X ixy, Z;), and includes (in the capacity of additional
variables) k-times (k < i) derivative dx/dt and once programmed control
u; obviously, for the given problem statement, B(x, - dx/dt, oy u)D
Ly(T, U, Z;) for any mapping B DI(Xi xY, Z;). Furthermore, if the
problem of solvability of realization of polylinear forms from

I(X ixy , Z; ), i =1, ..., n, is stated for the differential realization (3), then

3In [2], another (geometric) consideration of the converse problem (3) is briefly discussed,
and a variant of its solution (Theorem 3 [2]) is given. In Section 4, this consideration obtained
further development (it is embodied in the formulation of Theorem 2 and its Corollary 3)
under definite constraints upon the power of dynamic bundles N;, N,.

“This may not be stated with regard to the structure of the regulator with the programmed
positional links from Z(X Ixy/, Z[j), j =2, because in the given case, i.e., when the
domain of definition of operator B0 Z(X' x Y/, Zij), J = 2 includes variable u (control)
Jj-times, condition B(x, e dx/dt, e u) O IQ(T, H, Zij) may fail to be satisfied (see the

comment in Note 2 above).



Semiadditivity of the Entropy Rayleigh-Ritz Operator ... 187

construction of the tensor product’ of Hilbert spaces [8] may be the
foundation of the mathematical apparatus, because its structure reduces the
investigation of polylinear mappings needed to the consideration of linear
mappings by introducing a new operation bound up with the category of
linear spaces.

2. Constructions of the Concomitant Mathematical Formalism

Let us denote by L(T, l, R) the space classes of p-equivalence of
all real functions p-measurable on 7, and let <; be quasi-ordering in
L(T, W, R) such that @ <; @,; when @(t) < @ (t) — L -almost everywhere
on 7. Let us denote the least upper bound for a subset W O L(T, W, R) as
sup; W, when this bound exists for a subset W in the structure of partial

ordering <; .

Definition 1 [2, 3]. Consider operator W : 1 - L(T, H, R), which is

constructed according to the rule
W(q, wy, ..., wy)(t)
| A2(1)dq(e)/di* + A, () dq(z)/dr + Ag(0)q(e) |
-1/2
=Bl + X, IR when (sg0) o () # 00U
00 R, when (wy(t), ..., w,(¢)) =00U;

“)

according to the terminology [10, 12, 13], operator (4) is called the entropy
Rayleigh-Ritz operator.

>Some elements of this tensor-theoretic extension can be found in [6], as well as in
the algorithm of structural parametric identification (2.1)-(2.2) [11]; on its basis, we have
constructed Example 1 [11] of a posteriori reconstruction of differential equations for
nonlinear dynamics of spatial-rotational motion described by both the Euler equation with
polylinear terms with respect to the coordinates of angular rates and the regulator of their
damping.
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In the construction of operator W, the inclusion d 2q / dt? O L(T, u, X)
is correct (due to Lemma 1 [1]).

Let N O{(x, u, By(x), ..., B,(x, ..., x)) DM}, Card N < expJ, and Q
be some (i.e., any) consuming set in Span N; as far as geometry of the

consuming set is concerned, we follow [8], i.e., U{C(Q}a>0 =Span N.

Having fixed the terminology (motivations can be found in Theorem 2 [2]),
let us speak that the bundle of controlled dynamic processes N is regular for
the 3-tuple of operator functions (Ay, A;, Ay) of the hyperbolic system (3) if
and only if the following hold:

{107 o Ay(1)d>q(1)dr® + A (1) dq(o)/di + Ay(1)q(1) | = O}

S0l + X, 0l =0fmo0w). (0 s) 00

Remark 2. (i) If in the process of analysis of the dynamic bundle A, it

appears obvious that
UiZl _supp| B(x, ..., x) [, = supp| x| (mod ),

(x, u, Bl(x), - Bn(x, - x)) ON,
then bundle N is regular for any 3-tuple of operator functions
(A0, A1, A) D L(T, W L(X, X)) Ly (T, L(X, X)) % Leo (T, 1, L(X, X));
(i1) due to Theorem 2 [2] and representation (2), Ny, N, from (1) are
regular dynamic bundles.
Next, we have

Lemma 1 (Modification of Lemma 1 [14]). If ker By =0, then the

dynamic bundle N is regular for any operator functions

Ag, Ay O L(T, 1, L(X, X)), Ay OL,(T, 4, L(X, X)).
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Proof. Obviously, provision ker By = 0 incurs that
U, suppl Bi(x. . 5)[; = suppl x| (mod ).

