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ANALYTIC EVALUATION OF PIEZOMETRIC HEAD 
FOR A CREEPING FLOW PAST A FULLY 

CONSTRAINED OBSTACLE 

 

Abstract 

The paper presents a mathematical formulation of an incompressible 
two-dimensional groundwater creeping flow past a fully constrained 
impermeable obstacle. The physical boundary of this obstacle is 
modeled as a smooth surface having negligible roughness. Referring to 
the impact of boundary roughness, it is known that from 
Hydrodynamics point of view, a solid surface is called “smooth” when 
the average depth of the surface irregularities is less than the thickness 
of the laminar sublayer over the surface. In this framework, a 
theoretical evaluation of the piezometric head is exhibited and 
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concurrently the position of velocity distribution local extrema is 
determined. 

1. Introduction 

In the current literature as well as in the usual engineering practices      
[1-5], the treatment of physical problems regarding creeping flows, is mainly 
carried out by means of computational fluid dynamics (CFD) approaches or 
trivial graphical methods, leading to the calculation of many distinct values 
of piezometric head. We may also remark that for creeping flows the 
piezometric head coincides with the hydraulic one since Reynolds number is 
very low [5]. In general, irregular boundaries are mostly modeled as spatially 
homogeneous random processes. Nonetheless, the spatial variations are many 
times very small for computational grids [6]. On the other hand, the 
mathematical approaches of such problems via analytic methods, which 
indeed are more rigorous when compared with graphical or CFD ones, result 
in a closed - form representation of piezometric head. In [7] a creeping flow 
past a fluid sphere with a solid core was investigated, whereas for a valuable 
analytic study on a nonstationary creeping flow past a solid sphere, we may 
refer to [8]. The most popular analytic methods to confront such problems 
are separation of variables and conformal mapping. Here, we shall use the 
second one. 

2. Analysis 

To perform a realistic engineering problem, let us consider on the basis 
of the author’s diploma thesis [9], that the fully constrained obstacle is a pile 
sheet founded in a layer of alluvium sand, in which digging took place until 
depth 5m and this pile sheet buttresses up the resulting slopes. Before 
digging, a pumping parametrically with a system of well - points was carried 
out hence the water level instrument sustained a depression 4.5m, [see, 
Figure 1]. The flow takes place only in the alluvium sand layer. Darcy’s law 
is expressed in differential representation as follows: 
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where yx VV ,  are velocity components and H denotes the hydraulic head 

which is supposed to be equal to the piezometric one and the constant K 
denotes the hydraulic conductivity of the porous medium. Also, 

.0rotgradrot HKV
G

 (2) 

Thus, the flow field is irrotational and therefore 

.HK  (3) 

The continuity equation reads 

.0graddiv0div VVtVt
GGG

 (4) 

Since the flow is steady, it follows 0divgrad0divV
G
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.02H  (5a,b) 

Concurrently, the stream function  is defined as 
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and therefore 
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Obviously, both stream and potential functions satisfy Cauchy-Riemann 
(C-R) conditions: 
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.yxxy  (8a,b) 

We may estimate the piezometric head provided that its values at the 
boundaries are known beforehand. Since the flow is steady (which implies 
that initial conditions do not exist), the following relationships hold: 

0t
V
G

 

 

.0t  (9a,b) 

 

Figure 1. Geometric interpretation of physical problem. 

