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REGULARIZATION OF A SYSTEM OF THE FIRST KIND 

VOLTERRA INCORRECT TWO-DIMENSIONAL 

EQUATIONS 

 

Abstract 

In this paper, we study a system of the first kind Volterra          

incorrect integral equations. On the basis of the developed method of 

asymptotic nature with a singular function with respect to a small 

parameter, the regularizability and uniqueness of the solution of the 

original system in the introduced space are proved. 
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We note that this system is degenerated in many ill-posed inverse 

problems of mathematical physics, for example, in problems of 

integral geometry, thermal conductivity, moisture transfer in soil, 

hereditary environment, filtration [2-4, 9], etc., that is the relevance of 

this paper. 

1. Introduction 

In the theory of the first kind integral equations (IE-1), various cases of 

the regularization method (RM) are connected with kernel of given equations 

[1, 5-8, 10] and others. 

RM variants that allow to construct special solutions in certain spaces, 

where special functions are taken into account, which have singularities with 

a relatively small parameter [5, 7, 8, and others] are of great importance. 

However, investigations on nonlinear IE-1 do not have general methods yet. 

Therefore, we study the IVE-1 system with a special solution, and in 

order to prove regularizability in the introduced space ( ),1
2

DZn  the RM is 

used in the proposed one in the work. 

2. Formulation of the Problem 

Let IVE-1 be given by the vector-matrix notation: 

( ) ( ) ( )  =τνντθντ≡θ
x b
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with known F, K, i.e., п-dimensional vector-functions (column), and an 
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nn ×  matrix function. For an nn × -dimensional matrix А, the norm is 

defined as 
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Then under the above conditions, θ is an unknown п-dimensional vector 

function on ( ).1
2

DZn  

Here ( )1
2

DZn  is a space of all п-dimensional vector-functions with 

components in ( ),1
2

DZ  where ( )1
2

DZ  is the space whose elements are all 

piecewise continuous functions with a finite number of the first kind 

discontinuities and square-summarizable in 1D  functions, as well as 

generalized functions ( )yxz ,  concentrated at the origin by argument x on 

[ ],,0 X  with condition: 

[ ]
( ) ∞<ττ

∈

X

by

dyz
0

2

,0
.,sup  

It is known that under the condition (2), the system (1) is Adamar 

incorrect [9], i.e., has no solution in ( ).1DCn  

3. Regularizing Algorithm for the System (1) 

In order to determine a unique solvability and regularizability of the 

system (1) in ( ),1
2

DZn  first, we transform (1) into the form: 

( ) ( ) ( ) ( ) ( )  =τνντθντ≡θ
x b

yxFddyxKyxH
0 0

0
2

00 ,,,,,,  (3) 

and assuming that conditions (2) and (3) are satisfied, we suppose that 
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( )00 , yxH  is a diagonal matrix, where 
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Here 
0

0 FL<  is a Lipschitz coefficient of the function .0F  Then, carrying 

out mathematical operations with respect to the system (1) based on the 

operator 0H  given by the formula: 

 ( ) ( ) ττθτ≡θ
x

dyyHH
0

000 ,,,  ( )∗  

the specified system is equivalently converted into the form: 
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 (5) 

with the vector-function 

{ } ( ) ( ) ( ) ( ),,1,,,;...,, 000010 niyxHyxQQQcolonQ iiin =θθ≡θθθ=θ  
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( ) ( ) ( ) ( )  ∈θτνντθντ≡θ
x b

n
RddyxKyxH

0 0

2
00 .;,,,,,  

From the system (5), it is evident that for the matrix function 

( ),, 00 yxH  by means of (4), there exist eigenvalues ( ),xiλ  such that 

( ) ( ){ }....,,1min0 0 nixx i =|λ=λ<  

Further, since in the IVE-1 theory, one of the possible methods is RM, 

we introduce a singular system in the form: 
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having the feature of a relatively small parameter, where the condition is 

allowed to be: 
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We are looking for a solution to this system according to the rule: 
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In this case, with respect to unknown vector functions, respectively, we 

obtain the following systems: 

( ) ( ) ( ) ( )∏  ∏ε ε
+τττε−=

x
yFdyyHyx

0
00 ,,0,,

1
,    (9) 
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( ) ( ) ( ) ∏ 





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Here 

(a) ( )∏ε yx,  is a solution of the system (9), which redefines a special 

vector function ( )yx,εΩ  with the condition 

 ( )