(x, u, By(x), ..., B,,(x, ..., x)) O N.
So, it is sufficient to show that for any functions f 0 AC(T, X) and
g OL(T, U, R), equality df(r)/dt =0 is satisfied p-almost everywhere in
Tg ={tOT :| f(r)]ly +|g(r)| =0}; hence, in the structure of the proof,
the 2-tuple (f, df/dt) plays a dual role, i.e., the role of the 2-tuple
(x, dx/dt) and the 2-tuple (dx/dt, d*x/dt?).

Let Ty :={t OT : f(r) = 0}. Since Ty O Ty, in the case when u(Ty)
= 0, the proposition {r 07 : | df (¢t)/dt ||y, =0} O Ty, (mod ) is transparent.
So, consider the variant when (7 ) # 0.

Introduce the denotation Tp :={t [ Ty :[®>0, u((r -3, t+d)N Tf)
= 0}. Let us show that P(Ty) = 0. To this end, let us put constant 3. > 0 in
correspondence to each ¢ 0Ty, so that p((r = 37, ¢ + &) N Ty) =0. Let us
find rational numbers &, &; such that &, O (¢ - 6?, 1), 8, O(t, 1 + 6?) and
let 1, = (J;, 8;). Hence the family of intervals {It}tDTO covers the set Ty,
and since each interval I; is open with rational ends, the family {It}tDTO
contains a countable subfamily {7} i=1.2.... which also represents the
coverage of set 7j,. Next, since for any index i =1, 2, ..., it is true that
I, 0@ =37, 1 +87), u(I; NTs) =0, and so, the following “chain” of

M-relations:

W) = “(TO n (Ui:L 2. I”D - H(Uizl, 2. 1o N I”')

< Zi:l,z,... w1, N1,;) =0,
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whence W(7,) = 0. Now let us conduct the following concluding part of the

proof.
Let r 0Ty \Tp, hence for any & > 0, it is true that u((t -8, +3)N7y)

>0, and since f 0 AC(T, X), it is possible to find a set 790 T such

that u(TD) =0 and 0Ty \T", there exists df(t)/dt. Let us show that

df(t)/dt =0 for tDTf\(TO UTD). Indeed, for any natural k, we have
u((r —1/k, £ +1/k)NT;) >0 and, consequently, one can find a moment
t 21, |tp 1| <1/k, 1;, OTy. But then, the following limit transition may

be executed in the structure of strong topology:
df (t)/dt = im{(f(r - Ar) = f(2))/Ar : At - 0}
=im{(f(tx) = f@)/(tx —1)=00X :k - 0} =00X. O

Corollary 1. If (x, u, B{(x), ..., B,(x, ..., x)) O and ker B; =0, then
Oy O0,_, where Vv and V_ are the respective Lebesgue-complemented

behavioral measures

vs)= [ (@B + Y, IBGE. o x@) @), s 00,

v-(5)= [ | 40 ax(@)/ e + Ay ()@t + A (0)x(0) | (),
S Oo e

Furthermore, if Im By = Z;, then

| Agd®x/dr* + Adx/dr + Agx |

-1/2
{lulf + X, JBlewR) T 0L wR)
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o || Ayd?x/di* + Aidx/dr + Agx |

2 2 2
{lulf +1 + X, B 01

for any operator functions Ay, AU Ll(T, H, L(X, X)), A U
Lo(T, 4, L(X, X)).

