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Abstract

This paper concerns an inverse problem which consists in determining
two coefficients b and c¢ in the equation —b(x)u" + c(x)u' = f,
x0]0, 1], knowing the solution function u and the right-hand side

function f. The questions of uniqueness and stability are investigated.
This problem is solved by using the nonlinear least squares method.

We present some numerical examples to illustrate our algorithm.

Received: January 24, 2022; Accepted: April §, 2022

2020 Mathematics Subject Classification: 47J06, 90C30, 65N21.

Keywords and phrases: inverse problem, least squares method, Levenberg-Marquardt
algorithm.

FCorresponding author

How to cite this article: Abir Benyoucef, Leila Alem and Lahcéne Chorfi, Identification of two
parameters in an elliptic boundary value problem, Advances in Differential Equations and
Control Processes 27 (2022), 115-132. http://dx.doi.org/10.17654/0974324322016

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Published Online: May 6, 2022




116 Abir Benyoucef, Leila Alem and Lahceéne Chorfi

1. Introduction

Consider the boundary value problem for 1D elliptic equation with the
homogeneous Dirichlet conditions:

{Lu = —=b(x)u"(x) + c(x)u'(x) = f(x), x0O]0,1[,

u(0) = u(1) = 0. )

where the coefficients (b, ¢) satisfy the conditions: b [J Cl[O, 1]; b(x) =
bp >0, ¢0C[0,1] and the right-hand side f O I2(0, 1). The direct problem

is well-posed, i.e., there exists one solution u U H 2(0, )N H(l) (0, 1) of (1)
and is stable relative to the data (b, ¢, f). For fixed right-hand f and
parameters p = (b, ¢), we denote the solution u by ®(p), ® is called the

forward operator.

The inverse problem is set as follows: given (u, f), determine the
pair of parameters p = (b, ¢). Such problem is formulated as a nonlinear
equation ®(p) = u. It is well-known that such problem is ill-posed [3], that

is the solution may be not unique and not stable. Many articles have studied
the parameter identification problems. In [4], the author gives a condition
that ensures the uniqueness in the problem of transmissivity parameter
identification. In [2, 3], the authors developed an abstract framework for
nonlinear ill-posed problems. They generalized the Newton-Kantorovich

method for nonlinear equation F(x) =y, when F : H; — H, acts between

two Hilbert spaces and the derivative is not invertible or ill-conditioned. In
[9], the approximate solution’s stability for nonlinear ill-posed problems is

established by giving conditions to improve the convergence rate.

Several numerical approaches have been proposed. The most common
approach is to reformulate the inverse problem as a least squares problem
which is solved by optimization methods using the gradient of the objective
function. In the book [6], the author explores the problem of parameters
estimation by setting it as a minimization problem involving several

techniques to compute the gradient such as the adjoint state method and
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sensitivity functions. In [7], Knowles has identified the parameter p in

the equation —0 [{p(x)0u) = f in a bounded domain. The problem of

identifying the parameter has many engineering applications like hydrology,
geology and ecology. We must cite the paper [10] which is concerned
with an inverse problem in groundwater hydrology, the author formulates the
problem as a constrained minimization problem.

The paper is organized as follows: In Section 2, we solve the direct
problem with finite element method. In Section 3, we consider the inverse
problem. First, we prove a result on the stability of the solution. Next, we
solve the inverse problem in the sense of least squares problem, we apply the

Levenberg-Marquardt algorithm to recover the pair of parameters (b, c). In

Section 4, we show some numerical examples to validate our algorithm.

Finally, in Section 5, we give the conclusion.
2. Direct Problem

2.1. Well-posedness

We show that the direct problem is well-posed.

Let V = H(l)(O, 1) and H = L2(0, 1) be the Sobolev spaces. The weak
form of problem (1) is: find u OV, such that

a(u,v)=(f,v), vOV, 2

where
ali ) = [ G 0) + e(w)) + (¥ (oLl

and

The bilinear form a([J0) is continuous and H-coercive: There exist two

constants C; >0 and C, > 0 such that
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|a(u, v)| < G| u ”V’ Ou,v3dV, 3)

and
Cy 2 2
a(u, u) + 7” u ”H > b0|| u "V’ Ou OV. 4)

Let A be the operator defined by the form a(u, v). By Lax-Milgram’s

. . C
theorem, the operator Ay = A+ Al is invertible for A 2 72, moreover

A\ Uis a compact operator. Now we show that A is injective, that is the
homogeneous problem

Lu =0, u(0)=u(l)=0, (@)
has only the trivial solution. For this, we put u'(x) = v(x) in (1), then the

solution of equation (5) is given by
X s C(l)
= [ kiexp| [ gy fds + k. 6
u(x) -[0 1 P( o b(7) J ST K (6)

Using the boundary conditions, we get u(x) = 0, Ux O (0, 1).

