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APPLICATION OF CARTAN’S EQUIVALENCE 

METHOD TO DISTRIBUTION OF PLANES 

 

Abstract 

In this paper, we apply Cartan’s equivalence method to distribution of 

planes to give a proof of the local equivalence between two planes. 

1. Introduction 

Elie Cartan, in the years 1905-1910, has laid down a method for 

determining if two geometric structures are equivalent. The authors in [8, 9] 

have expanded the method, and later in the years 1997-1998 by Bryant et al. 

in [10], who have clarified the methodology of Cartan. The general 

classification problems for symplectic Monge-Ampère equations were 

studied in [1, 3, 4, 7, 14, 15], and others: they showed that to any differential 
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2-form   in the manifold of 1-jets of functions on a 2-dimensional smooth 

manifold ,, 1 J  we can associate a Monge-Ampère equation E  which 

is entirely determined by the sign of the Pfaffian function  Pf  at each 

point of .1 J  Locally, the application of Cartan’s method to study the 

equivalence problem to classify Monge-Ampère equations in [11, 12] in two 

variables leads to three non-zero orbits: a negative space, a null space and          

a positive space, which correspond, respectively, to three types of Monge-

Ampère equations: hyperbolic, parabolic and elliptic equations. In [10], 

Bryant et al. applied the equivalence method to classify Monge-Ampère 

equations of hyperbolic type and the elliptic type in [6]. The works of 

Kushner et al. in [2, 13] contain results on equivalence of Monge-Ampère 

equation to homogeneous Laplace equation. Those results are formulated in 

terms of the number of coefficients in the Monge-Ampère equation and can 

be explicitly satisfied with just finite number of usual algebraic operations 

and partial differentiations. 

Our aim in this work is to apply the equivalence method to distribution 

of two planes. The proof of the local equivalence of two planes is carried        

out in two steps: in the first step, we define for a smooth manifold   a          

G-structure for some subgroup G of  ,, nGL  and in the second, we define 

the fundamental formula for the equivalence method given in [9] by 

,d  

where  G 2  is the torsion of the pseudo-connection   and 

 
  forms a local coframe. Finally, we follow the Cartan’s 

equivalence method to prove that the system of structural equations is 

involutive, which according to Cartan, gives the local equivalence. 

2. Basic Definition 

Let   be an n-dimensional smooth manifold, where n  and G be a 

subgroup of  ., nGL  Then a G-structure of basis   is a reduction of the 
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coframe bundle of .  In other words, ,x  denoted by   ne  1  a 

basis of xT  and    smooth manifold contains the set of frames of 

.  For all frames   exR ,  and  ,, nGLg   

  exgR ,  with . jgee   

We define a right action of  ,nGL  over  ,  a G-structure, 

denoted ,  is a submanifold     having the property: 

    gRnGLgR ,,,   if and only if .Gg   

This means that two frames of   are in the same bundle (two frames have 

the same origin x) if and only if they are deduced from one another by a 

transformation matrix in the group G. This group is called structural          

group of .  For example,    is a  ,nGL -structure, while the 

orthonormal basis of Riemannian manifold is an  ,nO -structure. 

Each diffeomorphism ,:   can be extended uniquely in               

a diffeomorphism    ,:    for each frame   ,, exR   

denote: 

      exR ,  with   , exe   (1) 

where  x  is the Jacobian matrix of  ,x  then  ,, nGLg   we can 

prove that 

    .gRgR   

Definition 2.1. Two G-structures   and   having   and   bases 

are equivalent if there exists a diffeomorphism   :  such that the 

extension      :  defined by (1) satisfies 

  .   

Then we can write ,~   the restriction of   to the manifold     

is an isomorphism of   into .  
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Let us now recall some properties for local equivalence of two G-

structures. 

Definition 2.2. Let     and     be two G-structures. 

Then we say that   and   are locally equivalent in    xx,                

if there exist neighborhoods U of x and U  of x  and an isomorphism 

.: UU    

Proposition 2.3 [10]. Let   and   be two canonical forms defined            

over two G-structures   and ,  and let   :  be a diffeomorphism 

between these two manifolds. Then the following conditions are equivalent: 

(1) The diffeomorphism   is an isomorphism of G-structures. 

(2) The diffeomorphism   satisfies   .  

