

REGULARIZATION OF A SYSTEM OF THE FIRST KIND VOLTERRA INCORRECT TWO-DIMENSIONAL EQUATIONS

T. D. Omurov and A. M. Alybaev

Z. Balasagyn Kyrgyz National University Bishkek, Kyrgyzstan e-mail: omurovtd@mail.ru

Department of Algebra, Geometry, Topology and Teaching of Higher Mathematics Bishkek, Kyrgyzstan e-mail: alybayev.anarbek@mail.ru

Abstract

In this paper, we study a system of the first kind Volterra incorrect integral equations. On the basis of the developed method of asymptotic nature with a singular function with respect to a small parameter, the regularizability and uniqueness of the solution of the original system in the introduced space are proved.

Received: February 25, 2022; Revised: March 30, 2022; Accepted: April 2, 2022 2020 Mathematics Subject Classification: 35Q35.

Keywords and phrases: regularization method (RM), small parameter, special solution, ill-posed problem, system of the first kind Volterra integral equations (SVIE-1).

How to cite this article: T. D. Omurov and A. M. Alybaev, Regularization of a system of the first kind Volterra incorrect two-dimensional equations, Advances in Differential Equations and Control Processes 27 (2022), 149-162. <u>http://dx.doi.org/10.17654/0974324322018</u>

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Published Online: May 10, 2022

We note that this system is degenerated in many ill-posed inverse problems of mathematical physics, for example, in problems of integral geometry, thermal conductivity, moisture transfer in soil, hereditary environment, filtration [2-4, 9], etc., that is the relevance of this paper.

1. Introduction

In the theory of the first kind integral equations (IE-1), various cases of the regularization method (RM) are connected with kernel of given equations [1, 5-8, 10] and others.

RM variants that allow to construct special solutions in certain spaces, where special functions are taken into account, which have singularities with a relatively small parameter [5, 7, 8, and others] are of great importance. However, investigations on nonlinear IE-1 do not have general methods yet.

Therefore, we study the IVE-1 system with a special solution, and in order to prove regularizability in the introduced space $Z_n^2(D_1)$, the RM is used in the proposed one in the work.

2. Formulation of the Problem

Let IVE-1 be given by the vector-matrix notation:

$$H\theta \equiv \int_0^x \int_0^b K(x, y, \tau, \nu) \theta^2(\tau, \nu) d\nu d\tau = F(x, y), \qquad (1)$$

where

$$\begin{cases} C_{n \times n}(D_0) \ni K(x, y, \tau, v) :\\ \| K(.) \| \le C_{01}, (D_0 = [0, X] \times [0, b] \times \{0 \le \tau \le x \le X, 0 \le v \le y \le b\}; K(.) \ge 0, \\ \int_0^b K(0, y, 0, v) dv \ne 0, \forall y \in [0, b]; (x, y) \in \overline{D}_1, (D_1 = (0, X) \times (0, b)), \\ C_n(\overline{D}_1) \ni F(x, y); F(0, y) \ne 0, \| F(0, y) \| \le C_{02}, \forall y \in [0, b], (y_0 \in [0, b]), \end{cases}$$

$$(2)$$

with known F, K, i.e., n-dimensional vector-functions (column), and an

 $n \times n$ matrix function. For an $n \times n$ -dimensional matrix A, the norm is defined as

$$||A|| = \left\{\sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|^2\right\}^{\frac{1}{2}},$$

while for an *n*-dimensional vector $u \in \mathbb{R}^n$ as

$$||u|| = \left\{\sum_{i=1}^{n} |u_i|^2\right\}^{\frac{1}{2}}.$$

Then under the above conditions, θ is an unknown *n*-dimensional vector function on $Z_n^2(D_1)$.

Here $Z_n^2(D_1)$ is a space of all *n*-dimensional vector-functions with components in $Z^2(D_1)$, where $Z^2(D_1)$ is the space whose elements are all piecewise continuous functions with a finite number of the first kind discontinuities and square-summarizable in \overline{D}_1 functions, as well as generalized functions z(x, y) concentrated at the origin by argument x on [0, X], with condition:

$$\sup_{\mathbf{y}\in[0,b]}\int_0^X z^2(\tau, \mathbf{y})d\tau < \infty.$$

It is known that under the condition (2), the system (1) is Adamar incorrect [9], i.e., has no solution in $C_n(\overline{D}_1)$.