From the Fredholm’s alternative, there exists a unique solution u 1V of

problem (2), which depends continuously on the data f; i.e.,
luly < MIf g (7

2.2. Discretization

We approximate the space V by a finite dimensional subspace
V, OV defined by V, ={v, OV N[0, 1], such that v, |[x, %415 A

0i =1---n=1}. In our study, we consider the approximate solution uj,
obtained by finite element method, that is, uj; is the solution of the

variational problem: Find u; [J V) such that

a(uh, Vh) = (f, Vh), Dvh 0 Vh (8)
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The basis of V), is given by the functions

% if x O [Xl'_l, Xl'],
Xip1 — X .

@ (x) = % it x0[x, x4,
0 otherwise,

where {x; =ik}, i = 1---n —1, is a subdivision of [0, 1].

1
We denote by X = (uy,(x;)),<j<p-1» B = Uof(x)(pj(x)dxj and
1<j<n-1

the three-diagonal stiffness matrix M = (M;); j<,-1» such that
1 1 e e
_Zb(xi) ‘g(c(xi—l) +2c(x;)), if j=i-l

2 1 e e
My = Eb(xi) +€(C(xi—1) —c(x4r)), if =4 €)

1 1 cp .
_Zb(xi) +g(2c(xi) +c(xp4q)), if j =i+l

Then, the weak formulation (8) leads to solving the linear system MX = B.

3. Inverse Problem

3.1. Uniqueness of the solution

For one observation (u, f ), there exists more than one solution
p=(b,c). We can furnish the following example: u(x) = x(1 - x),
fx)=2.

e For by =1, ¢; =0, we have L(u) = —u" = f.

e For by = %(x +%), ¢y = %, we have L(u) = =byu" + cou' = f.

In this paragraph, we consider the case of two observations (;, f;) and
(up, f5). Our aim is to give a condition for which the solution of the inverse

problem is unique. The equation ®(p) = (4, uy) has a unique solution
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p = (b, c) if and only if the linear system

{Lul = ~b(x)uj(x) + e(x)ui(x) = £, (10)

Luy = =b(x)u3(x) + c(x)ur(x) = f

has a unique solution with respect to (b, ¢). The determinant of system (10)
is given by

A(x) = ﬁ (A ()b (x) = £ ()] (x)): (11)

As a consequence, we have the following proposition:
Proposition 3.1. Assume that f(x)u5(x) = fo(x)u;(x) # 0, Ox 0 (0, 1).

Then, the equation ®(p) = (uy, uy) has a unique solution p = (b, c).

3.2. Stability of the solution

First, we introduce some notations that will be used throughout this
paper.
In what follows, we provide a condition for the stability of the inverse

problem. For that, we introduce some notations.

(1) The parameter space:

M, ={(b, c); b0 C'[0,1], b(x) = by >0, c O C[0, 1]}.
(2) Consider two pairs p; = (b;, ¢), py = (by, c2) OM .
(3) We assume that f;, f> O L”(0, 1).

(4) The forward operator ® : M,; — Y XY, where Y = H2(0, 1), is
defined by ®(p;) = (u;, up), ®(py) = (v, v2), with u; (resp. v;) solution
of =bu’; + cuu'; = f; (resp. =by'i + vy = f;), j =1, 2.

(5) We set

B(x) = fi(x)us(x) = fo(x¥)ui(x) and  Do(x) = fi(x)va(x) = f2(x)vi(x).
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Theorem 3.1. Assume that there exists 0y > 0 such that
|A(x)|za; >0, OxOJo, 1]. (12)
Then we have the following estimate:

I 21 = P2l < M(p)I®(P1) = (p2) llyxy- (13)

Proof. We set wy =u; —v; and wy = up — vy, such that |[wy [,2 +

[ wa |72 <1, then
|8 (x) | =] AG)va(x) = 2 ()vi(x)[ =] fawg = fiws + Ay (x) |
2 [ & (x)] = [ f2(x) [[ wi(x) [ = [ fu(x) || wa ()
zap = (| filo +1 2 L) U o +1 w2 o)
20 = ON(l filo +1 f2 lleo) (since || W [, < C[ w; [I52)
> 0, >0 (for n > 0 small enough). (14)
In this case, the equation ®(p,) = (v{, v») has a unique solution.

