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Abstract

In this paper, we study a system of the first kind Volterra
incorrect integral equations. On the basis of the developed method of
asymptotic nature with a singular function with respect to a small
parameter, the regularizability and uniqueness of the solution of the
original system in the introduced space are proved.
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We note that this system is degenerated in many ill-posed inverse
problems of mathematical physics, for example, in problems of
integral geometry, thermal conductivity, moisture transfer in soil,
hereditary environment, filtration [2-4, 9], etc., that is the relevance of

this paper.
1. Introduction

In the theory of the first kind integral equations (IE-1), various cases of
the regularization method (RM) are connected with kernel of given equations
[1, 5-8, 10] and others.

RM variants that allow to construct special solutions in certain spaces,
where special functions are taken into account, which have singularities with
a relatively small parameter [5, 7, 8, and others] are of great importance.

However, investigations on nonlinear IE-1 do not have general methods yet.

Therefore, we study the IVE-1 system with a special solution, and in
order to prove regularizability in the introduced space Z,%(Dl), the RM is

used in the proposed one in the work.
2. Formulation of the Problem

Let IVE-1 be given by the vector-matrix notation:
xeb 2
HO = Iojo K(x, y, T, v)8°(1, v)dvdt = F(x, y), (1)

where
Cnxn(DO) DK(X’ T V):
[ K(C) < Cors (Dg =10, X]x[0,b]x{0<sT<x<X,0<sv<y<b}; K()=0,
b —
j K(0, y,0,v)av # 0, Oy 0[0, ]; (x, ) O Dy, (D; = (0, X)% (0, b)),
0
C,(Dy) OF(x, ), F(0, y) # 0, F(0, y) || < Cop, Oy D0, 5], (o D0, 5]),
(2)

with known F, K, i.e., n-dimensional vector-functions (column), and an
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n xn matrix function. For an n X n-dimensional matrix 4, the norm is

defined as
1

n o n ) 2
lAl] = la |71
i=1 j=1

while for an n-dimensional vector 1 0 R" as

1
n 2
— 2
IIMII—{ZIMZ-I } :
i=1
Then under the above conditions, © is an unknown n-dimensional vector

function on Z,% (Dy).

Here Z,%(Dl) is a space of all n-dimensional vector-functions with

components in Z 2(Dl), where Z 2(Dl) is the space whose elements are all
piecewise continuous functions with a finite number of the first kind
discontinuities and square-summarizable in D, functions, as well as
generalized functions z(x, y) concentrated at the origin by argument x on

[0, X ], with condition:
X 5
sup Jo z7(T, y)dt < .

It is known that under the condition (2), the system (1) is Adamar

incorrect [9], i.e., has no solution in C, (Dy).

3. Regularizing Algorithm for the System (1)

In order to determine a unique solvability and regularizability of the

system (1) in Z,% (Dl), first, we transform (1) into the form:
x ¢b
(HO) (x. y0) = [ [ K(x T 30, V)& (1 V)dvat = F(x. 3) )

and assuming that conditions (2) and (3) are satisfied, we suppose that
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Hq(x, yp) is a diagonal matrix, where

Ho(x, y0) = GU)F(x, o) G(x) =y + = A(x),
Ho(x, o) = diag(Ho1(x, o), .. Hon(x, ¥0)),
Hoi(x. yo) = [y+— -(x)}F,-(x, yo) (i =L m 1<y = const),

0 < Ao(x) = min A;(x) 0 L0, X); ¢(x) = J.:)\O(T)dr,

1<i<n

min F;(x, yg) = F(x, yo) = o >0, Ox0O[0, X],
1<i<n

Fo(x, y) = F(x, y) = F(0, y); | Folx, y)| < Co3, D(x, y) O Dy, ()
I Fo(x, v) = Fo(t, )| < Li | x = Tfs | Ho(x, yo) || < Cosh(x),

1G(x) | = Cosh(x); ho(x) = V+—7\0(X) h(x) = o (x) F(x, yo),

(0 < max(Coyvn, Copv/n, Cy;) = €y = const, j =3, 4,5),

¢, = max(l, Vn" Cy,CE), (m = 0, 3 k =1, 5),
@ (x) = J 1)dt —J [y+—)\0 T)}I; T, yo)dt.