3. Regularizing Algorithm for the System (1)

In order to determine a unique solvability and regularizability of the system (1) in $Z_n^2(D_1)$, first, we transform (1) into the form:

$$(H\theta) (x, y_0) \equiv \int_0^x \int_0^b K(x, \tau, y_0, \nu) \theta^2(\tau, \nu) d\nu d\tau = F(x, y_0)$$
(3)

and assuming that conditions (2) and (3) are satisfied, we suppose that

 $H_0(x, y_0)$ is a diagonal matrix, where

$$\begin{cases} H_0(x, y_0) \equiv G(x)F(x, y_0); G(x) \equiv \gamma + \frac{1}{\alpha}\lambda(x), \\ H_0(x, y_0) = diag(H_{01}(x, y_0), ..., H_{0n}(x, y_0)), \\ H_{0i}(x, y_0) \equiv \left[\gamma + \frac{1}{\alpha}\lambda_i(x)\right]F_i(x, y_0), (i = \overline{1, n}; 1 < \gamma = const), \\ 0 < \lambda_0(x) = \min_{1 \le i \le n}\lambda_i(x) \in L^1(0, X); \phi(x) = \int_0^x \lambda_0(\tau)d\tau, \\ \min_{1 \le i \le n}F_i(x, y_0) = \widetilde{F}(x, y_0) \ge \alpha > 0, \forall x \in [0, X], \\ F_0(x, y) \equiv F(x, y) - F(0, y); \|F_0(x, y)\| \le C_{03}, \forall (x, y) \in \overline{D_1}, \end{cases}$$
(4)
$$\|F_0(x, y) - F_0(\tau, y)\| \le L_{F_0} |x - \tau|; \|H_0(x, y_0)\| \le C_{04}h(x), \\ \|G(x)\| \le C_{05}h(x); h_0(x) \equiv \gamma + \frac{1}{\alpha}\lambda_0(x); h(x) \equiv h_0(x)\widetilde{F}(x, y_0), \\ (0 < \max(C_{01}\sqrt{n}, C_{02}\sqrt{n}, C_{0j}) = \widetilde{C_1} = const, j = 3, 4, 5), \\ C_1 = \max(1, \sqrt{n^m}C_{01}\widetilde{C_1}^k), (m = \overline{0, 3}; k = \overline{1, 5}), \\ \phi_0(x) = \int_0^x h(\tau)d\tau = \int_0^x \left[\gamma + \frac{1}{\alpha}\lambda_0(\tau)\right]\widetilde{F}(\tau, y_0)d\tau. \end{cases}$$

Here $0 < L_{F_0}$ is a Lipschitz coefficient of the function F_0 . Then, carrying out mathematical operations with respect to the system (1) based on the operator H_0 given by the formula:

$$H_0 \theta \equiv \int_0^x H_0(\tau, y_0) \theta(\tau, y) d\tau, \qquad (*)$$

the specified system is equivalently converted into the form:

$$\begin{cases} \int_{0}^{x} H_{0}(\tau, y_{0})\theta(\tau, y)d\tau = (Q\theta)(x, y) + F(x, y), \\ Q\theta \equiv (\tilde{Q}\theta)(x, y) + (H\theta)(x, y), \\ \tilde{Q}\theta \equiv \int_{0}^{x} G(\tau)(Q_{0}\theta)(\tau, y)d\tau, \end{cases}$$
(5)

with the vector-function

$$Q_0\theta = colon\{Q_{01}\theta, ..., Q_{0n}\theta\}; Q_{0i}\theta \equiv \theta_i(x, y)(H_i\theta)(x, y_0), (i = 1, n)\}$$

152

$$(H\theta)(x, y_0) \equiv \int_0^x \int_0^b K(x, \tau, y_0, \nu) \theta^2(\tau, \nu) d\nu d\tau; \theta \in \mathbb{R}^n.$$

From the system (5), it is evident that for the matrix function $H_0(x, y_0)$, by means of (4), there exist eigenvalues $\lambda_i(x)$, such that

$$0 < \lambda_0(x) = \min\{\lambda_i(x) | i = 1, ..., n\}$$

Further, since in the IVE-1 theory, one of the possible methods is RM, we introduce a singular system in the form:

$$\begin{cases} \varepsilon \theta_{\varepsilon}(x, y) + (\Phi \theta_{\varepsilon})(x, y) = F_{\varepsilon}(x, y), \\ (\Phi \theta_{\varepsilon})(x, y) \equiv \int_{0}^{x} H_{0}(\tau, y_{0}) \theta_{\varepsilon}(\tau, y) d\tau - (Q \theta_{\varepsilon})(x, y), \end{cases}$$
(6)

having the feature of a relatively small parameter, where the condition is allowed to be:

$$\begin{cases} \theta_{\varepsilon}(0, y) = \frac{1}{\varepsilon} F(0, y), \\ C_{n}(\overline{D}_{1}) \ni F_{\varepsilon}(x, y) : \| F_{\varepsilon}(x, y) - F(x, y) \|_{C_{n}} \leq \Delta_{0}(\varepsilon), \\ F_{\varepsilon}(0, y) \equiv F(0, y). \end{cases}$$
(7)