From the system

¢ = b b
{ (1) = (w, up) (15)
d(pa) = (v, v2),
we obtain the following systems:
{_bl”i' +oup = fi, {‘bzvi' +ov = fi,
“buy +cuy = fos o (=byvh +evh = fo.
Combining these equations, we obtain the system
{(bz b))V + (e —e)vi = bypwl — e, 16)
(by =by)vh + (e = c)vh = bywh = ey
The determinant of system (16) is —Ai—(x) (does not vanish by (14)).
2

Therefore, we obtain the inversion formulas:
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b I n U U n U
Ab:=by =D = _v%x)[‘ﬁ(blwl = cpwp) = vi(bpwh = epwh)],

b " " ! " " /
Ac=cy)—c = ﬂzz;j[—vz(blwl - 6‘1W1) + Vl(blwz - CIWZ)]-

Using the equations Abwy = Acwj and Abws = Acw), we deduce the

system:
2 — _b T U U U
(Ab) - A_22 (blAC - ClAb) (V2W1 - W2V1),
b (I7)
2 — - n n n "
(Ac)” = A_22 (b Ac = ¢ Ab) (Vaw] = viwy).
From (14) and (17), we obtain the estimations
2_by [[2 2 [ 2 20t 1] VL
|80 s G2b] + e VA + 5 (s [ wf |+t ).
(18)

e < g2b + e VA + 8635 | f |+ w3 [

Therefore,

l b U U ! !
(80 +|ac )2 52 of +ef (s P i Pl oo P

#3108 P+ Pl s P+ g ), (19
From the stability of the direct problem, we have the estimation
1v; Iz S I £ e =12
which leads to

2 2
1855+ Ac 7

< M) filw + 122 1AW 12000y + w2 Lr2g0.0)*

Remark. Theorem 3.1 means that the operator ® : p — u = (uy, u,)

from M,; UHxH to Y XY is invertible in a neighborhood of p.

Moreover, @' is continuous (locally Lipschitz).
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Remark. When p = (b, ¢) O RE x R, one observation suffices to have
uniqueness. We can prove that ®(p) is injective: If —bu" + cu' =
—byu" + cou' = f, then (by —by)u" =(c; = cp)u’ and from u(0) = u(l) =0, it
follows that b; = b, and ¢| = c;.

3.3. Fundamental spaces

(1) Model space:
M, ={p = (b, c)Oco,1]xclo, 1], b(x) = by > 0}.

(2) State space: V = H(l) (0, 1).
(3) Data space: We consider two possibilities of the measurements:

3.1. One observation

We choose one distributed observation denoted by d, in other words, the

state u is measured at all points of (0, 1). Then D = H and the observation

operator is given by Ku = d. In this case, the inverse problem is formulated
by the equation
®(b, ¢) = d. (20)
3.2. Two observations
We choose two distributed observations dy, d,, with d j = uj, such
that u; is the solution of the system —bu'J'- + cu'j = fj» Jj=12. Then

j
D = H x H and the observation operator is given by Ku = (d;, d,). In this

case, the inverse problem is formulated by the system
q)l(b’ C) = dl’ qu(b’ C) = d2 (21)
@ ;(p) is associated to f;.

Remark. In the case of constant parameters, we can consider the

observation at the boundary d = (u'(0), #'(1)). Indeed, the couple (b, c)

must satisfy the following system:
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1 1 A(l | P
WIO [exp(A(1 = ¥)) = 1] £ (y)dy = u'(0),

~3exp0)[ | exp(A) £ (3)dy + exp(A)u(0) = 1),

c

with A = b

. We do not study the resolution of this system here.