The diffeomorphism   :  is an isomorphism of G-structure if and 

only if   ,  this means that the graph of   in    satisfies the Pfaff 

system in [10]: 








.0

,
1 nL

 

Theorem 2.4 (Darboux). Let  11,   and  22 ,   be symplectic 

manifolds of the same dimension. Then for any two points 1a            

and ,2b  there exist neighborhoods a1  and b2  and a 

diffeomorphism 21:    such that   ba   and   .12     

Corollary 2.5 [13]. Let  ,  be a 2n-dimensional symplectic 

manifold. Then for any point ,a  there exist local canonical 

coordinates  n
n ppqq ...,,,...,, 1

1  such that     ,0 apaq 
  for 

n...,,1  and   has the following canonical form: 





n

dpdq
1

.



  
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3. Application of Equivalence Problem to Distribution of Planes 

In this section, the equivalence problem is applied locally to give 

equivalence between two planes on contact manifold of dimension 5. Then a 

criterion in terms of the differential invariants is obtained for a given system 

to be locally equivalent to the system associated to the linear homogeneous 

Laplace equation or to a Euler-Lagrange system. On the contact manifold 

,  one can locally find a coframing ,1 g  where   is a local section 

from    and .gg  The exterior derivative of this equation is 

.11   dgdggd  (2) 

Definition 3.1. Let  ,nGLG   be a subgroup and .~ GB    

Then a G-structure B  is a principal subbundle of the coframe bundle 

  ,   having G as a group of structure. A pseudo-connection in the 

G-structure is a g -valued 1-form on B whose restriction to the fiber tangent 

spaces BTbb   equals the identification g~b  induced by the right         

G-action on B. 

Let us introduce a pseudo-connection   g B1  that satisfies the 

fundamental formula for the equivalence method given in [9] by: 

,d  

where  B2  is the torsion of the pseudo-connection .  A consequence 

of (2), for 4,,0  k  is 

dgg 1  and .
2
11 k

kTdg   
  

3.1. Calculation of structural equations 

The first step of equivalence method of Cartan is to calculate the 

structural equations. Let us consider .3  Given two distributions of 

planes D and D  in the Grassmannian bundle  3
2 Gr  in [5] defined by: 
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    ,: 3
2

3  GrxPxD a  

    .: 3
2

3  GrxPxD a  

There exists a diffeomorphism 33:    such that      xPd x  

  xP   is not always true. In this study, we tried to find some conditions 

such that an application can be a diffeomorphism. 

Denote by  321 ,, eee  a basis of 3  such that  21, ee  a basis of  .xP  

Denote by  3  the bundle of frame in ,3  denote  3   such that 

S 3~   and 

 3

3

2
2
2

1
2

1
1
2

1
1

3
,3

00
0

GL

b

baa

baa

b

BA
S 
























  

with the condition .03
2
1

1
2

2
2

1
1  baaaa  

A local section   of   is given by vector field, in other words, an 

application 

   xx 3  with          ,,,, 321 xXxXxXxx   

where     xXxX 21 ,  is a basis of  .xP  Any frame R  of origin x is 

deduced in a single way from  x  by right multiplication by a group matrix 

G. Let Gg   such that 

  .gRx   

Then an element of   is given by a pair   ., 3 Sgx    For all ,3x  

there exists a basis     xvxv 21 ,  of   .3xTxP   By considering  ,3 xv  

we obtain a basis       xvxvxv 321 ,,  of 3xT : 
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    .

00

,,,

3

2
2
2

1
2

1
1
2

1
1

321 





































b

baa

baa

xvvvx  

Consider the 1-form  321 ,,   of coframe defined by 

 





3

1

,, dxbAxf aa  and .

00

,

3

2
2
2

1
2

1
1
2

1
1







































db

dbdada

dbdada

dxdS  

Locally, we have  S  or ,b
bS   in other words, .ba

b
a S   

Then 

   dSdSSdd  

    dSSSdS 1  

  .1   dSSdS  (3) 

ad  in the basis of 2-forms differential of  : 

  .ba
b

aa
b

ba
b

a dSdSSdd   

Consider a coframe:  71 ...,,   of the structural group G. Then the 

set  ,  forms a coframe of G-structure .~ S  We can prove that 

1 SdS  is a matrix of forms of Maurer-Cartan, then there exists a tensor 

a
bcA  such that   .1 ca

bc
a
b ASdS    We have ,ba

b
a S   then we can find 

a tensor a
bdT  such that .cba

bc
ba

b TdS   Then the decomposition of 

ad  in the basis of 2-forms of the differential of   have the form: 

.cba
bc

bca
bc

a TAd   
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Let us calculate the Maurer-Cartan forms of group G: 

 


















































 

3

2
1

1
2

2
2

1
1

3

2
1
11

1
21

1
1
2

3

1
2
22

2
12

1
2
2

3

2
2
2

2
1

1
1
2

1
1

2
1

1
2

2
2

1
1

1

00
00

1

b
aaaa

b
baba

aa

b
baba

aa

db

dbdada

dbdada

aaaa
SdS a

b  

which can be written as 

,

00 7

654

321

1

























 SdS  

where 71 ...,,   are the Maurer-Cartan forms which satisfy: 

