
 

Advances in Differential Equations and Control Processes 

© 2022 Pushpa Publishing House, Prayagraj, India 

http://www.pphmj.com 

http://dx.doi.org/10.17654/0974324322014 

Volume 27, 2022, Pages 85-95 P-ISSN: 0974-3243
 

Received: January 9, 2022;  Accepted: February 16, 2022 

Keywords and phrases: differential equations, extremal theory of dimensions. 

How to cite this article: Smol’yakov Eduard Rimovich, Mathematical basis of extremal theory 

of dimensions, Advances in Differential Equations and Control Processes 27 (2022), 85-95. 

http://dx.doi.org/10.17654/0974324322014 

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 

Published Online: April 6, 2022 

MATHEMATICAL BASIS OF EXTREMAL 

THEORY OF DIMENSIONS 

 

Abstract 

The paper offers the full theoretical basis of “extremal theory of 

dimensions”. This simple theory, using only the notion “singular 

extremum” on the set of dimensional physical parameters, permits to 

find unknown laws of nature and very complex differential equations 

including many arbitrary additive terms. Note that almost all known 

equations of physics and their some generalizations already were 

found in the framework of this theory. 

Introduction 

“Extremal theory of dimensions” [1-4] is based only on some set of 

dimensional parameters ( )mAAA ...,,1=  and on the arbitrary expansions 
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.1
1

m
mACAX
αα= ⋯  The base of this theory is very simple. We introduce 

into consideration a new notion of “singular extremum” of the function X of 

many variables .kα  Notice that the serious difficulties in the classic analysis 

of dimensions [5] arise when the number of unknown values, satisfying the 

system of linear algebraic equations, turns out to be more than the number of 

equations equal to the number of basic units of dimensions. Unfortunately, 

such a situation has place almost always and therefore the use of the 

classical analysis of dimensions in practice almost makes no sense. If, 

however, we supplement the classical analysis of dimensions by means of a 

new notion “singular extremal”, then it opens the great possibilities. 

The classical analysis of dimensions stopped before the problem 

searching of the sole solution of system of n linear algebraic equations with 

m unknown quantities ( ).nm >  Our proposal consists in that it follows to 

search “singular extremum” of the function X about nm −  of the parameters 

.kα  It is reduced to the searching of extremum of some linear function 

( ) 
−

=
=

nm

k

kk xaxf

1

 on non-limited set of values ,kx  but it could seem as a 

complete absurdity. Equaling to zero the partial derivatives of the linear 

function ( ) 
−

=
=

nm

k

kk xaxf

1

,  we obtain ,0=ka  ....,,1 nmk −=  Hence, we 

have .0=f  We shall name such extremum as “singular”. But what can        

be obtained from absolute zero? It is astonishing, but from zero, one can  

find all existing laws in nature and equations (algebraic, differential, partial 

derivatives, and others). 

Extremal Theory of Dimensions 

It is necessary to find dependence of the dimensional parameter (or 

function) X upon other dimensional parameters (or functions) mAA ...,,1  

and to find all algebraic and differential equations by means of which these 

parameters are connected with each other. This problem can be considered 
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also as follows: for a given set of dimensional parameters, find all laws and 

equations which these parameters satisfy. 

In accordance with this theory, the parameter X is presented in the form 

of production (expansion, decomposition): 

 ,1
1

m
mACAX
αα= ⋯  (1) 

where C is a dimensionless parameter, iA  are the dimensional parameters, 

and iα  are unknown powers which must be found. Let there be n basic  

units of dimensions (for example, centimeter, gram, second, i.e., .)3=n  By 

equating the basic dimensions on both the sides of the afore-cited equality 

(for X), we obtain the linear algebraic system of n equations with m unknown 

powers ....,,1 mαα  As a rule, .nm >  By solving this linear system for any n 

powers and substituting the result in the initial expansion (1) for X, we 

obtain the new expansion depending on nm −  powers. By equating to zero 

the partial derivatives with respect to these nm −  powers, we obtain nm −  

extremal equations. By substituting these extremals in the new expansion, 

we obtain as well common representation of solution for X. The extremals 

and the common solution define mathematical models of our world. 

Consider this problem in every detail. 

Before giving the common theoretical basis of the extremal theory of 

dimensions, we consider in the beginning some elementary examples. 