In the meanwhile, Bernoulli’s equation states that 

.pzH  (10) 

Specifically for the surface AA  the following relationship holds: 

05.13for5.13 xyH  or .K5.13  (11a) 

Besides, for the surface ,BBleft  it is valid that 

.09forK9,9 xyyxH  (11b) 
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The above conditions are of Dirichlet type. However, for 0, yx  

,9,3  the potential function does not verify the mapping: ,RRR  

since it gives two different values .9,30, yx  Thus, it is not defined 

over this subset of the domain. The same conclusions hold for the stream 
function. The points from 9,0B  until ,3,0I  have different values of 

piezometric head left and right, thus the flow takes place in direction: 

.leftright BIBA  Thus, these positions have different potential 
values. The function  has domain of definition as the set D RR  

9,30  and range: .5.13,0 K  Also, the domain of definition 

and the range of function H are DHD  and H  ,5.13,0  

respectively. Potential function is linked with stream function by C-R 
conditions, thus neither yx,  nor yx,  can be defined over the set: 

.9,30  

2.1. Boundary conditions for the surface 

(a) No-slip condition: the tangential component of velocity vector equals 
the speed of the surface which here is zero. Hence, 

.9,30,0, yxyxVx  (12) 

(b) Kinematic condition: since the surface is impermeable, it implies that 

.0, yxVx
G  (13) 

In addition, the equation of streamlines reads as 

.,
,

,
,

yxV
yxVxyxV

yxV
dy
dxdxVdyV

y
x

y
x

yx  (14) 

The quotient: yxV
yxV

y
x

,
,  over the set 9,30  takes the form: .0

0  

Thus, the derivative dy
dxx  equals an arbitrary value .0 R  Hence, 

., 000 Ryx  (15) 
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Equation of streamlines also concerns the sheet pile .9,30, yx  

Thus, 09,3 xy  and therefore 

.000  (16) 

2.2. Boundary condition for ground layer 

(a) No-slip condition 

The velocity component which is tangential to the solid surface should 
vanish. Thus 

.

0

0,

x

x
yxVx  (17) 

(b) Kinematic condition 

The velocity component which is perpendicular to the surface should 
vanish. Thus 

,
0,

2

1

C

C
yxVy  (18) 

where ., 21 RCC  At 0y  and ,Rx  we may deduce that 

.00,00, xK
x  (19) 

Hence, the conduct line with ground layer constitutes an equipotential 
line with equation: 

.0  (20) 

Also, this line constitutes a streamline with equation: 

     .2C  (21) 
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For facility reasons, let us create an artificial boundary surrounding the 
flow field [see, Figure 2]. Assume that 

.5.130

5.135.13

y

x
 (22) 

Since ,9,30, yx  it follows: 

.9,305.13,05.13,5.13, HDyx  (23) 

Τhe boundary of HDHD ,  consists of the following subsets: 

.05.13,5.1305.13,5.13:,1 yxyxB  

Along segment 1B  it is valid that 0grad H  and 0H  

.9,05.139,05.13:,2 yxyxB  

On segment 2B  the hydrostatic conditions hold. Hence, ctH  

.90,5.1390,5.13:,3 yxyxB  

On segment 3B  it is valid that: 9H  

.5.13,905.13,90:,4 yxyxB  

On segment 4B  it is valid that: ctHH 0grad  

.5.135.13,05.135.13,0:,5 yxyxB  

On segment 5B  it is valid that: 5.13H  

5.135.13,05.13:,6 yxyxB  .5.13,0  

On segment 6B  hydrostatic conditions hold, hence: .ctH  

Obviously, 

.6
1 ii BUHD  (24) 
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3. Evaluation of Piezometric Head 

Along the artificial boundaries 2B  and ,6B  hydrostatic conditions hold. 

Thus 

.5.13:
9:

66
22

W
W

yPB
yPB  (25) 

By taking into account Bernoulli’s equation, we obtain 

.9
5.13

22

66

W

W
PyH
PyH

 (26a,b) 

Hence, on 2B  it is valid that 9H  whilst on 6B  the value of hydraulic 

head is 13.5. Thus, the study of this flow field reduces to a boundary value 
problem, with homogeneous boundary conditions of Dirichlet and Neumann 
type [10]. 

 

Figure 2. Geometric interpretation of boundary value problem. 

