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IDENTIFICATION OF TWO PARAMETERS IN AN 

ELLIPTIC BOUNDARY VALUE PROBLEM 

 

Abstract 

This paper concerns an inverse problem which consists in determining 

two coefficients b and c in the equation ( ) ( ) ,fuxcuxb =′+′′−  

] [,1,0∈x  knowing the solution function u and the right-hand side 

function f. The questions of uniqueness and stability are investigated. 

This problem is solved by using the nonlinear least squares method. 

We present some numerical examples to illustrate our algorithm. 
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1. Introduction 

Consider the boundary value problem for 1D elliptic equation with the 

homogeneous Dirichlet conditions: 

( ) ( ) ( ) ( ) ( ) ] [
( ) ( )




==
∈=′+′′−=

,010

,1,0,:

uu

xxfxuxcxuxbLu
 (1) 

where the coefficients ( )cb,  satisfy the conditions: [ ];1,01
Cb ∈  ( ) ≥xb  

,00 >b  [ ]1,0Cc ∈  and the right-hand side ( ).1,02
Lf ∈  The direct problem 

is well-posed, i.e., there exists one solution ( ) ( )1,01,0 1
0

2
HHu ∩∈  of (1) 

and is stable relative to the data ( ).,, fcb  For fixed right-hand f and 

parameters ( ),, cbp =  we denote the solution u by ( ),pΦ  Φ  is called the 

forward operator. 

The inverse problem is set as follows: given ( ),, fu  determine the            

pair of parameters ( )., cbp =  Such problem is formulated as a nonlinear 

equation ( ) .up =Φ  It is well-known that such problem is ill-posed [3], that 

is the solution may be not unique and not stable. Many articles have studied 

the parameter identification problems. In [4], the author gives a condition 

that ensures the uniqueness in the problem of transmissivity parameter 

identification. In [2, 3], the authors developed an abstract framework for 

nonlinear ill-posed problems. They generalized the Newton-Kantorovich 

method for nonlinear equation ( ) ,yxF =  when 21: HHF →  acts between 

two Hilbert spaces and the derivative is not invertible or ill-conditioned. In 

[9], the approximate solution’s stability for nonlinear ill-posed problems is 

established by giving conditions to improve the convergence rate. 

Several numerical approaches have been proposed. The most common 

approach is to reformulate the inverse problem as a least squares problem 

which is solved by optimization methods using the gradient of the objective 

function. In the book [6], the author explores the problem of parameters 

estimation by setting it as a minimization problem involving several 

techniques to compute the gradient such as the adjoint state method and 
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sensitivity functions. In [7], Knowles has identified the parameter p in               

the equation ( )( ) fuxp =∇⋅∇−  in a bounded domain. The problem of 

identifying the parameter has many engineering applications like hydrology, 

geology and ecology. We must cite the paper [10] which is concerned        

with an inverse problem in groundwater hydrology, the author formulates the 

problem as a constrained minimization problem. 

The paper is organized as follows: In Section 2, we solve the direct 

problem with finite element method. In Section 3, we consider the inverse 

problem. First, we prove a result on the stability of the solution. Next, we 

solve the inverse problem in the sense of least squares problem, we apply the 

Levenberg-Marquardt algorithm to recover the pair of parameters ( )., cb  In 

Section 4, we show some numerical examples to validate our algorithm. 

Finally, in Section 5, we give the conclusion. 

2. Direct Problem 

2.1. Well-posedness 

We show that the direct problem is well-posed. 

Let ( )1,01
0HV =  and ( )1,02

LH =  be the Sobolev spaces. The weak 

form of problem (1) is: find ,Vu ∈  such that 

 ( ) ( ),,, vfvua =    ,Vv ∈∀  (2) 

where 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )[ ] ′′++′′=
1

0
, dxxbxvxuxcxbxvxuvua  

and 

( ) ( ) ( )=
1

0
., dxxvxfvf  

The bilinear form ( )⋅⋅,a  is continuous and H-coercive: There exist two 

constants 01 >C  and 02 >C  such that 
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 ( ) ,, 1 V
uCvua ≤    Vvu ∈∀ , , (3) 

and 

 ( ) ,
2

,
2

0
22

VH
ubu

C
uua ≥+    .Vu ∈∀  (4) 

Let A be the operator defined by the form ( )., vua  By Lax-Milgram’s 

theorem, the operator IAA λ+=λ  is invertible for ,
2
2C≥λ  moreover 

1−
λA  is a compact operator. Now we show that A is injective, that is the 

homogeneous problem 

 ( ) ( ) ,010,0 === uuLu  (5) 

has only the trivial solution. For this, we put ( ) ( )xvxu =′  in (1), then the 

solution of equation (5) is given by 

 ( ) ( )
( )  +







=
x s

kdsdt
tb

tc
kxu

0
2

0
1 .exp  (6) 