1/2
O Ly (T, u, R),

It obviously follows from the functional construction (4) that the
Rayleigh-Ritz operator satisfies the following simple (but important)

relations:
0<; W(p), where 0O L(T, y, R), @O N, Wizrg) = W(p), 0% rOR. (5
Before proceeding further, we need to introduce some additional terms.
Definition 2 [12, 13]. The Rayleigh-Ritz operator is called semiadditive
with weight o O R on set E [J I, when for any tuple (@, ¢,) O E X E, it
is true that

Wi + @) <, a¥(q) + a¥(e,).

Lemma 2. Semiadditivity (with the fixed weight) of the Rayleigh-Ritz

operator is the property of finite character for a subset of T1.

Proof. Suppose that the Rayleigh-Ritz operator W is semiadditive on a
set £ [ T with weight a. Then the given operator is semiadditive with this
weight on a finite subset of E. On the other hand, if W is semiadditive
with the same weight on any finite subset of set E, then for any
tuple of vector functions (@, @) 0 E x E, the relationship W(@ + @,)

< aW(@) + aW(e,) is satisfied because operator W is semiadditive with

weight o on subset {@;, ¢} O E. O

The interrelation between Lemma 2 and the Teichmiiller-Tukey lemma®

explicit the important geometric characteristic of semiadditivity of the

®We have to remind the reader that the Teichmiiller-Tukey lemma is an alternative form of
the axiom of choice [15].
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Rayleigh-Ritz operator in [1. There exist maximum sets, on which operator

(4) is semiadditive with some weight o > 0; furthermore, the given sets
cannot be linear when a 0 (0, 1). To make sure, it is sufficient to consider
the effect of W on the tuple (@ 0) 0 E x E, ¢ # 0, with the exception of the
trivial variant when E ={0} O M. In this connection, below, in Lemma 3

(and later by default), we assume that the weight of semiadditivity of

operator W is a fixed constant o [ [1, 00).

Lemma 3. Let o ([l, ®), hence in T, there exists a (nonunique)
maximum (with respect to the set-theoretic inclusion) linear set E, on which

the Rayleigh-Ritz operator is semiadditive with weight Q.

Proof. Let (q;, wyq, ---» Wy) be a nonzero element in M. Hence due to

(5), operator W is semiadditive with weight o on the linear hull E; over

(ql’ WQLs - Wnl)' Next, let (qz, W02 e an) anm, (qZ’ W02 -ees an)
0 E; and W be semiadditive on E; U{(g2, wpa, --.» Wp2)} with weight o if
such an element does not exist, then Fj is a desired maximum set. Let us

choose an arbitrary element
Bi(g1, wors s wa1) + B2(a2, wozs s wa2)s B B2 OR, By %0,
in the set E; + E5, where E, is a linear hull over (g, Wgp, s Wp2)-
Under such a problem statement, the relations

W(Bi(q1- wors -r Wi1) + Balg2s Wo2. -oer Wi2))
_ -1
= WBIB (91> Wors > Wa1) + (925 Wo2» - Wi2))

-1
<p aW(BiBy (g1, wors - Wa1) + AW (g2, Wo2, coes Wy2))

= aW(Bi (g1 wors - Wp1)) + AW (B2 (g2, Woas -r Wp2))

are satisfied in accordance with formulas (5), whence it follows that operator

Y is semiadditive on the linear manifold E; + E, with weight a. By similar
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speculations, it is possible to show that E; may be replaced in the upper
computations with any nonzero linear subset from [1, on which W is
semiadditive with the weight equal to 0.