3.4. Least squares formulation

One of the most commonly used approaches for solving the inverse
problem is by setting it as a least squares problem [1], whose solution is an

approximation of the parameter p = (b, ¢). In our work, we consider two

cases:

(1) One observation: The cost functional is
1
I(p) =51 ®(p) = d . for p O M. (22)
(2) Two observations: The cost functional is
_1 2 2
I2(p) =5 (1 ®1(p) —di Iy +[P2(p) = [[y), for pOMyq.  (23)
3.5. Derivative of ®(p)
For p OM ,,;, we define the unbounded operator A(p): D(A(p)) — H:
{D<A(p)) = 120, )N 7130, 1), o
Alp)o = Lo, Lo = ~b(x)9" +c(x)9"
The operator A(p) is invertible (the direct problem admits a unique solution
(Subsection 2.1)) and A(p)™' O L(H) is a compact operator.

Theorem 3.2. The operator ® is Fréchet-differentiable, the partial

derivatives are given by:

o (s 1) = A(p) ),

9 (1 k) = =A(p) ).

(25
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Proof. We suppose that ®(p) = u(p) for one observation.
(1) Let & be an increment of » and du be an increment of u. Then
~(b+ k) (u +Bu) +c(u+3u) = f. (26)
By developing equation (26), we obtain

n

—bu" + cu' - b(5u)" + c(6u)’ - hu" — h(du) = f,

since || (Bu) | = O(1), hence
L(®u) = hu" + O(| k),
which implies that
su = A(p) (") + Ol ).
Thus,

o (pi 1) = A(p) (). @)

(2) Let k be an increment of ¢ and du be an increment of u. Then

—b(u +8u) +(c+k)(u+8u) = f. (28)

Similarly, from (28), we obtain
(=bu" + cu') + (=b(Bu) + c(Bu) ) + k' + k(Bu) = f
It follows that
L(du) = —ku' - k(5u)'.
Consequently,
8u = ~A(p) ™ (k') + O( k |).

From this, we conclude that

o (ps k) = =A(p) (), (29)

which completes the proof.
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The full derivative is

®'(p): HxH - HxH

(h, k) > '(p) (. k) = (A(p) ™ (hu"), =A(p)™ (k).
3.6. Reconstruction algorithm

To solve least squares problem (23), we apply Newton’s method, which

consists of iterating the procedure:
(1) po: initial approximation,
(2) py+1 = p, t h,, where h, is the solution of the linearized equation:

'(py)hy =d = D(p,). (30)

The operator ®'(p) = (%, %;‘c)) is compact from H xH to H x H.

Since A( p)_l is compact, equation (30) is ill-posed, which needs a strategy

of regularization. For this, we use the Levenberg-Marquardt scheme [5, 8]:

CD'D(pn)CD'(pn)hn +a,h, = q)’D(pn)(d - CD(pn)), (€29)
where ®'(p) is the Fréchet-derivative of ® and CD'D( p) is the adjoint
operator of ®'(p).

4. Numerical Examples

In this section, we present numerical examples to illustrate the
effectiveness of the recovery algorithm. To simulate noised data, we perturb

the exact data u with the noise level &, such that:
u®(x) = u(x) + 8o(x),

where 0(x) is the Gaussian random distribution.
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In the first example (Test 1), we used n =80 points (in the interval
[0, 1]) and 7 = 60 for the second example (Test 2). All results are obtained

after 10 iterations.
4.1. Two observations
Test 1. Let b(x) =1+ 0.5sin(Tx) and c(x) =1+ x — x°.
Test 1-a. We take two observations associated to the right-hand sides:
fi(x) = cos(tx) and fo(x) = x - x2.

sign of det=f1*du2-f2*dui reconstruction of b

0.08 15 8 :
» N
\, |~ approximale b
o / N eadb |
007 - 4 3
14+ / \
/ \
' \
) 136
0.06 - / /
' 131 \
/ - / \
L / 2 i y .
0.5 / Ei2 /
121 f
\
0.04 - .‘
1157 \
/ / 1 : ;‘ L ‘
0.03 -
~ p 105/
‘ s - ‘,: .A
0.02 ‘ w 1 ‘
0 0.2 04 06 08 1 0 02 04 06 0.8 1
X
reconstruction of ¢
125
L - k [ approximate ¢
& 4 N ‘ © exadc
121
115+
X
kit
117
105 |
i
1 ! i - L
0 02 04 06 08 1

X

Figure 1. Test 1-a. Variation of A;(x) and reconstruction of b and ¢ without

noise, initial guess py = (1, 1).
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reconstruction of b reconstruction of ¢

15 13
g =P A approximate b approximate ¢
145 V1 . + exactb _ * exactc
/ A\ 1.25 Ao e S
/ A \. T
141 \ s z
A o
1.35 12
13
115 /i
= =
2125 %
1.1 [ A
1.2 J
/
115 1050
1 I
1
1.05 &\
i |
1 - . . 0.95
0 02 04 06 08 1 0 02 04 06 08 1
X X

Figure 2. Test 1-a. Reconstruction of » and ¢ with level noise 0 = 10_5,

po = (L 1).