Using the boundary conditions, we get ( ) ( ).1,0,0 ∈∀= xxu  

From the Fredholm’s alternative, there exists a unique solution Vu ∈  of 

problem (2), which depends continuously on the data f, i.e., 

 .
HV

fMu ≤  (7) 

2.2. Discretization 

We approximate the space V by a finite dimensional subspace      

VVh ⊂  defined by { [ ],1,0CVvV hh ∩∈=  such that [ ] ,1, 1
Pv

ii xxh ∈| +  

}.11 −=∀ ni ⋯  In our study, we consider the approximate solution hu  

obtained by finite element method, that is, hu  is the solution of the 

variational problem: Find hh Vu ∈  such that 

 ( ) ( ) .,,, hhhhh Vvvfvua ∈∀=  (8) 
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The basis of hV  is given by the functions 

( )

[ ]

[ ]














∈−

∈−

=φ +
+

−
−

,otherwise0

,,if

,,if

1
1

1
1

ii
i

ii
i

i xxx
h

xx

xxx
h

xx

x  

where { } ,11, −== niihxi ⋯  is a subdivision of [ ].1,0  

We denote by ( )( ) ( ) ( )
11

1

011 ,
−≤≤

−≤≤ 




 φ== 

nj
jniih dxxxfBxuX  and 

the three-diagonal stiffness matrix ( ) ,1,1 −≤≤= njiijMM  such that 

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )












+=++−

=−+

−=+−−

=

+

+−

−

.1if,2
6

11

,if,
6

12

,1if,2
6

11

1

11

1

ijxcxcxb
h

ijxcxcxb
h

ijxcxcxb
h

M

iii

iii

iii

ij  (9) 

Then, the weak formulation (8) leads to solving the linear system .BMX =  

3. Inverse Problem 

3.1. Uniqueness of the solution 

For one observation ( ),, fu  there exists more than one solution 

( )., cbp =  We can furnish the following example: ( ) ( ),1 xxxu −=  

( ) .2=xf  

• For ,0,1 11 == cb  we have ( ) .fuuL =′′−=  

• For ,
2

1
,

2

3

2

1
22 =






 += cxb  we have ( ) .22 fucubuL =′+′′−=  

In this paragraph, we consider the case of two observations ( )11, fu  and 

( )., 22 fu  Our aim is to give a condition for which the solution of the inverse 

problem is unique. The equation ( ) ( )21, uup =Φ  has a unique solution 
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( )cbp ,=  if and only if the linear system 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )




=′+′′−=

=′+′′−=

2222

1111 ,

fxuxcxuxbLu

fxuxcxuxbLu
 (10) 

has a unique solution with respect to ( )., cb  The determinant of system (10) 

is given by 

 ( ) ( ) ( ) ( ) ( ) ( )( ).1
1221 xuxfxuxf

xb
x ′−′=∆  (11) 

As a consequence, we have the following proposition: 

Proposition 3.1. Assume that ( ) ( ) ( ) ( ) ( ).1,0,01221 ∈∀≠′−′ xxuxfxuxf  

Then, the equation ( ) ( )21, uup =Φ  has a unique solution ( )., cbp =  

3.2. Stability of the solution 

First, we introduce some notations that will be used throughout this 

paper. 

In what follows, we provide a condition for the stability of the inverse 

problem. For that, we introduce some notations. 

(1) The parameter space: 

{( ) [ ] ( ) [ ]}.1,0,0,1,0;, 0
1

CcbxbCbcbMad ∈>≥∈=  

(2) Consider two pairs ( ) ( ) .,,, 222111 adMcbpcbp ∈==  

(3) We assume that ( ).1,0, 21
∞∈ Lff  

(4) The forward operator ,: YYMad ×→Φ  where ( ),1,02
HY =  is 

defined by ( ) ( ),, 211 uup =Φ  ( ) ( ),, 212 vvp =Φ  with ju  ( )jv.resp  solution 

of jjj fucub =′+′′− 11  ( ) .2,1,.resp 22 ==′+′′− jfvcvb jjj  

(5) We set 

( ) ( ) ( ) ( ) ( )xuxfxuxfx 12211 ′−′=∆    and   ( ) ( ) ( ) ( ) ( ).12212 xvxfxvxfx ′−′=∆  
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Theorem 3.1. Assume that there exists 01 >α  such that 