Example 1. We shall attempt to find all solutions (by means of singular 

extremals) of Newton’s equation g
dt

xd =
2

2

 in the constant gravitational field 

( )g . Let ( )tx  be a solution, g be an acceleration of gravity on the surface of 

Earth, dtdxx ≡ɺ  be the first derivation (of position ( )tx  of moving body), 

xɺɺ  be second derivation. We shall search for a solution in the form of the 

following decomposition (expansion): 

 ( ) .nmlk
tgxxCtx ɺɺɺ=  (2) 
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By rewriting this equality in the basic dimensions of Gaussian system, let 

[ ]L  be the dimension of length (centimeter), [ ]T  be the dimension of time 

(second), and [ ]M  be the dimension of mass (gram), we obtain 

[ ] [ ] .
22

n
mlk

T
T

L

T

L

T

L
L 
















=  

By equating the dimensions [ ]L  and [ ]T  on both the sides of this 

relation, we obtain a system of two algebraic equations with four unknown 

powers: 

.220,1 nmlkmlk −++=++=  

The classical analysis of dimensions further loses any sense. However, 

by expressing from this system any two powers across the other two         

(for  example, ,1−−= mnk  )nl −= 2  and substituting ones into initial 

decomposition (2), we obtain the other form of decomposition (2): 

 ( ) ,21 nmnmn
tgxxCtx ⋅= −−−

ɺɺɺ  (3) 

defining dependence ( )tx  only on two variables m and n. Further, we shall 

search extremum of this function ( )tx  from conditions: .0,0 =∂
∂=∂

∂
n

x

m

x
 In 

essence, it means that we search an envelope of the parametrical set (3). 

However, before to find extremum of this function, it is comfortable firstly 

to take the logarithm of x (which does not change the position of extremum 

of function x): 

( ) ( ) .lglglg2lg1lglg tngmxnxmnCx ++−+−−+= ɺɺɺ  

By equating to zero the partial derivatives of the function xlg  (linear  on 

m and n) with respect to m and n, we obtain the following “singular 

extremals”: 

,0lglg
lg =+−=∂

∂
gx

m

x
ɺɺ  
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.0lglglg
lg =+−=∂

∂
txx

n

x
ɺɺɺ  

Hence, we find the extremal relations gx +ɺɺ  and ,gttxx == ɺɺɺ  describing 

the envelope of the set (3). Substitution of these relations (in  any form, for 

example, xg ɺɺ=  and )xxt ɺɺɺ=  in the decomposition (3) permits to eliminate 

the powers m and n in the decomposition (3) and to bring it to the following 

common form of solution 2
2

Cgt
x

x
Cx =









=

ɺɺ

ɺ
 (defining, essentially, a 

common envelope of the considered parametric set). And what is more, 

substitution of this solution into extremals permits to find also ,21=C  

,gx =ɺɺ  22
gtx =  and .gtx =ɺ  This means that in this example exists the 

common envelope of the set (2). Notice that, in common case, we cannot 

always find non-dimensional parameter C. But this new theory always 

permits to find a functional form of all additive members of any unknown 

differential equation. 

However, if in the initial expansion (2), there is no common envelope, 

then it follows to search some partial envelopes, i.e., some particular 

solutions, each of which can be obtained as a result of the successive 

substitutions of some extremal relations into the common form of the 

solution. 

The following simple example demonstrates how to search all solutions 

in the case when exists only the particular envelopes. 

It follows to take into account that, in the common case, the arbitrary 

expansion m
mACAX
αα= ⋯1

1  permits to obtain a solution not only of the 

problem which is interesting for us this moment but also of many other 

adjacent problems. 

Example 2. The expansion ,nmlk
tgxxCx ɺɺɺ =  in Gauss’s system, has 

extremals 2
txx ɺɺ=  and gx =ɺɺ  and also common form of solution .txCx ɺɺɺ =  
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If these three equations are incompatible for any C, then the common 

envelope of considering parametrical function xɺ  does not exist. However, 

the pair, including the common form of solution and second extremal, has 

the known classic solution 22
gtx =  for 1=C  and ,1 1 tCC +=  where 

,1 constC =  i.e., in this case, the particular envelope exists. Other particular 

envelope exists also in the case of the pair, including the common form of 

solution and the first extremal (it corresponds, essentially, to case .)0=m  In 

this case, we have the solution ,C
tx =  where ( ),51

2

1 ±=C  undoubtedly 

corresponding to some real process (for example, probably, this solution 

defines growing and droop of plants). 

Common Theoretical Basis of the Extremal Theory of Dimensions 

In the common case, it is required to find dependence of the dimensional 

parameter (or function) X upon other dimensional parameters (or functions) 

mAA ...,,1  and to find nature’s laws, and also all algebraic and the 

differential equations by means of which these parameters are connected. 