=∞
≠

 →Ω →εε
;0,

,0,0
,

0 x

x
yx  ( )∗∗  

(b) ( )yx,υ  is the solution of modified degenerate system (10), where 

the free term at the beginning of the segment [ ]X,0  vanishes. Moreover, the 

system (10) is regularizable in ( );1DCn  

(c) ( )yx,εξ  is defined uniquely from the system (11), which converges 

to zero in the sense of ( ),1DCn  when small parameter .0→ε  

In order to show in what sense the system (5) is regularizable, we first 

prove the conditions of items (a, b, c). 

(a) Indeed, since the matrix Cauchy function ( )ε,0,, 0yxW  of the 

system 

( ) ( ) ( ),,,
1

, 00 yxUyxHyxU x ε−=  

and, by virtue of the Vazhevsky inequality, satisfies the estimate: 

( ) ( ) ,
1

exp,0,, 00 




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 φε−≤ε xnyxW  (12) 



Regularization of a System of the First Kind Volterra … 155 

from the system (9), by (12), it follows that 
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It means that for the vector-function ( ),, yxεΩ  ( )∗∗  takes place. 

(b) On the other hand, since the vector function ( )yx,υ  is a solution of 

the system (10), it means that the approximation to this solution under 

certain conditions can be the solution of the following system with a small 

parameter of the form: 

 ( ) ( ) ( ) ( ) ( ) ( ) +υ=ττυτ+δυ δδδ
x

yxFyxQdyhyx
0

0 .,,,,  (14) 

Lemma 1. Under the assumed conditions, the system (10) has a solution 

with conditions (2), (4) and (8), while the solution of the system (14) 

converges uniformly to the solution (10), when ,0→δ  i.e., 

( ) ( ) ( ) ( ) .1,,,
1βδ−≤µ=υ−υ −

δδ PCC
Lyxyxyx

nn
 (15) 
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Remark 1. The proof of Lemma 1 is based on the following conditions: 
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(c) In order to define the vector-function at the beginning, the system 

(11) is converted to the form: 
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Further, since there are estimates of the form: 
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and 
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(20) 

where in the obtained estimates, the following facts were taken into account: 
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From the estimate of the system (17), it follows that: 

           

( ) ( ) ( ) ( )
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






+=<+= →ε∆ε
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
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3302100
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0
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TTTqqL

TLyx

P

PCm
  (21) 

Lemma 2. Under the conditions of Lemma 1 and (4), (7), (13), (18), 

(21), the system (17) is solvable in ( ),1DCn  and as ,0→ε  it converges to 

zero in sense of ( ).1DCn  

Theorem 1. If the conditions of Lemmas 1 and 2 are satisfied, then the 

solution of the system (6) can be uniquely represented in the form (8). 

Moreover, 

(a) ( ) ( ) ,
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2

7
1

1
4

7

11
4

7

1
1

2


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
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

















π+⋅=γεγ≤

−−−
ε∏ ebMC

DZn
 

(b) ( ) [ ( ) ] ( ),
~

2 0
4

3

121
2 ε=εγ+ε∆≤υ−θε MXb

DZn
  

(c) ( ) [ ( ) ( ) ] ( ),
~~~

4 1001
2 ε=ε+εε+ε∆≤−θΦ ε MXbrMXbF

DZn
   

where ( ) ( ) 0
~

,
~

0 →εε MM  when .0→ε  

Proposition 1. Under the conditions of Theorem 1, the system (1) is 

regularized according to the rule (8) in ( )1
2

DZn  in a generalized sense. 

4. Conclusion 

In this paper, we investigated a nonlinear IVE-1 system with a special 

solution in ( ).1
2

DZn  The solution to the original system is constructed          

using a special perturbation method, after transforming it on the basis of a 

modification of the method of integral operators with weighted functions [7]. 

At the same time, sufficient conditions for the solvability and regularizability 

of the system under study were revealed in ( ).1
2

DZn  
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The results of the work can be used to inverse problems of mathematical 

physics, where nonlinear ill-posed IVE-1 systems of the specified class 

degenerate. 
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