 ( ) [ ].1,0,011 ∈∀>α≥∆ xx  (12) 

Then we have the following estimate: 

 ( ) ( ) ( ) .21121 YYH
pppMpp ×Φ−Φ≤−  (13) 

Proof. We set 111 vuw −=  and ,222 vuw −=  such that +21 H
w  

,22 η≤
H

w  then 

( ) ( ) ( ) ( ) ( ) ( )xwfwfxvxfxvxfx 1211212212 ∆+′−′=′−′=∆  

( ) ( ) ( ) ( ) ( )xwxfxwxfx 21121 ′−′−∆≥  

( ) ( )∞∞∞∞ ′+′+−α≥ 21211 wwff  

( ) ( )2since211 Hjj wCwffC ≤′+η−α≥ ∞∞∞  

( ).enoughsmall0for02 >η>α≥  (14) 

In this case, the equation ( ) ( )212 , vvp =Φ  has a unique solution. 

From the system 

 
( ) ( )
( ) ( )




=Φ
=Φ

,,

,,

212

211

vvp

uup
 (15) 

we obtain the following systems: 





=′+′′−
=′+′′−

;

,

22121

11111

fucub

fucub
   




=′+′′−

=′+′′−

.

,

22222

11212

fvcvb

fvcvb
 

Combining these equations, we obtain the system 

 
( ) ( )
( ) ( )



′−′′=′−+′′−

′−′′=′−+′′−

.

,

2121221212

1111121112

wcwbvccvbb

wcwbvccvbb
 (16) 

The determinant of system (16) is 
( )
2

2

b

x∆−  (does not vanish by (14)). 

Therefore, we obtain the inversion formulas: 
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( ) ( ) ( )[ ]

( ) ( ) ( )[ ]








′−′′′′+′−′′′′−∆=−=∆

′−′′′−′−′′′
∆−=−=∆

.:

,:

2121111112
2

2
12

2121111112
2

2
12

wcwbvwcwbv
x

b
ccc

wcwbvwcwbv
x

b
bbb

 

Using the equations 11 wcwb ′∆=′′∆  and ,22 wcwb ′∆=′′∆  we deduce the 

system: 

 

( ) ( ) ( )

( ) ( ) ( )








′′′′−′′′′∆−∆∆
−=∆

′′−′′∆−∆∆
−=∆

.

,

211211
2

22

121211
2

22

wvwvbccb
b

c

vwwvbccb
b

b

 (17) 

From (14) and (17), we obtain the estimations 

( )

( )








′′′′+′′′′∆+∆+α≤∆

′′+′′∆+∆+α≤∆

.

,

1212
222

1
2
1

2

22

1212
222

1
2
1

2

22

vwwvbccb
b

c

vwwvbccb
b

b

 (18) 

Therefore, 

( ) ( 2
1

2
2

2
1

2
2

2
1

2
1

2

2
2

1
22

wwvvcb
b

cb ′+′′+′+α≤∆+∆  

).2
1

2
2

2
1

2
2 wwvv ′′+′′′′+′′+  (19) 

From the stability of the direct problem, we have the estimation 

( ) ( ) ,2,1,21,02 =≤ ∞ jfpCv jHj  

which leads to 

22
HH

cb ∆+∆  

( ) ( ) ( ( ) ( ) ) .
2

1,021,01
2

211 22
HH

wwffpM ++≤ ∞∞  

Remark. Theorem 3.1 means that the operator ( )21,: uuup =Φ ֏  

from HHMad ×⊂  to YY ×  is invertible in a neighborhood of .1p  

Moreover, 1−Φ  is continuous (locally Lipschitz). 
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Remark. When ( ) ,, RR ×∈= ∗
+cbp  one observation suffices to have 

uniqueness. We can prove that ( )pΦ  is injective: If =′+′′− ucub 11  

,22 fucub =′+′′−  then ( ) ( )uccubb ′−=′′− 2121  and from ( ) ( ) ,010 == uu  it 

follows that 21 bb =  and .21 cc =  

3.3. Fundamental spaces 

(1) Model space: 

{ ( ) [ ] [ ] ( ) }.0,1,01,0, 0
1 >≥×∈== bxbCCcbpMad  

(2) State space: ( ).1,01
0HV =  

(3) Data space: We consider two possibilities of the measurements: 

3.1. One observation 

We choose one distributed observation denoted by d, in other words, the 

state u is measured at all points of ( ).1,0  Then HD =  and the observation 

operator is given by .dKu =  In this case, the inverse problem is formulated 

by the equation 

 ( ) ., dcb =Φ  (20) 