We are looking for a solution to this system according to the rule:

$$\begin{cases} \theta_{\varepsilon}(x, y) = \frac{1}{\varepsilon} \prod_{\varepsilon} (x, y) + \upsilon(x, y) + \xi_{\varepsilon}(x, y), \\ \prod_{\varepsilon} (0, y) = F(0, y), \upsilon(0, y) = 0, \xi_{\varepsilon}(0, y) = 0. \end{cases}$$
(8)

In this case, with respect to unknown vector functions, respectively, we obtain the following systems:

$$\prod_{\varepsilon} (x, y) = -\frac{1}{\varepsilon} \int_0^x H_0(\tau, y_0) \prod_{\varepsilon} (\tau, y) d\tau + F(0, y), \tag{9}$$

$$\begin{cases} \int_{0}^{x} H_{0}(\tau, y_{0}) \upsilon(\tau, y) d\tau = (Q\upsilon)(x, y) + F_{0}(x, y), \\ F_{0} \equiv F(x, y) - F(0, y), \end{cases}$$
(10)

$$\epsilon \xi_{\varepsilon} + \int_{0}^{x} H_{0}(\tau, y_{0}) \xi_{\varepsilon}(\tau, y) d\tau = \left(Q \left[\frac{1}{\varepsilon} \prod_{\varepsilon} + \upsilon + \xi_{\varepsilon} \right] \right) (x, y) - (Q \upsilon) (x, y) + F_{\varepsilon}(x, y) - F(x, y) - \varepsilon \upsilon (x, y).$$
(11)

Here

(a) $\prod_{\varepsilon} (x, y)$ is a solution of the system (9), which redefines a special vector function $\Omega_{\varepsilon}(x, y)$ with the condition

$$\|\Omega_{\varepsilon}(x, y)\| \xrightarrow{\varepsilon \to 0} \begin{cases} 0, & x \neq 0, \\ \infty, & x = 0; \end{cases}$$
(**)

(b) v(x, y) is the solution of modified degenerate system (10), where the free term at the beginning of the segment [0, X] vanishes. Moreover, the system (10) is regularizable in $C_n(\overline{D}_1)$;

(c) $\xi_{\varepsilon}(x, y)$ is defined uniquely from the system (11), which converges to zero in the sense of $C_n(\overline{D}_1)$, when small parameter $\varepsilon \to 0$.

In order to show in what sense the system (5) is regularizable, we first prove the conditions of items (a, b, c).

(a) Indeed, since the matrix Cauchy function $W(x, y_0, 0, \varepsilon)$ of the system

$$U_x(x, y) = -\frac{1}{\epsilon} H_0(x, y_0) U(x, y),$$

and, by virtue of the Vazhevsky inequality, satisfies the estimate:

$$\|W(x, y_0, 0, \varepsilon)\| \le \sqrt{n} \exp\left(-\frac{1}{\varepsilon}\phi_0(x)\right),\tag{12}$$

from the system (9), by (12), it follows that

$$\begin{cases} \prod_{\varepsilon} (x, y) = W(x, y_0, 0, \varepsilon) F(0, y), \\ \left\| \prod_{\varepsilon} (x, y) \right\| \le C_{02} \sqrt{n} \exp\left(-\frac{1}{\varepsilon} \phi_0(x)\right) \le C_1 \exp\left(-\frac{1}{\varepsilon} \phi_0(x)\right). \end{cases}$$
(13)

It means that for the vector-function $\Omega_{\varepsilon}(x, y)$, (**) takes place.

(b) On the other hand, since the vector function v(x, y) is a solution of the system (10), it means that the approximation to this solution under certain conditions can be the solution of the following system with a small parameter of the form:

$$\delta \upsilon_{\delta}(x, y) + \int_{0}^{x} h(\tau) \upsilon_{\delta}(\tau, y) d\tau = (Q \upsilon_{\delta})(x, y) + F_{0}(x, y).$$
(14)

Lemma 1. Under the assumed conditions, the system (10) has a solution with conditions (2), (4) and (8), while the solution of the system (14) converges uniformly to the solution (10), when $\delta \rightarrow 0$, i.e.,

$$\|v_{\delta}(x, y) - v(x, y)\|_{C_n} = \|\mu_{\delta}(x, y)\|_{C_n} \le (1 - L_P)^{-1}\beta\delta.$$
(15)