In this example (Test 1-a), we have uniqueness and stability which agree

with Theorem 3.1.
Test 1-b. Now we take two observations with

X, if x<0.5,

and =x- 2.
05. if x>0.5 fa=a-a

ﬁM={
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sign of det=f1*du2-f2*du1 reconstruction of b
0.03 T 16 - e
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\ © exacth
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0 02 04 08 0.8 1

X

Figure 3. Test 1-b. Variation of A;(x) and reconstruction of » and c,

without noise, py = (1, 1).

In this example (Test 1-b), we lose the stability (of the parameter c),
since A;(x) vanishes at x = 0.5 and changes the sign.

4.2. One observation
Test 2. Let b(x) =1+ 0.5sin(Tx) and c(x) =1+ x — x°.

Test 2-a. We consider one observation with f(x) = x — x>+ exp(xz)

and initial guess py = (1, 1).
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i reconstruction of b o reconstruction of ¢
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N
Y L'y
J/
% S/ i = b
19 / RO
o/ \ 4 %
4 A /
o /-
12 7/ 105 fr
I'/ L 4
/ # %
\
(EE 1
/7 X
/ \ e
’ } “ p
1 ) . . 0.05 ¢ : S
0 02 04 06 08 1 0 02 04 06 08 1
X X

Figure 4. Test 2-a. Exact and regularized solution without noise.

In this example (Test 2-a), the solution is not unique (cap approaches to

another solution). The approximate solution depends upon the initial guess
(see [2, Theorem 2.4. source condition (iii)]).

Test 2-b. Now we consider the previous example f(x)=x—x’ +

exp(xz), with initial guess by =1 and ¢ satisfying the source condition

OCD(C*) D(W)’

oc (32)

) — C

where ¢ is the exact solution c,, to be estimated, and w [0 H is adequate.

reconstruction of b reconstruction of ¢

15 = 1.3
T R
(i N Approximate b Approximate ¢
145 N ¢ Exactb © Exactc
E 125 ST
14} / \ Py gt
S \ . »
/ \
1.35 \ /e
v \ 1.2 o 3
13 = \ : \‘
41/ % \
2 / \ = \
£1.25 / \ Z 115 / X
4 \ / W
1.2 \ / \
1.1 A\
1.15
of . \
iaF ¥ A
o/ \ 1.05
1,05 7 S
5
1 1
0 02 0.4 06 0.8 0.2 0.4 06 0.8

Figure 5. Test 2-b. Exact and regularized solution without noise.
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This example (Test 2-b) confirms the convergence forced by the source
condition. However, we have used the knowledge of the exact solution
which is not possible in application. This question is not well studied from

the numerical aspect.
4.3. Commentaries

(1) In Figures 1 and 2, A; does not change the sign (A;(x) = 0.02),

which confirms the numerical stability (in accordance with Theorem 3.1).

(2) In Figure 3, A; changes the sign, it vanishes at x = 0.5. For
the parameter c(x), the algorithm converges to another solution (lack of

uniqueness). However, the parameter b is relatively stable (stable for a small

noise-level 8 <107 ).

(3) In Figure 4, considering one observation and the initial guess

po = (1, 1), the algorithm converges in a stable way to another solution

(b, &).

(4) In Figure 5, we consider one observation such that by =1 and ¢ is

well-chosen using the formula (32), the algorithm converges to the exact

solution in the case of exact data, otherwise it diverges.
5. Conclusion

In this paper, we have studied the uniqueness and the stability of an
inverse problem which consists of identifying two parameters in elliptic
boundary value problem. We have established a Lipschitz stability estimate

under a suitable condition on the data (u;, f;), (4, f2) (two observations).

The numerical experiments confirm the theoretical results. In the case of one
observation, the algorithm converges but to another solution. Finally, we
could not have good a priori estimates on the parameters. Thus, it is hard to

find a good initial guess required by a locally convergent algorithm.
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