 

 

 

 










































 





























 




















.
1

,
1

,
1

,
1

,
1

,
1

,
1

3
3

7

2
3

2
1

1
2

2
2

1
12

2
3

2
1
11

1
22

1
3

1
2
22

2
1

2
1

1
2

2
2

1
1

6

2
1

2
1

2
2

1
12

1
1
2

2
2

1
1

5

2
2

1
2

2
1

2
22

1
1
2

2
2

1
1

4

1
3

2
1

1
2

2
2

1
11

2
3

2
1
11

1
21

1
3

1
2
22

2
1

2
1

1
2

2
2

1
1

3

1
1

2
1

1
2

1
12

1
1
2

2
2

1
1

2

1
2

1
2

1
1

2
22

1
1
2

2
2

1
1

1

db
b

db
b

aaaa
da

b
baba

da
b

baba

aaaa

daadaa
aaaa

daadaa
aaaa

db
b

aaaa
da

b
baba

da
b

baba

aaaa

daadaa
aaaa

daadaa
aaaa
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Since bd  is a 2-form, it can be written 

  


31,23,12
.

ac
cab

ac
b Bd  

The calculation of structure equation gives: 

















,

,

,

133
31

323
23

213
12

373

132
31

322
23

212
12

3625142

131
31

321
23

211
12

3322111

TTTd

TTTd

TTTd

 

where: 















































.

,

,

,

,

,

,

,

,

3
313

3
31

3
233

3
23

3
123

3
12

3
312

2
31

2
2

1
31

2
1

2
31

3
232

2
23

2
2

1
23

2
1

2
23

3
122

2
12

2
2

1
12

2
1

2
12

3
311

2
31

1
2

1
31

1
1

1
31

3
231

2
23

1
2

1
23

1
1

1
23

3
121

2
12

1
2

1
12

1
1

1
12

BbT

BbT

BbT

BbBaBaT

BbBaBaT

BbBaBaT

BbBaBaT

BbBaBaT

BbBaBaT

 

3.2. Absorption of the torsion 

The second step of Cartan’s algorithm consists to simplify the maximum 

of coefficients b
acT  in structure equations. We change the forms, for 

,7...,,1  

.a
a   
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We obtain some relations in the form: 

,


 c
b
aa

b
c

b
ac

b
ac AATT   

,  where  a
b  is a matrix of functions “unknowns”, we 

have  , LTT  where L is a linear operator which depends only on the 

tensor .a
bcA  We start by changing the form .a

a   

We obtain: 











































.

,

,

,

,

,

,

,

,

7
1

3
31

3
31

7
2

3
23

3
23

3
12

3
12

4
3

6
1

2
31

2
31

6
2

5
3

2
23

2
23

5
1

4
2

2
12

2
12

1
3

3
1

1
31

1
31

3
2

2
3

1
23

1
23

2
1

1
2

1
12

1
12

TT

TT

TT

TT

TT

TT

TT

TT

TT

 (4) 

Then we can choose the parameters 7
1

6
1

5
3

4
2

3
1

2
3

1
2 ,,,,,,   and 7

2  such 

that the new coefficients T   are zero, except 3
12

3
12 TT   which is invariant. 

Then to absorb the torsion, we should suppose: 
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

































.

,

,

,

,

,

,

23
23

13
31

77

12
31

66

32
23

55

22
12

44

11
31

33

31
23

22

21
12

11

TT

T

T

T

T

T

T

 

This means   ,1   where 

  .

0

00

00

00

00

00

00

3
23

3
31

2
31

2
23

2
12

1
31

1
23

1
12

1

















































TT

T

T

T

T

T

T

 

The variables 6
3

6
2

5
2

5
1

4
3

4
1

3
3

3
2

2
2

2
1

1
3

1
1 ,,,,,,,,,,,   and 7

3  are 

arbitrary. Write 

  .

00

0

0

0

0

0

0

7
3

6
3

6
2

5
2

5
1

4
3

4
1

3
3

3
2

2
2

2
1

1
3

1
1

2

















































  
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Then, if we change the form   with   ,21   the structure 

equations become 

















,

,

,

213
12

373

3625142

3322111

Td

d

d

 

with 3
123

3
12 BbT   is an invariant. 