Other explications will be bound up with the chains, hence let P be a

family of all ordered tuples (E#, a #), where E* is a nonzero linear set in
N and a” O [1, o), furthermore, the Rayleigh-Ritz operator is semiadditive

on E* with weight a®. Introduce the operation of partial ordering < in P,

while assuming that
(£ o*) < (E*, a?) o E* O E¥*, of = o

According to the Hausdorff theorem (the Hausdorff maximum principle
[15]), in family P, there exists a maximum chain Q (a maximum linear

ordered set), which contains the chain (Ej, ) < (E; + E;, 0). Let E be a
set of all linear sets Ey in I such that (Ey, a) 0 Q. Hence E is linear

ordered with respect to the set-theoretic inclusion, and, consequently,

disjunction E := {Ey : E, O E} (trivially) forms a linear manifold in M.
Next, if (@, @) O E x E, then obviously (@, ¢;) 0 E\ X E\ for some set
Ey UE, whence we draw the conclusion on the weight semiadditivity for

the tuple (@, @) of operator W:

W@, @) <. a¥(q) + a¥(e,),

and, consequently, (E, a) 0 Q. Furthermore, if manifold E would fail to be
maximum in 1, on which our operator W is semiadditive with weight q,
then the linear extension construction indicated above would have allowed
one to obtain an element (ED, a) in family P, for which E D strongly
contains £, but this would contradict to the criterion of maximum for chain

Q in family P. O
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3. Existence of an Invariant Polylinear Regulator in the
Constructions of the Rayleigh-Ritz Operator

This section presumes investigation of the problem of existence of
operator functions of the invariant polylinear regulator of system (3). We
shall avoid the formulation of the best positive result in this direction. This
result will be given in the form of a compact theorem (while roving a simple
sufficient condition). All the parts of proving this condition have in essence

been already prepared by us. It is necessary only to integrate these parts.

Theorem 1. Let Ny, N, O T be the bundles of dynamic processes (1)
and (2). Hence problem (3) is solvable when the Rayleigh-Ritz operator is

semiadditive with some weight on Span Ny + Span N,.

Remark 3. The following issue remains open: whether Theorem 1 is
equivalent to Theorem 3 [2], which is the solution of the problem of
invariant extension of the differential realization in terms of angular metric
of Hilbert space subspaces; in this case, Theorem 1 gives evidence of
validity of the weight construction of semiadditivity of operator (4) in the
process of discussion of the issue of extension for the bundles of dynamic

processes assuming differential realization (3).

Proof of Theorem 1. Since linear hulls Span N; and Span N, are

absorbing sets, one, due to Theorem 2 [2], can find the two functions

@, ¢ 0 ZQ(T, H, R), for which the following two functional inequalities

are satisfied’

sup; W[Span N;] <; @, sup; W[Span N,] <; .

"There is (see Theorem 17 [16, p. 68]) a countable set QDIZI Span N; such that if
supy, W(Span ;) O L(T, Y4, R), then @:= supy W(Span N;) is due to the sup-construction:

t > @) = sup{W(g, wp. - wy) (£) DR : (g, W oo wyy) O O
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Let us choose this manifold in the manifold Span N; + Span N, in the

capacity of its absorbing set. Hence due to semiadditivity W (with weight o)

on Span N; + Span N,, we obtain
sup; W[Span N; + Span N;|
<; asup; W[Span N;] + asup; W[Span N,] <; a(g, @),
whence, proceeding from Theorem 2 [2], it follows (on account of

Span Ny U N, = Span N; + Span N, and item (ii) of Remark 2 that the set

of processes Ny U N, possesses differential realization (3). O

Corollary 2. Let sets Nj, N,, ..., N, O Tl possess realizations (2).

Hence Uizl P N; is a family of solutions of system (3) for some ordered

system (Bg, ey B:lr) UL,, when W is semiadditive with the weight on the

linear manifold of a sum of linear hulls of these sets:
Span N; + --- + Span Ny.