Remark 1. The proof of Lemma 1 is based on the following conditions:

$$\begin{cases} 0 < L_{P} = \sqrt{n} C_{1} \Big\{ (2 + e^{-1}) \frac{1}{\alpha} bX(\tilde{\eta} + r_{2}) (2\tilde{\eta} + r_{2}) + (2 + e^{-1}) \\ \times \frac{1}{\alpha} bX \tilde{\eta}^{2} + \Big[\frac{1}{\alpha \gamma} 2(1 + L_{K} X) + 4e^{-2}M_{2} \Big] b(2\tilde{\eta} + r_{2}) \Big\} < 1, \\ \upsilon_{\delta}(x, y) = \mu_{\delta}(x, y) + \upsilon(x, y), \\ \mu_{\delta}(x, y) = -\frac{1}{\delta^{2}} \int_{0}^{x} W(x, y_{0}, \tau, \varepsilon) H_{0}(\tau, y_{0}) \{ (Q[\upsilon + \mu_{\delta}])(\tau, y) \\ - (Q\upsilon)(\tau, y) - (Q[\upsilon + \mu_{\delta}])(x, y) + (Q\upsilon)(x, y) \} d\tau \\ + \frac{1}{\delta} W(x, y_{0}, 0, \varepsilon) \{ (Q[\upsilon + \mu_{\delta}])(x, y) - (Q\upsilon)(x, y) \} + \Delta(\delta, \upsilon) \} \\ \equiv (P\mu_{\delta})(x, y) + \Delta(\delta, \upsilon), \\ \Delta(\delta, \upsilon) = -\frac{1}{\delta} \int_{0}^{x} W(x, y_{0}, \tau, \varepsilon) H_{0}(\tau, y_{0}) [-\upsilon(\tau, y) + \upsilon(x, y)] d\tau \\ - W(x, y_{0}, 0, \varepsilon) \upsilon(x, y), \\ \Big\| \Delta(\delta, \upsilon) \|_{C_{n}} \le L_{\upsilon} \sqrt{n} \Big\{ C_{04} \int_{0}^{x} (x - \tau) \exp\left(-\frac{1}{\delta} (\phi_{0}(x) - \phi_{0}(\tau))\right) \\ \times d \Big[-\frac{1}{\delta} (\phi_{0}(x) - \phi_{0}(\tau)) \Big] + x \exp\left(-\frac{1}{\delta} \phi_{0}(x)\right) \Big\} \le \beta\delta, \\ L_{\upsilon} \frac{1}{\gamma \alpha} \sqrt{n} C_{1} \Big\{ \int_{0}^{\infty} e^{-z} z dz + e^{-1} \Big\} \le 2C_{1} \sqrt{n} L_{\upsilon} \frac{1}{\gamma \alpha} = \beta, (0 < L_{\upsilon}), \\ \| \upsilon \| \le \tilde{\eta}, \forall(x, y) \in D_{1}; \| \upsilon(x, y) - \upsilon(\bar{x}, y) \| \le L_{\upsilon} | x - \bar{x} |, \\ S_{\eta}(0) = \{ \upsilon_{\delta}(x, y) \in C_{n}(\overline{D}_{1}) : \| \upsilon_{\delta}(x, y) \| \le r_{2}, \forall(x, y) \in \overline{D}_{1} \}, \\ \rho = \frac{1}{\delta} \phi_{0}(x); \chi(\rho) = \rho^{k} \exp(-\rho), \Big(k = 1, 2, \frac{7}{2} \Big), \\ \sup_{\rho \ge 0} \chi(\rho) = k^{k} \exp(-k); \rho = 0 : \chi(0) = 0, \rho \to \infty : \chi \to 0, \\ \end{cases}$$

Regularization of a System of the First Kind Volterra ... 157

$$\begin{cases} \text{for example, } \lambda(x) \equiv \frac{1}{4\sqrt[4]{x^3}}; \ h(x) = \left[\gamma + \frac{1}{\alpha}\lambda_0(x)\right] \widetilde{F}(x, \ y_0):\\ x - \tau \leq \frac{1}{\gamma\alpha} \int_{\tau}^{x} \left[\gamma + \frac{1}{\alpha}\lambda(\tau)\right] \widetilde{F}(\tau, \ y_0) d\tau = M_0(\phi_0(x) - \phi_0(\tau)), \ (\tau \leq x),\\ x \in [0, \ X]: \ x = (\sqrt[4]{x})^{\frac{7}{2}}(\sqrt[4]{x})^{\frac{1}{2}} \leq M_1(\phi_0(x))^{\frac{7}{2}}, \qquad (16)\\ \text{or }: \ x \leq M_2(\phi_0(x))^2, \ (M_1 = X^{\frac{1}{8}}; \ M_2 = X^{\frac{1}{8}}(\sqrt[4]{x})^{\frac{3}{2}} = X^{\frac{1}{2}}),\\ \gamma > 1; \ M_0 = \frac{1}{\gamma\alpha}; \ \chi \equiv \rho^k \exp(-\rho). \end{cases}$$