Along the boundary ,4B  the following relationships hold: 

.00 yx VV  (27A) 

Since it is valid that ,grad HKV
G

 we conclude that 0grad H  

.ctH  According to Bernoulli’s equation it implies that 

.W
W

ycPcctyP  (27B) 
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However, since ,,5.13 Ryyc  we may deduce that 

  .5.13 WyP  (27C) 

Thus, on 4B  the pressure varies linearly with depth. This is unrealistic, since 

the fluid layer is not a motionless surface. Thus, the final form of HD  is 

5.13,909,305.13,05.13,5.13 ∪HD  

.5.13,305.13,05.13,5.13HD  

Hence, we arrived at a linear boundary value problem which is referred 
to as .0S 0S  consists of a second order differential operator and five boundary 

operators. Hence 0,,: 2
00 yxHyxHLS  and i iyx ,,  

where 5,4,3,2,1i  and 5.13,9,9,0i  and 13.5, respectively. Next, 

consider a holomorphic function zizFCCF :: .C  

Thus 

.ImFReF  (28) 

We may define as complex flow potential, the holomorphic function 
.:: CziWCCW  Thus 

.zFW  (29) 

So the initial problem reduces to the definition of F, which according to 
Riemann’s, theorem of mapping [11, 12] is unique, one to one and also 

.FFD  Equation (29) is written as 

.,, yxFyixFi  (30) 

Here, we may observe that a one to one mapping from plane defined by 
axes Ox, Oy to the plane defined by axes ,  takes place [see, Figure 3]. 

The latter is referred to as a complex potential plane and its design is based 
on the boundary conditions [13, 14]. We are seeking a function F, such that 
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to relate the points in complex potential plane W, with the Eulerian 
coordinates of the flow. The boundaries are the sets: 

0: ImzCz  (31) 

and 

,,1
4

1 KKKL zzUP  (32) 

where 

0: 00 ImzRezz  

90: 111 ImzRezz  

30: 222 ImzRezz  

5.130: 333 ImzRezz  

.5.13: 444 ImzRezz  (33) 

Actually, the set LP  is an orthogonal polygonal line. 

 
Figure 3. Geometric interpretation of the two associated planes. 

Here the boundaries are the sets: ,90: ImzRezCz  

5.130: ImzRezCz  and .5.1330: ImzRezCz  

Τhe latter is the segment which connects the points 42, zz  and is written as 

.1,0:1, 4242 tztztzz  (34) 
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Along 42, zz  the following statement holds: .0  To define the 

boundary of the complex potential field we assume that 42,0 zzz  

.: yixz  Thus, a polygon is drawn the sides of which are parallel to 

axes O  and O  [see, Figure 4]. 

 

Figure 4. Complex potential field. 

By means of mapping F the flow field can be imaged to the plane of 
complex potential, referred to as W-plane. The elements of the set: 

,0: ImzCz  will be imaged injectively to interior space or to the 

boundary of the above polygon. The functions which are able to image the 
set ,0: ImzCz  to interior of a polygon are in a particular form. In 

this context, a mapping is introduced from the points of real axis to the points 

of the polygon boundary, i.e., the polygonal line: ., 11 ii
n WWU  The 

function ,: WzFF  can be obtained from Schwarz-Christoffel formula 

[15, 16]: 

Z

Z n BdzxzxzxzAzF
n

0

21
,11

2
1

1 "  (35) 

where 0:...,,, 21 ImZCzxxx n  and are imaged to the tops 

nWWW ...,,, 21  of polygon, meaning .ii xFW  

Also the angles n...,,, 21  are the interior angles of the polygon and 

Α, Β complex constants. These constants specify the range, location and 
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orientation of the polygon at W-plane and Β is defined by the coordinates                 
of the top iW  which is assumed to be the principal top of the polygon.              