Consider this problem in detail. 

Assumptions 1. Choose some system of units with basic units nBB ...,,1  

(for example, let LB =1  be a unit of length, MB =2  be a unit of mass, and 

TB =3  be a unit of time in the Gaussian system of units: centimeter, gram, 

second), and let it be given k known extremal basic constants kAA ...,,1  

(for  example, the charge of electron ,1 eA =  the light velocity cA =2  in 

vacuum, and the gravitational constant )GA =3  and km −  arbitrarily 

chosen dimensional parameters ,...,,1 mk AA +  which have dimensions 

[ ] [ ] [ ] ,...,,1
1

ini
ni BBA

αα=  ....,,1 mi =  Suppose that the problem is to 

represent, via the parameters ,iA  an arbitrary parameter X that has dimension 

[ ] [ ] [ ] n
nBBX

ββ= ...,,1
1  and is written out in the following form, more 

convenient for forthcoming references: 
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 ,01
1 =−= αα m

mACAXR ⋯  (4) 

where C is an arbitrary dimensionless quantity. In the arguments of 

dimensions, this relation takes the form: 

[ ] [ ] [ ] ([ ] [ ] ) ([ ] [ ] ) .......... 111111
111

mmnmnn
nnn BBBBBBX

ααααααββ == ⋯  

The matching of dimensions on both the sides of this relation leads to 

the linear system of n equations with m unknowns :iα  

 
=

=αα=β
m

i

iijj nj

1

....,,1,  (5) 

If the resulting system is inconsistent, then this implies that some 

parameters iA  are chosen unsuccessfully and they must be replaced. But          

if the system is consistent, then depending on the rank 0n  of the matrix 

{ },ijα  there is a possibility to express 0n  parameters ( )nni ≤α 0  via the 

remaining parameters (their  number is equal to )0nm −  and to substitute 

these iα ’s into (4). 

Affirmation 1. Under the above-formulated assumptions, the problem  

of the representation of the parameter X via the parameters ,...,,1, miAi =  

permits to find 0nm −  extremal formulas relating the parameters iA           

with the help of singular extremals from the conditions ,0=α∂∂ jlnX  

,...,,10 mnj +=  and to find 0n  of the extremal formulas expressing          

0n  of basic units via the parameters ,iA  ,...,,1 mi =  from the conditions 

0=α∂∂ jlnR  in which the parameters ,jB  ,...,,1 0nj =  are substituted 

successively instead of X. 

Affirmation 2. Suppose that for the arbitrary set of m parameters and 

variables ,...,,1, miAi =  and for any selected set of the base dimension unit 

,0n  we found all ( )0nm −  possible singular extremals. Substituting these 

extremals in (4), we obtain a common representation of solution X. If, for 
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some ,0≠C  this solution is consistent with all singular extremals, then 

there exists a common envelope of the parametric family of extremals           

and the solution is quite determined (especially, if there is a possibility to 

find the value of dimensionless parameter C). If the common solution is 

inconsistent with all extremals simultaneously, then it is necessary to search 

this solution in form of sums of additive terms, every one of which can be 

found from the condition of compatibility of this solution with the different 

extremals (or groups of extremals). In this case, almost before every member 

of this sum is taken the different dimensionless parameters .kC  Thus, the 

dimensionless parameter C can take the same or different values before the 

different additive terms of the searched final decision. 

Affirmation 3. On the basis of the same decomposition and their 

extremals, it is possible also to find the solutions of many problems 

simultaneously which are absolutely not connected with each other. 

Proof. If the decomposition (4) is chosen to find the solution of some 

concrete problem and the common form of the solution and if all extremals 

in this problem are found, then these results can be used for searching 

solutions to many other problems based on the same parameters. Indeed,        

if some extremal includes the parameter (or function) that we consider as 

solution in the new problem, then expressing this parameter, in this extremal 

equation, in terms of the remaining parameters and introducing in this 

equation a new dimensionless parameter ,1C  we find a common form of the 

solution of the new problem, in which the old common solution turns out to 

be the extremal equation with .1=C  

In most cases, all solutions to problem (4) can be found considering  

only one arbitrary case of the maximum rank in (5) ( ).toequal 0 nn =  If 

there is doubt about completeness of received results, then we can study  

also other cases of maximum rank in (5) that number does not exceed 

( ) .
!!

!

nmn

m
C

n
m −=  It allows to find all possible solutions for decomposition 
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(4). As a rule, in practice, it is sufficient to consider not only the large 

number of cases to find all extremals in the problem (4). 