(c) In order to define the vector-function at the beginning, the system (11) is converted to the form:

$$\begin{cases} \xi_{\varepsilon}(x, y) = -\frac{1}{\varepsilon^{2}} \int_{0}^{x} W(x, y_{0}, \tau, \varepsilon) H_{0}(\tau, y_{0}) \\ \times \left\{ \left(Q \left[\upsilon + \xi_{\varepsilon} + \frac{1}{\varepsilon} \prod_{\varepsilon} \right] \right) (\tau, y) - (Q \upsilon)(\tau, y) \\ - \left(Q \left[\upsilon + \xi_{\varepsilon} + \frac{1}{\varepsilon} \prod_{\varepsilon} \right] \right) (x, y) + (Q \upsilon)(x, y) \right\} d\tau \\ + \frac{1}{\varepsilon} W(x, y_{0}, 0, \varepsilon) \left\{ \left(Q \left[\upsilon + \xi_{\varepsilon} + \frac{1}{\varepsilon} \prod_{\varepsilon} \right] \right) (x, y) - (Q \upsilon)(x, y) \right\} \\ + \Delta_{1}(\varepsilon, F_{\varepsilon}, F) + \Delta(\varepsilon, \upsilon) \equiv P_{0} \xi_{\varepsilon} + \Delta_{0}(\varepsilon, F_{\varepsilon}, F) + \Delta(\varepsilon, \upsilon), \end{cases}$$
(17)

where

$$\begin{cases} \Delta(\varepsilon, \upsilon) \equiv -\frac{1}{\varepsilon} \int_{0}^{x} W(x, y_{0}, \tau, \varepsilon) H_{0}(\tau, y_{0}) \\ \times [-\upsilon(\tau, y) + \upsilon(x, y)] d\tau - W(x, y_{0}, 0, \varepsilon)\upsilon, \\ \Delta_{1}(\varepsilon, F_{\varepsilon}, F) \equiv -\frac{1}{\varepsilon^{2}} \int_{0}^{x} W(x, y_{0}, \tau, \varepsilon) H_{0}(\tau, y_{0}) (F_{\varepsilon}(\tau, y)) \\ - F(\tau, y)) d\tau + \frac{1}{\varepsilon} [F_{\varepsilon}(x, y) - F(x, y)], \\ \| \Delta(\varepsilon, \upsilon) \|_{C_{n}} \leq \sqrt{n} L_{\upsilon} \frac{1}{\gamma \alpha} \varepsilon C_{1} \left\{ \int_{0}^{\infty} e^{-z} z dz + e^{-1} \right\} \leq \beta \varepsilon \text{ (see (16)).} \end{cases}$$

Further, since there are estimates of the form:

$$\begin{split} & (a_4) \| \Delta_1(\varepsilon, F_{\varepsilon}, F) \| \leq C_1(\sqrt{n} + 1) \frac{1}{\varepsilon} \Delta_0(\varepsilon); \left(\frac{1}{\varepsilon} \Delta_0(\varepsilon) \xrightarrow{\varepsilon \to 0} \to 0\right), \\ & \left\| \frac{1}{\varepsilon^2} \int_0^x W(x, y_0, \tau, \varepsilon) H_0(\tau, y_0) \left\{ \left(\mathcal{Q} \Big[\upsilon + \xi_{\varepsilon} + \frac{1}{\varepsilon} \prod_{\varepsilon} \Big] \right)(\tau, y) \\ & - (\mathcal{Q}\upsilon)(\tau, y) - \left(\mathcal{Q} \Big[\upsilon + \xi_{\varepsilon} + \frac{1}{\varepsilon} \prod_{\varepsilon} \Big] \right)(x, y) + (\mathcal{Q}\upsilon)(x, y) \right\} d\tau \right\| \\ & \leq \sqrt{n} C_1 \left\{ \frac{1}{\alpha} \left(\tilde{\eta} + \tilde{r}_2 \right) \Big[bX(2\tilde{\eta} + \tilde{r}_2) + 2b \int_0^x \frac{1}{\varepsilon} \exp\left(-\frac{1}{\varepsilon} \phi_0(\bar{\tau}) \right) d\bar{\tau} \right] \\ & \times \| \xi_c \|_{C_n} + \frac{1}{\alpha} (\tilde{\eta} + \| \xi_{\varepsilon} \|_{C_n}) \Big[2\tilde{\eta} b \int_0^x \frac{1}{\varepsilon} \exp\left(-\frac{1}{\varepsilon} (\phi_0(\bar{\tau})) d\bar{\tau} \right] \\ & + b \int_0^x \frac{1}{\varepsilon^2} \exp\left(-\frac{2}{\varepsilon} \phi_0(\bar{\tau}) \right) d\bar{\tau} \Big] \\ & + \frac{1}{\alpha} b \Big[2\tilde{\eta} \int_0^x \frac{1}{\varepsilon^2} \exp\left(-\frac{1}{\varepsilon} \phi_0(\bar{\tau}) \right) d\bar{\tau} + \left(2\tilde{\eta} + \tilde{r}_2 \right) \int_0^x \frac{1}{\varepsilon} \exp\left(-\frac{1}{\varepsilon} \phi_0(\bar{\tau}) \right) d\bar{\tau} \Big] \\ & + \frac{1}{\alpha} b \Big[2 \int_0^x \frac{1}{\varepsilon^2} \exp\left(-\frac{1}{\varepsilon} \phi_0(\bar{\tau}) \right) d\bar{\tau} + \left(2\tilde{\eta} + \tilde{r}_2 \right) \int_0^x \frac{1}{\varepsilon} \exp\left(-\frac{1}{\varepsilon} \phi_0(\bar{\tau}) \right) d\bar{\tau} \Big] \\ & \times \| \xi_{\varepsilon} \|_{C_n} + \frac{1}{\alpha} b \tilde{\eta}_1^2 \Big[X \| \xi_{\varepsilon} \|_C + \int_0^x \frac{1}{\varepsilon} \exp\left(-\frac{1}{\varepsilon} \phi_0(\bar{\tau}) \right) d\bar{\tau} \Big] \\ & + L_K \frac{1}{\gamma \alpha} b \Big\{ \Big[X(2\tilde{\eta} + \tilde{r}_2) + 2 \int_0^x \frac{1}{\varepsilon} \exp\left(-\frac{1}{\varepsilon} \phi_0(\bar{\tau}) \right) d\bar{\tau} \Big] \\ & + b \Big\{ \frac{1}{\gamma \alpha} (2\tilde{\eta} + \tilde{r}_2) \| \xi_{\varepsilon} \|_{C_n} + 2\tilde{\eta} \int_0^x \frac{1}{\varepsilon^2} \exp\left(-\frac{1}{\varepsilon} \phi_0(\bar{\tau}) \right) d\bar{\tau} \Big\} \\ & + b \Big\{ \frac{1}{\gamma \alpha} (2\tilde{\eta} + \tilde{r}_2) \| \xi_{\varepsilon} \|_{C_n} + 2\tilde{\eta} \int_0^x \frac{1}{\varepsilon^2} \exp\left(-\frac{1}{\varepsilon} \phi_0(\bar{\tau}) \right) d\bar{\tau} \Big\} \Big\} \\ & \leq T_3 \sqrt{\varepsilon} + \tilde{q}_1 \| \xi_{\varepsilon} \|_{C_n}, \end{split}$$

(19)

and

$$\begin{cases} (a_{5}) \left\| \frac{1}{\varepsilon} W(x, y_{0}, 0, \varepsilon) \left\{ \left(\mathcal{Q} \left[\upsilon + \xi_{\varepsilon} + \frac{1}{\varepsilon} \prod_{\varepsilon} \right] \right) (x, y) - (\mathcal{Q}\upsilon)(x, y) \right\} \right\| \\ \leq \sqrt{n} C_{1} \left\{ \frac{1}{\alpha} (\tilde{\eta} + \tilde{\eta}_{2}) \left[bX(2\tilde{\eta} + \tilde{\eta}_{2}) + 2b \int_{0}^{x} \frac{1}{\varepsilon} \exp \left(-\frac{1}{\varepsilon} \phi_{0}(\bar{\tau}) \right) d\bar{\tau} \right] \right\| \\ + \left[2\tilde{\eta} \int_{0}^{x} \frac{1}{\varepsilon} \exp \left(-\frac{1}{\varepsilon} \phi_{0}(\bar{\tau}) \right) d\bar{\tau} + \int_{0}^{x} \frac{1}{\varepsilon^{2}} \exp \left(-\frac{2}{\varepsilon} \phi_{0}(\bar{\tau}) \right) d\bar{\tau} \right] \\ \times \frac{b}{\alpha} (\| \xi_{\varepsilon} \|_{C_{n}} + \tilde{\eta}_{1}) + \frac{b}{\alpha \varepsilon^{2}} \left[2\tilde{\eta} \int_{0}^{x} \exp \left(-\frac{1}{\varepsilon} \phi_{0}(\bar{\tau}) \right) d\bar{\tau} + \int_{0}^{x} \frac{1}{\varepsilon} \exp \left(-\frac{2}{\varepsilon} \phi_{0}(\bar{\tau}) \right) d\bar{\tau} \right] \\ + \frac{b}{\alpha} \left[\int_{0}^{x} \left(2\frac{1}{\varepsilon^{2}} + \frac{1}{\varepsilon} (2\tilde{\eta} + \tilde{\eta}_{2}) \right) \exp \left(-\frac{1}{\varepsilon} \phi_{0}(\bar{\tau}) \right) d\bar{\tau} \right] \| \\ + \frac{b}{\alpha} \left[\int_{0}^{x} \left(2\frac{1}{\varepsilon^{2}} + \frac{1}{\varepsilon} (2\tilde{\eta} + \tilde{\eta}_{2}) \right) \exp \left(-\frac{1}{\varepsilon} \phi_{0}(\bar{\tau}) \right) d\bar{\tau} \right] \\ + \frac{b}{\alpha} \left[\int_{0}^{x} \left(2\frac{1}{\varepsilon^{2}} + \frac{1}{\varepsilon} (2\tilde{\eta} + \tilde{\eta}_{2}) \right) \exp \left(-\frac{1}{\varepsilon} \phi_{0}(\bar{\tau}) \right) d\bar{\tau} \right] \\ + \frac{b}{\alpha} \left[\int_{0}^{x} \left(2\frac{1}{\varepsilon} + \frac{1}{\varepsilon} \right) \left(2\tilde{\eta} + \frac{1}{\varepsilon} \right) \exp \left(-\frac{1}{\varepsilon} \phi_{0}(\bar{\tau}) \right) d\bar{\tau} \right] \\ + \frac{b}{\alpha} \left[\int_{0}^{x} \left(2\frac{1}{\varepsilon} + \frac{1}{\varepsilon} \right) \left(2\tilde{\eta} + \frac{1}{\varepsilon} \right) \left(2\tilde{\eta} + \frac{1}{\varepsilon} \right) \exp \left(-\frac{1}{\varepsilon} \phi_{0}(\bar{\tau}) \right) d\bar{\tau} \right] \\ + \frac{b}{\alpha} \left[\int_{0}^{x} \left(2\frac{1}{\varepsilon} + \frac{1}{\varepsilon} \right) \left(2\tilde{\eta} + \frac{$$