Corollary 2 allows one to construct the algebra of a set of dynamic

N;, all the elements of which (as a set of

processes with a unit Uizl X

all subsets of the unit) possess realization (2) with a fixed model (3).
Furthermore, the issue of “individual” characteristic indicator of differential

realization for each separate bundle N; (i =1, ..., k) can be quite easily

(constructively) solved on the family of one-element N; ={(x, u, B;(x), ...,

B,(x, ... x)).}:
W((x;, up, By(x), oo By(x, o X)) O Ly (T, W, R), i=1, .., k;

what is the analytical fact of Theorem 1 [2]. If these relations (or some

of them) fail to be satisfied, it is possible to state a problem of synthesis
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B; O I(X i, Zl-), i =1, ..., n, which provide for the indicated conditions®,
furthermore, this problem may be methodologically interpreted as structural
identification’ of nonlinear components of equation (3) (in this aspect, see

also the provisions discussed in [11, 17-19]).

4. Related Issues for the Variant Card N; < [,, Card N, =1

Now consider what analytical results in the solution of the problem of
existence of the realization of operator functions (B(J)r - B;,r ) UL, of

hyperbolic system (3) introduce the following conditions:
Ny O{(x, u, B;(x), ..., B,(x, ..., x)) O N}, 1< Card Ny <0,

is not more than a countable bundle of system (2) solutions with the ordered

system of operator functions (Byy, ..., B,;) 0L,

Ny = (xD, u” Bl(xD), wes Bn(xD, wes xD)) an
is a solution of system (2) with the set of operator functions (B, ..., By)
O L,, furthermore, (By,, ..., B,2) # (Boys - By) and (x5 b Bl(xD), s
Bn(xD, oy xD)) [ Span Ny; therefore, the “integrated” dynamic bundle

N, = Ny U N, is either finite or countable.

Obviously, expansion of vector (u(t), B;(x"(¢)), ..., B, (x"(¢), ..., x(¢)))

in Hilbert space U into a projection in

Span{(u(z), By (x(2)), ..., B, (x(2), ..., x())) : (x, u, By(x), ..., B, (x, ..., x)) ON,},

81t is possible also to search for the functions ¢ jp X - X such that
W((x, . By(011(x)): s Bpy(@1 (x). v 0 (1)) O Lo (T . R). i = 1, ..o k.
’Explanation: if the assertoric relation ((=)) is sought for in some R" by parametric

identification, then by structural identification B; O I(X i, Z,-), i =1, ..., n explicated is the
apodictic relation ((O)) in Ly(T, W, R).
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which is designated with uD(t )» By(x xD(t ), and a

complement

(™). B (x0)). .. B, (xHe). oo x50
= (He). By (x"0)). .. B, (1), oo xH1))
- (uD(t), By (xD(t)), . Bn(xD(t), . xD(t)))_

is possible at any point ¢ [17.

For the given problem statement, it can readily be ascertained that vector

functions

r (uD(t), Bl(xD(t)), - Bn(xD(t), v xD(t)))_ :T - U,

t s W), By, o By G0), oo 5O i T U

are p-measurable'’. Next, denote by E,(N;), E,(N,) 0 H, the subspaces
from the formulation of Theorem 3 [2], by Ep(N,) - the closure in H,
of the linear hull Span{x [(uD, Bl(xD), v Bn(xD, v xD))Ij :XOF}, FO
L(T, 4, R) is a family of equivalence classes (mod H) of all the

characteristic functions induced by elements of o-algebra L ;.

Lemma 4. Subspaces E, and Ep are orthogonal in the Hilbert space
H,.

Let us agree from now on that for two closed subspaces from spaces
H,, such that their intersection is {0} O H,, and the vector sum is closed
in H,, the sign of their vector composition is denoted by [, in particular,

Theorem 14.C [9] and Lemma 4 make the notation E; [J Ep correct.

"“Due to separability of space U, weak and strong measurabilities coincide (Theorem IV.22

(8D).
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Let us answer the question: Under what analytical conditions imposed

on the sets of controlled dynamic processes N; and N,, and “extended”
family of processes, N, possesses differential realization (2)? One of the

ways of geometric solving this problem presumes constructing the

characteristic indicator (see Lemma 5 below), which defines the quality

E +E, = E UEp, (6)
because existence of the partial form of equality (6), i.e., the form

E,0E, = E 0OEq, @)

gives a positive answer to the question about the differential realization of an

extended bundle N, in the context of the approach to the geometric solution

of the problem of existence of a general polylinear regulator for dynamic
bundles Nj, N5, which is based on Theorem 14.C [9] and Theorem 3

[2]. Below, one characteristic property of equality (7) is ascertained by

Theorem 2.