3.2. Two observations 

We choose two distributed observations ,1d  ,2d  with ,jj ud =  such 

that ju  is the solution of the system ,jjj fucub =′+′′−  .2,1=j  Then 

HHD ×=  and the observation operator is given by ( )., 21 ddKu =  In this 

case, the inverse problem is formulated by the system 

 ( ) ( ) .,,, 2211 dcbdcb =Φ=Φ  (21) 

( )pjΦ  is associated to .jf  

Remark. In the case of constant parameters, we can consider the 

observation at the boundary ( ) ( )( ).1,0 uud ′′=  Indeed, the couple ( )cb,  

must satisfy the following system: 
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( )( ) ( )( )[ ] ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )










′=′λ+λ−λ−

′=−−λ−λ




1

0

1

0

,10expexpexp
1

,011exp
1exp

1

uudyyfy
b

udyyfy
b

 

with .
b

c=λ  We do not study the resolution of this system here. 

3.4. Least squares formulation 

One of the most commonly used approaches for solving the inverse 

problem is by setting it as a least squares problem [1], whose solution is an 

approximation of the parameter ( )., cbp =  In our work, we consider two 

cases: 

(1) One observation: The cost functional is 

 ( ) ( ) ,
2

1 2
1 H

dppJ −Φ=  for .adMp ∈  (22) 

(2) Two observations: The cost functional is 

( ) ( ( ) ( ) ),
2

1 2
22

2
112 HH

dpdppJ −Φ+−Φ=  for .adMp ∈  (23) 

3.5. Derivative of ( )pΦ  

For ,adMp ∈  we define the unbounded operator ( ) ( )( ) :: HpApA →D  

 
( )( ) ( ) ( )

( ) ( ) ( )



ϕ′+ϕ′′−=ϕϕ=ϕ
=

.,

,1,01,0 1
0

2

xcxbLLpA

HHpA ∩D
 (24) 

The operator ( )pA  is invertible (the direct problem admits a unique solution 

(Subsection 2.1)) and ( ) ( )HLpA ∈−1
 is a compact operator. 

Theorem 3.2. The operator Φ  is Fréchet-differentiable, the partial 

derivatives are given by: 

 

( ) ( ) ( )

( ) ( ) ( )







′−=∂
Φ∂

′′=∂
Φ∂

−

−

.;

,;

1

1

ukpAkp
c

uhpAhp
b

 (25) 
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Proof. We suppose that ( ) ( )pup =Φ  for one observation. 

(1) Let h be an increment of b and uδ  be an increment of u. Then 

 ( ) ( ) ( ) .fuucuuhb =′δ++″δ++−  (26) 

By developing equation (26), we obtain 

( ) ( ) ( ) ,fuhuhucubucub =″δ−′′−′δ+″δ−′+′′−  

since ( ) ( ),1Ou =″δ  hence 

( ) ( ),hOuhuL +′′=δ  

which implies that 

( ) ( ) ( ).1
hOuhpAu +′′=δ −

 

Thus, 

 ( ) ( ) ( ).;
1

uhpAhp
b

′′=∂
Φ∂ −

 (27) 

(2) Let k be an increment of c and uδ  be an increment of u. Then 

 ( ) ( ) ( ) .fuukcuub =′δ+++″δ+−  (28) 

Similarly, from (28), we obtain 

( ) ( ( ) ( ) ) ( ) .fukukucubucub =′δ+′+′δ+″δ−+′+′′−  

It follows that 

( ) ( ) .
′δ−′−=δ ukukuL  

Consequently, 

( ) ( ) ( ).1
kOukpAu +′−=δ −

 

From this, we conclude that 

 ( ) ( ) ( ),;
1

ukpAkp
c

′−=∂
Φ∂ −

 (29) 

which completes the proof. 
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The full derivative is 

( ) HHHHp ×→×Φ′ :  

( ) ( ) ( ) ( ( ) ( ) ( ) ( )).,,,
11

ukpAuhpAkhpkh ′−′′=Φ′ −−
֏  

3.6. Reconstruction algorithm 

To solve least squares problem (23), we apply Newton’s method, which 

consists of iterating the procedure: 

(1) :0p  initial approximation, 

(2) ,1 nnn hpp +=+  where nh  is the solution of the linearized equation: 

 ( ) ( ).nnn pdhp Φ−=Φ′  (30) 

The operator ( ) 







∂
Φ∂

∂
Φ∂=Φ′

cb
p ,  is compact from HH ×  to .HH ×  

Since ( ) 1−
pA  is compact, equation (30) is ill-posed, which needs a strategy 

of regularization. For this, we use the Levenberg-Marquardt scheme [5, 8]: 