3.3. Normalisation 

Suppose that .3
12T  Then we can write: 

  21212137373  ddddddd  

2112121737  dd  

,233   

   517361251  d  

.mod 321   

Horizontally, according to ,321   we have 

  .517 d  

Consider the sub 1G -structure ,1    such that the subgroup GG 1  

acts on 

 ,,3

00

3

3

2
2
2

1
2

1
1
2

1
1

GL

b

baa

baa

S 



















  where .1
3

2
1

1
2

2
2

1
1 


b

aaaa
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We can normalize 1G  to the subgroup 

 ,,3

00

010

001
3GLS 



















  with 0  and .11   

Then we have the fundamental formula of equivalence method 

,d  

where 

.

00 7

654

321

























  

Recalculate after the structure equations in the new subgroup with 

condition .751   Now, it is not possible to change the form. After 

new absorption of torsion, we can find the new structure equation in the 

form: 

 















.

,

,

213513

3625142

3322111

d

d

d

 

Then 

  .mod0 3213  ddd  

Then, on ,1  normalize .1  In fact, denote the change of form: 

















 .
~

,

,

3133

22

11
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Then 

    21351131313~
  ddd  

  .
~ 2135131  d  

We have 1d  is semi-basis, then there exist functions   and   such 

that ,211 d  then absorb in 7  without changing the expression 

.751   The equation of structure can be written: 

 















.

,

,

213513

3625142

3322111

d

d

d

 (5) 

3.4. Involution test (test of Cartan) 

Assume that we have an equivalence problem in the basis  ....,,1 n  

Denote by r the dimension of group .1G  The equation of structure can be 

written as: 

 
  


n r

k

n

l

l
l

k
k nTAd

1 1 1,

,...,,1,
 







   (6) 

where k  are the Maurer-Cartan forms and 
kA  are the coefficients of 

structure. We can write , kk  then we obtain the following system, 

where the unknowns are :k
  

 



r

k
k

k
lk

k
lk knlTAA

1

.,...,,1,,, 



  (7) 

Definition 3.2. Denote by  1r  the number of independent variables in 

the linear system: 
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 



r

k

k
lk

k
lk knlAA

1

.,...,,1,,,0 


  (8) 

In other words,  1r  is the dimension of the solutions of the system (8). 

In the example of p-plane, we have 6r  and .3n  In (5), replacing 
k  by ,3

3
2

2
1

1  kkk  we obtain the following linear system: 






















.

,

,0

,0

1
1

5
1

4
2

5
2

1
2

2
1

5
3

6
2

6
1

4
3

3
2

2
3

3
1

1
3

 (9) 

In equations (9), the ten variables ,,,,,,,, 3
3

2
2

6
2

4
3

5
1

2
3

1
3

1
2   

4
1

6
3,   can be selected arbitrarily. We have 

  .101 r  

To continue the description of the involution test of Cartan, we define 

the reduced characters of Cartan. 

Definition 3.3. Denoting   nnxxX  ...,,1  and the matrix M of 

dimension rn   defined by 

    ....,,1,...,,1,::
1




n

kk rknxAXMXM





   

In this definition, 
kA  are defined in (7). Then, if we denote by 

,,...,, 11 nn sss    the reduced characters of Cartan, one defines: 

 

 
,1...,,1,rgmax

1

...,,
1

1




















nk

XM

XM

ss

k
XX

k n
k

ML


 

and ns  is defined by the equation .11 rsss nn    
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Definition 3.4. Denote by   a basis of cotangent bundle xT  and 

nss  ...,,1  the reduced characters of Cartan, denote by  1r  defined in (3.2). 

Then we say that   is involutive if Cartan test satisfies: 

 .2 1
21 rsnss n    

Remark 3.5. One has always: 

  .2 21
1

nsnssr    

In our problem, we have in equations (5), 3n  and .6r  Then 

  .

010001

111000

000111

61
31132





















k
kkk AAA 
  

Then, for   ,,, 3321  xxxX  we find 

  .

0000

000

000

33

321

321





















xx

xxx

xxx

XM  (10) 

For  ,1,0,0X  we have   ,31,0,0rg M  then .31 s  And we 

have: 

.

0000

000

000

0000

000

000

rgmax

33

321

321

33

321

321

,
21 3
































yy

yyy

yyy

xx

xxx

xxx

ss
YX 
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For  1,0,0X  and  ,0,1,1Y  then ,521  ss  which gives 

22 s  and .12363 s  

We have  ,1032 1
321 rsss   then the system (5) is involutive. 

Conclusion 3.6. The equivalence method of Cartan is a crucial tool to 

prove the local equivalence between two G-structures. Hence, we defined a 

structure of distribution of planes over a manifold   and used this method 

to prove the local equivalence between two planes. 
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