Further speculations necessitate involvement of additional constructions.

So, assume that

F={t0OT: (uD(t), Bl(xD(t)), . Bn(xD(t), . xD(t)))D =0},

and let V%, v be the Lebesgue complements (on the respective extensions

of 0-algebras) of the measures

I | (1), By(HD), o By (@), oo O [ (), S 0O,

I | (1), By (D)), s By (1), oo @) [ W), SO0,

Lemma 5. Equality E; + E, = E; U Eq holds if and only if
Ly(T, v, R) = Xg (T, V7, R),

where X is a characteristic function of set T\F.
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Consider now a variant of the characteristic conditions for equality (7)

with a sketch of the proof.
Theorem 2. When equality F =0 (mod) holds, the following
proposition is valid.
E,0E, =E OEg = Ly(T,VE, R) = L,(T, V", R).
Proof. Proposition E, +E, = E; 0 Ey = L,(T,v3, R) = Ly(T, ", R)

is a direct statement of Lemma 5. On the other hand, confirmation of the fact
that E; N E, ={0} O H, follows from

(o7 @), B G0, o By o). o xHe))g = 0} = O (mod p)
and from Corollary 3 of Theorem IIL.5 (the Hahn-Banach theorem) [8]. O

Lemma 5 and Theorem 2 in the context of Theorem 14.C [9] and

Theorem 3 [2] validate the following corollary:

Corollary 3. (i) The following three properties are equivalent:

L, (T, VB, R) O Xy O, (T, Vo, R)

g — g
= Ly(T.vg, R) = Xg HL(T. v~ R)
P E1+E2 =E1E|E|:|.
(i) If £ =0 (mod|), then existence of any property from (i) transforms

the dynamic bundle N, into a set of nonlinear controlled processes with the

differential realization (3).

The hypothesis (in essence, conversion of Theorem 3 [2] and part (ii) of

Corollary 3):
“if F=0 (modW) and bundle N, possesses realization (3), then

Ly (T, V%, R) O Ly(T, ve R)” does not find confirmation in the general

case, what may be illustrated by the following simple example.
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Example. Let X =Y =Z=R, T = [—1, 1], n =2. Assume that
parameters (coefficients) of the differential system and the dynamic bundles

modelled have the following representation:
Ay=2,A =44 =2,B =18, =(1, 1),
N ={t > (6_2[, 0, e, e_4t) :t 0T},
Ny ={t> (2 +1, 4t +2, 62 +1, (2 +1)%): 1 OT}.

Obviously, bundles N;, N, have differential realizations (2) with
regulators (By, Bi1, B21) =(1,2,0), (Bya, Bia, Bay) =(2,2,0). Furthermore,

the integrated dynamic bundle N, := N; U N, possesses realization (3) with

the regulator, for which BJ = B1+ =2, B; = 0. Moreover, the relations
(), B (H0), By (), xH0)) = (4 + 2.2 + 1, (12 +1)%),
(u(0). B (H0). Bo (e o). x(1))g = (42 + 2, 0, 0),

hold, and this leads to the expected fact that F = [0 (mod ) (although F =

{-271} # O) and to the transparent statement that
L,(T. V5 R) = Ly(T. . R),
LT V3 R), V8 = [ (41 +2)°(ar).
Therefore, for the given problem statement, we have
1/(41 +2) O Ly(T, Vg, R), 1/(4t +2) 0 Ly(T, u, R),

whence L,(T, v%, R) I Ly(T, v R). Furthermore, due to Corollary 3, a
conclusion may be drawn that for Ny, N, itis true that Ey + E, # E; U Ej.

So, this example shows that, in the general case, Theorem 3 [2] does not

have a converse.
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