 ( ) ( ) ( ) ( )( ),nnnnnnn pdphhpp Φ−Φ′=α+Φ′Φ′ ∗∗  (31) 

where ( )pΦ′  is the Fréchet-derivative of Φ  and ( )p
∗Φ′  is the adjoint 

operator of ( ).pΦ′  

4. Numerical Examples 

In this section, we present numerical examples to illustrate the 

effectiveness of the recovery algorithm. To simulate noised data, we perturb 

the exact data u with the noise level ,δ  such that: 

( ) ( ) ( ),xxuxu δσ+=δ  

where ( )xσ  is the Gaussian random distribution. 
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In the first example (Test 1), we used 80=n  points (in  the interval 

[ ])1,0  and 60=n  for the second example (Test 2). All results are obtained 

after 10 iterations. 

4.1. Two observations 

Test 1. Let ( ) ( )xxb π+= sin5.01  and ( ) .1 2
xxxc −+=  

Test 1-a. We take two observations associated to the right-hand sides: 

( ) ( )xxf π= cos1    and   ( ) .2
2 xxxf −=  

 

 

Figure 1. Test 1-a. Variation of ( )x1∆  and reconstruction of b and c without 

noise, initial guess ( ).1,10 =p  
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Figure 2. Test 1-a. Reconstruction of b and c with level noise ,10 5−=δ  

( ).1,10 =p  

In this example (Test 1-a), we have uniqueness and stability which agree 

with Theorem 3.1. 

Test 1-b. Now we take two observations with 

( )




>
≤

=
5.0if,5.0

,5.0if,
1

x

xx
xf    and   .2

2 xxf −=  
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Figure 3. Test 1-b. Variation of ( )x1∆  and reconstruction of b and c, 

without noise, ( ).1,10 =p  

In this example (Test 1-b), we lose the stability (of the parameter c), 

since ( )x1∆  vanishes at 5.0=x  and changes the sign. 

4.2. One observation 

Test 2. Let ( ) ( )xxb π+= sin5.01  and ( ) .1 2
xxxc −+=  

Test 2-a. We consider one observation with ( ) ( )22 exp xxxxf +−=  

and initial guess ( ).1,10 =p  
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Figure 4. Test 2-a. Exact and regularized solution without noise. 

In this example (Test 2-a), the solution is not unique ( apc  approaches to 

another ).solution  The approximate solution depends upon the initial guess 

(see [2, Theorem 2.4. source condition (iii)]). 

Test 2-b. Now we consider the previous example ( ) +−= 2
xxxf  

( ),exp 2
x  with initial guess 10 =b  and 0c  satisfying the source condition 

 
( ) ( ),0 w
c

c
cc

∗












∂
Φ∂−=

⊻
⊻  (32) 

where ⊻c  is the exact solution exc  to be estimated, and Hw ∈  is adequate. 

 

Figure 5. Test 2-b. Exact and regularized solution without noise. 
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This example (Test 2-b) confirms the convergence forced by the source 

condition. However, we have used the knowledge of the exact solution 

which is not possible in application. This question is not well studied from 

the numerical aspect. 

4.3. Commentaries 

(1) In Figures 1 and 2, 1∆  does not change the sign ( )( ),02.01 ≥∆ x  

which confirms the numerical stability (in accordance with Theorem 3.1). 

(2) In Figure 3, 1∆  changes the sign, it vanishes at .5.0=x  For              

the parameter ( ),xc  the algorithm converges to another solution (lack of 

uniqueness). However, the parameter b is relatively stable (stable  for a small 

noise-level ).10 5−≤δ  

(3) In Figure 4, considering one observation and the initial guess 

( ),1,10 =p  the algorithm converges in a stable way to another solution 

( ).ˆ, cb  

(4) In Figure 5, we consider one observation such that 10 =b  and 0c  is 

well-chosen using the formula (32), the algorithm converges to the exact 

solution in the case of exact data, otherwise it diverges. 

5. Conclusion 

In this paper, we have studied the uniqueness and the stability of an 

inverse problem which consists of identifying two parameters in elliptic 

boundary value problem. We have established a Lipschitz stability estimate 

under a suitable condition on the data ( ) ( )2211 ,,, fufu  (two observations). 

The numerical experiments confirm the theoretical results. In the case of one 

observation, the algorithm converges but to another solution. Finally, we 

could not have good a priori estimates on the parameters. Thus, it is hard to 

find a good initial guess required by a locally convergent algorithm. 
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