Here 0 < Lp, is a Lipschitz coefficient of the function F{,. Then, carrying

out mathematical operations with respect to the system (1) based on the

operator H( given by the formula:

10 = [ Ho(r. y0)8(t. y)ar. @

the specified system is equivalently converted into the form:

[, Holx. 50)8(x. y)dr = (QO)(x. y) + F(x. ).
06 = (06) (v, y) + (H8)(x. y), )
g6 = [ G(0)(@e)(x. y)ar.

with the vector-function

008 = colon{ Q8. .... 0,0} 000 = 6;(x, ¥) (H;8) (x, yo). (i =L n),
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xpb 2
(H9) (x, yp) = IOIO K(x, T, yo. v)02(T, v)dvdr; 0 O R".

From the system (5), it is evident that for the matrix function

Hy(x, yo), by means of (4), there exist eigenvalues A;(x), such that
0 < Ag(x) = min{A;(x)|i =1, ..., n}.

Further, since in the IVE-1 theory, one of the possible methods is RM,
we introduce a singular system in the form:

€8¢ (x, y) + (P6¢) (x, y) = Fe(x, ¥),

(®8)(x. ) = [ Ho(r 308w Wr - (@8) (v »). @

having the feature of a relatively small parameter, where the condition is

allowed to be:
8:(0, y) =< F(0, y),
Ca(Dy) OF(x, y) 1| Fe(x, y) = F(x, y) e, < Bole), @)

Fe(0, y) = F(0, y).

M| —

We are looking for a solution to this system according to the rule:
_1
O (x, ¥) = ¢ [, (6 )+ ulx )+ Eelx, ),

[1.© ) = FO, ). 00, y) =0, &(0, y) =0.

®)

In this case, with respect to unknown vector functions, respectively, we
obtain the following systems:

[0 )= =2 Holw o) [T, (v y)ar + F . ). ©)

[ Ho(x yo)ulr, y)dt = (Qu) (x ) + Fo(x. ») 00
Fy = F(x, y) = F(0, y),
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‘H d W|
+ = — +U+
€€¢ _[0 0(T, ¥0)&e(T, y)dt (Q[s TV ESD(X’ y)

= (Qu)(x, y) + Fe(x. y)
=~ F(x, y) —eu(x, y). (1n
Here
(a) |_|e (x, y) is a solution of the system (9), which redefines a special

vector function Qg (x, y) with the condition

0, x#0,

o, x =0;

1Q4(x, ¥)] OO0 - { ()

(b) u(x, y) is the solution of modified degenerate system (10), where
the free term at the beginning of the segment [0, X] vanishes. Moreover, the

system (10) is regularizable in C, (D;);

(c) & (x, y) is defined uniquely from the system (11), which converges

to zero in the sense of C, (D;), when small parameter € — 0.

In order to show in what sense the system (5) is regularizable, we first

prove the conditions of items (a, b, ¢).

(a) Indeed, since the matrix Cauchy function W(x, Yo, 0, s) of the

system

1
Uy(x, y) = _EHO(X’ yo)U(x, y),

and, by virtue of the Vazhevsky inequality, satisfies the estimate:

[W(x. yo.0.8) < v exp(—écpo(x)j, (12)
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from the system (9), by (12), it follows that

|_|€(x, y) = W(x, yo. 0, €)F(0, ),

H |_L(x, y) H < Coz\/;eXp(—%(po(x)j < exp(_%%(x)) (13)

It means that for the vector-function Q¢ (x, y), (00 takes place.