This selection is arbitrary, provided that the final top is the point 0z  

.0: ImzCz  Let us select the following points: ,:1 111 WxFx  

,:1 222 WxFx  ,:1
333 WxFx  ,:1

444 WxFx  where 

.1,0  Hence .,11  The value ,4x  is not defined arbitrarily. Τhe 

polygon is an orthogonal parallelogram. Thus 4321 .2  

The final form of F reads as 

z
dzzzAWzF

1
5,0225,02

1 .11  (36) 

On the other hand, it is valid that: 5,025,02 11 zizi  and also: 

.11 5,0225,022 ziz  By setting: ,AA  the function 

zF  becomes 

z z dzAW
zz

dzAWzF
1 112221 .

11
 (36a) 

Here, the following relations hold:   

KWFxF 91 11   

  

.5.132
31 122 KWWFxF   (37a,b) 

Thus, we may deduce that 

1

1

1

111
1

1 .2121 dzAWdZAWFWWF  (38) 

According to Schwarz reflection principle, we infer 

1

1

0

1
.2 dz

P
dz  (39) 
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Equation (38) can be combined with (39) to yield 
0

11 .4 dzAW  (40) 

Thus, we may derive the following relationships: 
1

0

1

0

1

01 54 dzAdzAdzAW  

1

0 2221
11

5
ZZ

dzAW  

1

0 222 11 ZZ

dzA  (41) 

and 
z

zz

dzAWzF
0 2221

114
5  

  
z

zG
zz

dzAKzF
0 222

.,
11

25.11  (42) 

One may observe that the function ,zG  constitutes an elliptic 

integral of the first kind. In the sequel, we may write out: 
1

0 222 11
K25.11,1

zz

dzAG  

1

0 222 11
25.11,1

zz

dzAKG  

1

1 222 11 zz

dzA  

1

1 222 114
925.11,1

zz

dzAKKG  

1

1 222 11
5.13,1

zz

dzAKG  (43) 



J. Venetis 176 

Nonetheless the following relationship holds: 

    .K5.4K9,11,1
44 iWxFGFG  (44) 

Hence  

1

1 222
K.5.4K5.4

11
i

zz

dzA  (45) 

Besides 

1

0 222 11
K25.11,1

zz

dzAG  

1

0 222 11
K25.11,1

zz

dzAG  

1

1 222 11 zz

dzA  

1

1 222
.

11
K5.13,1

zz

dzAG  (46) 

Concurrently, the following relationship holds: 

K.5.4K5.13,11,1
33 iWxFGFG  (47) 

Then 

1

1 222
K5.4

11
i

zz

dzA  (48) 

and therefore 

1

1

1

1 222222
.

11
1

11 zz

dzi
zz

dz  (49) 
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According to equation (49), the parameter  can be evaluated via 
numerical approximation. Alternatively, this parameter may be estimated via 
the expansion of these holomorphic functions into Taylor series. Thus, we 
can write out: 

"642
2 642

531
42
31

2
11

1

1 zzz
z

 

642 3125.0375.05.01 zzz  (50a) 
and 

4422
222 42

31
2
11

1

1

1

1 zz
zz

 

"66
642
531 z  

5.0221 z  

.3125.0375.05.01 664422 zzz  (50b) 

Hence, it follows: 

22222 11

1

11

1

zzzz
 

22 1

1

1

1

zz
 

642 3125.0375.05.01 zzz  

.3125.0375.05.01 664422 zzz  (50c) 

Conclusively 

222 11 zz

dz  

642 3125.0375.05.01 zzz  

.3125.0375.05.01 664422 dzzzz  (51) 



J. Venetis 178 

Thus, we may approximately estimate the integrals in equation (51) and then 
calculate the parameter . 

Conclusions 

A rigorous mathematical formulation of an incompressible two-
dimensional groundwater creeping flow field in a porous medium, past a 
fully constrained impermeable obstacle was performed. The boundary of this 
obstacle was considered as a smooth surface from Hydrodynamics viewpoint. 
In this framework, an analytic calculation of the piezometric head was 
presented. Also, the position of velocity distribution local extrema was 
estimated. Nonetheless, as a future work, we may implement this method 
with the concurrent consideration of boundary roughness of the obstacle in 
the sense of Reference [17]. 
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