where in the obtained estimates, the following facts were taken into account:

$$\begin{cases} \int_{0}^{x} \frac{1}{\varepsilon^{3}} \exp\left(-\frac{2}{\varepsilon}\phi_{0}(\overline{\tau})\right) d\overline{\tau} = \frac{1}{\varepsilon^{3}}\overline{\tau} \exp\left(-\frac{2}{\varepsilon}\phi_{0}(\overline{\tau})\right) \Big|_{0}^{x} + \int_{0}^{x} \frac{1}{\varepsilon^{3}}\overline{\tau} \\ \times \exp\left(-\frac{2}{\varepsilon}\phi_{0}(\overline{\tau})\right) d\left(\frac{2}{\varepsilon}\phi_{0}(\overline{\tau})\right) \leq \frac{1}{\varepsilon^{3}}x \exp\left(-\frac{2}{\varepsilon}\phi_{0}(x)\right) + M_{1}\frac{1}{\sqrt{2^{7}}}\sqrt{\varepsilon} \\ \times \int_{0}^{x} \left(\frac{2}{\varepsilon}\phi_{0}(\overline{\tau})\right)^{\frac{7}{2}} \exp\left(-\frac{2}{\varepsilon}\phi_{0}(\overline{\tau})\right) d\left(\frac{2}{\varepsilon}\phi_{0}(\overline{\tau})\right) d\overline{\tau} \\ \leq M_{1}\frac{1}{\sqrt{2^{7}}}\sqrt{\varepsilon} \left[\left(\frac{7}{2}\right)^{\frac{7}{2}}e^{-\frac{7}{2}} + \frac{105\sqrt{\pi}}{16}\right] = T_{1}\sqrt{\varepsilon}, \\ \text{analogically:} \\ \int_{0}^{x}\frac{1}{\varepsilon}\exp\left(-\frac{1}{\varepsilon}\phi_{0}(\overline{\tau})\right) d\overline{\tau} \leq M_{1}\varepsilon^{\frac{5}{2}} \left[\left(\frac{7}{2}\right)^{\frac{7}{2}}e^{-\frac{7}{2}} + \frac{105\sqrt{\pi}}{16}\right] = T_{2}\varepsilon^{\frac{5}{2}}, \\ \int_{0}^{x}\frac{1}{\varepsilon^{2}}\exp\left(-\frac{1}{\varepsilon}\phi_{0}(\overline{\tau})\right) d\overline{\tau} \leq T_{2}\varepsilon^{\frac{3}{2}}; \\ \int_{0}^{x}\frac{1}{\varepsilon^{2}}\exp\left(-\frac{2}{\varepsilon}\phi_{0}(\overline{\tau})\right) d\overline{\tau} \leq T_{1}\varepsilon^{\frac{3}{2}}. \end{cases}$$