Definition 1. A dimensional physical parameter X is said to belong to 

the class of “extremal fundamental physical parameters” if it was found by 

means of “extremal theory of dimensions”.  

In this case, each extremal formula, by means of which this parameter 

can be defined, gives the same numerical value for this parameter. 

Corollary 1. If some parameter can be expressed via extremal base 

parameters by some formula, then this parameter is also an extremal base 

parameter. 

Moreover, there exists a set of other, principally different, formulas           

for their representations via the extremal base parameters. And all                

these formulas define the same numerical value of the above-mentioned 

parameter. 

This is an important difference of the latter from a non-extremal 

parameter. 

Corollary 2. Only the extremal parameters form a class of the 

fundamental physical constants which include, for example, the constants 

( )Gce ,,  (charge of electron e, velocity of light in vacuum c, gravitational 

constant G) but do not include, for example, Planck’s constant .ℏ  

Only production ĥ=αℏ  turns out fundamental physical constant.          

Also, the constants 0ε  and 0µ  in the electrodynamics are not fundamental 

constants in “International System of Units SI” but their production 

2
00 1 c=µε  is the fundamental (extremal) physical constant. 

Corollary 3. Before 21st century, in physics, it was not proposed           

any strict mathematical definition of the fundamental physical constants. It       

was only intuitive understanding of fundamentalness founded on empirical 

tests. Physics made the great step forward only after the discovery of three 

fundamental constants ( ).,, Gce   
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All extremal parameters belong to the class of the fundamental 

parameters (constants) which can be represented by the following simple 

formula: 

 ( ) ( ) ( )
,2

1
23 mlklkmlk

GceX
−++−++=  (6) 

where the parameter X has dimension [ ] [ ] [ ]mlk
MLT  and the constants 

( )Gce ,,  are the basic extremal fundamental physical constants. 

Due to the fact that the numerical values of these constants are known 

with the same great accuracy, this formula guarantees that the set of             

any other extremal fundamental parameters can be defined with the same 

accuracy. As to all Planck’s constants ( ),including ℏ  they do not satisfy 

Definition 1 and cannot be considered as fundamental. Formula (6) defines 

all dimensional extremal fundamental physical parameters of the world 

known to us now. The set of these parameters is closed in itself, i.e.,          

any extremal fundamental parameter can be defined by a large number of 

formulas via other extremal physical parameters, and all these formulas 

define the same numerical value for this parameter. Notice that the constants 

( )Gce ,,  are not expressed one across the other, i.e., they are mutually 

independent, and other extremal fundamental constants are expressed via the 

three by means of the formula (6). Then it is natural to recognize these three 

constants as the main extremal fundamental constants. 

Corollary 4. In the theory of dimensions, it does not mean what is some 

value Y: Is it a constant or a function? 

For example, the velocity of light c can be considered as some velocity 

( ).tv  

Remark 1. All Planck’s constants ( )ℏincluding  do not satisfy 

Definition 1 and cannot be considered as fundamental in the sense of          

this definition. Consider only one Planck’s constant of time T. If formula 

representing this constant includes in itself some non-extremal parameter 

(for  example, classical Planck’s constant ),ℏ  then every one of these 



Mathematical Basis of Extremal Theory of Dimensions 95 

formulae gives different numerical values for this parameter T. Consider, for 

example, some formulas for representation of the parameter T via the set of 

other physical parameters: ( ) ( ) ,:...,,,, 3
1 cGeThGce =  ( ) ,53

2 eGhT =  

( ) ....,5
3 cGhT =  If these formulas are based on the extremal constants, 

then we have .s106,4 45
321

−⋅==== ⋯TTT  And, if they include the  

non-extremal constants (for  example, Planck’s constant ),10055,1 27−⋅=ℏ  

then they give different numerical values for T: ,s106,4 45
1

−⋅=T  =2T  

,s102,1 38−⋅  ....,s104,5 44
3

−⋅=T  So, it is impossible to agree with that 

Planck’s constants are fundamental in the sense of Definition 1 (only 

production ĥ=αℏ  is turned out fundamental physical constant). 

Remark 2. In conclusion, we shall point out some circumstances giving 

ground for doubts about justice of “quark-theory” based on the assumption 

that there exists the stable fractional (relative of charge of electron) electric 

charge ( ).3e  The extremal formula (6) explains that, in case of existence of 

such stable charge, velocity of light c would be far less. Indeed, in the case 

of ( ),3e  from the experimental equality ,ˆ 2
ceh ==αℏ  it follows that the 

velocity of light must be equal to ,9c  but this contradicts reality. 
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