(b) On the other hand, since the vector function U(x, y) is a solution of

the system (10), it means that the approximation to this solution under
certain conditions can be the solution of the following system with a small

parameter of the form:
X
Bug(x. ) + [ H(D)vs(x. 3)dt = (QUg) (. 3) + Folw y).  (14)

Lemma 1. Under the assumed conditions, the system (10) has a solution
with conditions (2), (4) and (8), while the solution of the system (14)

converges uniformly to the solution (10), when & - 0, i.e.,

Jus(x. ¥) = v(x M, =l Hax ¥, < (1-Lp)"'BS (15)
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Remark 1. The proof of Lemma 1 is based on the following conditions:
0<Lp =¥nCi{2+ ) G IX (T + 1) 27 + )+ (2 ™)
Xébxﬁz + [aiy 201+ LX)+ 4e'2M2}b(2?1 + rz)} <1,
Us(x, ¥) = ps(x, y) +ulx, ),
a(e ) = = [ Wle vo. T €)Ho(r yo (0l + wa) (. )
—(0v) (t. ) = (Q[v + ks]) (x, ¥) + (Qu) (x, y)}dt
+ %W(x, vos 0, &){(Q[v + pz]) (x, ¥) - (Qu) (x, ¥)} + A3, v)
= (Pus) (x, y) + A8, v),
)= 5 [ W 0. T &) Ho(r. yo)[-u(x. ¥) +ulx. y)ar
- W(x. yo. 0, €)u(x, y),
1863, v}, = o {Cof = Texa{ = (@) - ()|
d| =5 @) = @y (1) # xenp( -5 () | < B
L, %&Cl{j: e ‘zdz +e_1} <2CVn L, % =B, (0< L),
[0l R O ¥) 0Dy oG, 3) - (E Y] < L] v -7,
Sn0) ={vs(x, y) DC,(Dy) : [|ug(x, )| < 1. Ox, y) O Dy},
S, (0) = {us(x, y) O Co(Dy) : [ ms(x, y)[ < 72, Ox, y) O Dy},
p= %(Po(x); X(p) = p* exp(-p). (k =12, %j
kK  exp(=k);p=0:%(0)=0,p - 0:¥x - 0,

sup X(p) =
p=0
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1 1 ~
for example, A(x) = ; h(x) = [y+—)\0(x)}F(x, Yo):
44\/ x3 o

v=vs o [y g A F( so)dt = Molan() - e (). (x5 )

<000, X]:x = @R AR < M, (@ ) (16)
1

or 1 x < My(gp(x))>, (M) = X8 M, = X

o — =

1 _ Kk
>1;, My =—; X =p* exp(-p).
Yy 0 Vo X =p" exp(-p)

(c) In order to define the vector-function at the beginning, the system

(11) is converted to the form:
£l v) == [ Wl 3o, T &) Ho(t. o)
A(qurte+41.]) @ - (@)
~(Qurge+ 1], ]) )+ (@) )
il 0.9 Qo+ + LT, | ) - (o )

+0 (g, Fg, F)+A(g, ) = B& +Ag(g, Fy, F)+A(g, v),

a7
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where

1 X
Ae. v) = - [ Wlx yo. T €) Ho(x. 30)

x[-0(t, y) + u(x, y)ldt =W (x, y9. 0, €)v,

Mi(e, Fe, F) = = [ W0 o, o ) (R(6 ) (8)

- P y)de+ 2[Rl )= Fx )L

1A, V)¢, = Jn L, %SCI{I: e ‘zdz + e—l} < Be (see (16)).
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Further, since there are estimates of the form:

(@) 14(s. Feo F)]< €1 + 1) Bo ek (£ 80(8) DR I ~ 0
et ot 21 o
-5 )~ (0v+ &+ £ .| v 3)+ (@) (x M)
< Jﬁcl{l(a . 72)[bx(271 vFy)+ 2b‘|.xlexp(—l(p0(T)de}
el + 5 0 +1Eele,)| 2], Lol - L@@t
ol :z“p(‘%%(ﬂ)ﬂ
R
= [2 j exp( ))dT + (27 +3)| O)% exp(—é%(f))d?}
el + 0 X1 &l + rwens{ L (o)t
L] X7+ +2f Lens{ - Lot 2,
oLt 2o
el 2 Bl b, + 27, exf - L (D)t
w2f Lo~ Lot e, + [ Sen-Lam)ar))

< T3Ve + i) & ¢ -

19)
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and
(@5) | £ 3o 0.90f( Qo+ & + 21T J) e ) - (o) 0|
<Vn cl{é (7 + ;2)[1»((271 +5)+ 26 2 exp(_ %(po(f))df} & lc,
+ [271 J.:% exp(— % (po(f)jdf + J.oxgiz exp(— %(po(f)j df}
(& I, + ) + f[zn [ens{ - (@)t + [ “Lexp(- %%(f))ﬁ}

_on(zs% + E(271 + FZ)JCXp(—%%(T) ﬁ}" Eellc,

7| Xl b, + [ Teso{ ~Lau(r) |+ [(za + mé(g%(x)j%

QIS

0¢€

x exp(_ %“’0(")) v G % (x))% exp(— %(pO(T)) dT] My & .

[SIEN

" bMp/E(é(pO(x)j exp(— %(po(x)j} ST + 3l & |l -
| & (x. y) < 7. O(x, y) O Dy,

(20)

where in the obtained estimates, the following facts were taken into account:

* ] 2 ) e 1o 2 N Ll
-[0 8—3exp(—gcp0(1'))d1' 8—3Texp(—E(p0(T)) ) +~[0£_3T

< exp(— é%(fzjd@%(f)) < S%xexp(— %cpo(x)j M %«E
S (Zav®) exl - 2o Zap())at

<M L\/E (1)%e_ +105«/E =Te
= 1@ 2 16 e

analogically:

s[ 2 1 5
N e R

SIRN]

gL (-l (T))dT<Ta%- [ e (—2 (T))dT<Ts
oazpﬁ% —270821)8% = hEs
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From the estimate of the system (17), it follows that:

I8e(e D, <(0-2r,)| B+ 280(0)+ ToVE | = 22(6).
) 1)

1 - - ~
D0(€)0 00~ 0Ly =Gy + 3 <LTy =T3 +T5.

Lemma 2. Under the conditions of Lemma 1 and (4), (7), (13), (18),
(21), the system (17) is solvable in C, (51), and as € - 0, it converges to

zero in sense of C,,(Dy).
Theorem 1. If the conditions of Lemmas 1 and 2 are satisfied, then the

solution of the system (6) can be uniquely represented in the form (8).

Moreover,

i 7 7 7
@[ Mel 30y 5wt =12 4\/M1”[(2'1 7)2e 2 +%ﬁ} ,

3
(b) 8 — v ”Zr%(l)l) = 2[A2(5)\/E +yet] = MO(S),

(C) ” CDGS _F”Zr%(Dl) S4[A0(8)\/E+8M0(8)+8a@] =M(£),

where M(g), M(g) - 0 when & - 0.

Proposition 1. Under the conditions of Theorem 1, the system (1) is

regularized according to the rule (8) in Z,% (Dy) in a generalized sense.

4. Conclusion

In this paper, we investigated a nonlinear IVE-1 system with a special
solution in Z,% (D;). The solution to the original system is constructed

using a special perturbation method, after transforming it on the basis of a
modification of the method of integral operators with weighted functions [7].

At the same time, sufficient conditions for the solvability and regularizability

of the system under study were revealed in Z,% (Dy).
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The results of the work can be used to inverse problems of mathematical

physics, where nonlinear ill-posed IVE-1 systems of the specified class

degenerate.
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