From the estimate of the system (17), it follows that:

$$\begin{cases} \left\| \xi_{\varepsilon}(x, y) \right\|_{C_m} \leq (1 - L_{P_0})^{-1} \left[\beta \varepsilon + \frac{2}{\varepsilon} \Delta_0(\varepsilon) + T_0 \sqrt{\varepsilon} \right] = \Delta_2(\varepsilon), \\ \frac{1}{\varepsilon} \Delta_0(\varepsilon) \xrightarrow[\varepsilon \to 0]{} 0; L_{P_0} = \tilde{q}_1 + \tilde{q}_2 < 1; T_0 = T_3 + \tilde{T}_3. \end{cases}$$
(21)

Lemma 2. Under the conditions of Lemma 1 and (4), (7), (13), (18), (21), the system (17) is solvable in $C_n(\overline{D}_1)$, and as $\varepsilon \to 0$, it converges to zero in sense of $C_n(\overline{D}_1)$.

Theorem 1. If the conditions of Lemmas 1 and 2 are satisfied, then the solution of the system (6) can be uniquely represented in the form (8). *Moreover*,

(a)
$$\left\|\prod_{\varepsilon}\right\|_{Z_n^2(D_1)} \leq \gamma_1 \varepsilon^{\frac{7}{4}}, \left\{\gamma_1 = C_1 2^{-\frac{7}{4}} \sqrt{M_1 b} \left[(2^{-1} \cdot 7)^{\frac{7}{2}} e^{-\frac{7}{2}} + \frac{105}{16} \sqrt{\pi} \right] \right\},$$

(b) $\left\|\theta_{\varepsilon} - \upsilon\right\|_{Z_n^2(D_1)} \leq 2[\Delta_2(\varepsilon)\sqrt{Xb} + \gamma_1 \varepsilon^{\frac{3}{4}}] = \tilde{M}_0(\varepsilon),$
(c) $\left\|\Phi\theta_{\varepsilon} - F\right\|_{Z_n^2(D_1)} \leq 4[\Delta_0(\varepsilon)\sqrt{Xb} + \varepsilon \tilde{M}_0(\varepsilon) + \varepsilon \tilde{r}_1 \sqrt{Xb}] = \tilde{M}(\varepsilon),$

where $\tilde{M}_0(\varepsilon), \tilde{M}(\varepsilon) \to 0$ when $\varepsilon \to 0$.

Proposition 1. Under the conditions of Theorem 1, the system (1) is regularized according to the rule (8) in $Z_n^2(D_1)$ in a generalized sense.

4. Conclusion

In this paper, we investigated a nonlinear IVE-1 system with a special solution in $Z_n^2(D_1)$. The solution to the original system is constructed using a special perturbation method, after transforming it on the basis of a modification of the method of integral operators with weighted functions [7]. At the same time, sufficient conditions for the solvability and regularizability of the system under study were revealed in $Z_n^2(D_1)$.

The results of the work can be used to inverse problems of mathematical physics, where nonlinear ill-posed IVE-1 systems of the specified class degenerate.

Acknowledgement

The authors are highly grateful to the referee for his careful reading, valuable suggestions and comments, which helped to improve the presentation of this paper.

References

- [1] A. S. Apartsin, Non-classical Volterra equations of the 1st kind: theory and numerical methods, Novosibirsk, Science, 1999, p. 199.
- [2] D. S. Anikonov, On the question of the uniqueness of the solution of inverse problems for equations of mathematical physics, Differ. Equations 1 (1979), 3-9.
- [3] A. L. Bukhgeim, Volterra equation and inverse problems, Novosibirsk, Science, 1983, p. 207.
- [4] A. M. Denisov, On the approximate solution of the Volterra equation of the first kind associated with one inverse problem for the heat equation, West Moscow State University, Vychisl. Mat. and Cybern. 3 (1980), 49-52.
- [5] M. I. Imanaliev, Generalized solutions of integral equations of the first kind, Frunze, Ilim, 1981, p. 144.
- [6] M. M. Lavrent'ev, Integral equations of the first kind, Report of the Academy of Sciences of the USSR 127(1) (1959), 31-33.
- [7] T. D. Omurov, Regularization methods for Volterra integral equations of the first and third kind, Bishkek, Ilim, 2003, p. 162.
- [8] V. O. Sergeev, Regularization of the first kind Volterra equations, DAN SSSR 197(3) (1971), 531-534.
- [9] A. N. Tychonov and V. Y. Arsenin, Methods for Solving Ill-posed Problems, Nauka, 1986, p. 287.
- [10] Ten Myung Yang, Approximate solution of the first kind Volterra twodimensional integral equations by the quadrature method, Differential and Integral Equations 3 (1975), 194-211.