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Abstract
The aim of this article is to prove the uniqueness of solutions to
mixed problems for pluriparabolic equations with nonlocal boundary
conditions. The proofs are based on a priori estimates established in
non-classical function spaces.

1. Introduction

This paper deals with a priori estimates and continuous dependence of

the solution of a following class of pluriparabolic fractional equations
ZD u—— (b(] a, t)auj=F(x ), (x,1)0Q (1.1)
x ax b b b

satisfying the initial condition
M(X, ti,O) = ¢i(.X), x O (O, ﬁ)’ ti,O = (ll, Iy, .y liq, 0, Livls ooes ln), (12)

and weighted integral boundary conditions

[ (f a(x)ux, t)dx = E@), 1= (1, tys oo £,) O 1, (13)

[ j va(x)ulx, £)dx = G), 1= (0, tr, o 1,) O] (14)

n

in the domain Q = (0, ¢)x I, where / < +o, | = |_| (0,7;) and T; < o,
i=1

fori=12,..,n

For the consistency, we get

[ o = €6s.0)
and

[ xa(x)i(x)ax = 1),

0
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where F, ¢;, Y, E and G are the known functions, 0 < a <1, n [ N The

left Caputo derivative Dta and the gamma function [ are, respectively,

defined as

o _ 1 I Ou dt
D u(x, t) —IO i 7 —T)a )

Ma) = I X% .

Next, we formulate the main conditions:

Condition 1. There are non-negative constants ¢, ¢, ¢p, ¢3 such that

co <b(J,a, t) < oy,

ot
ob(J a, t)
VX <
‘ 0J.a |~ ¢y, for (a, 1) 0Q.

Condition 2. (1) The function a is positive and continuous on (0, £),

such that a(x) < c5, where cs is a positive constant.

() FOC(Q, R, Y, E,GOC!(I, R)).

The existence and uniqueness of solutions to initial and boundary-value
problems for fractional differential equations have been extensively studied
by many authors; see for example, [1-4, 7, 9-12, 14-16]. Some of the
existence and uniqueness results have been obtained by using the well-
known Lax-Milgram theorem, by fixed point theorem and energy-integral
method [1, 2, 5, 6, 8, 15].

A suitable variational formulation is the starting point of many
numerical methods, such as finite element methods, spectral methods, and

Laplace transform method [7, 16]. Thus, the construction of a variational
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formulation is essential, and relies strongly on the choice of spaces and their

norms.

Motivated by this, we extend and generalize the study for PDEs with

integral conditions to the study of fractional PDEs with integral conditions.

In this paper, we extend an energy-integral method to the study of a

mixed-type fractional differential equation.

This paper is outlined as follows: After this introductory section, in
Section 2, we present abstract formulation of the posed problem and make
precise the concept of solution of the problem. Finally, we establish a
priori estimates which are derived to show the uniqueness and continuous

dependence of the solution upon the data in Section 3.
2. Preliminaries

We introduce now a new function v(x, t) = u(x, t) = w(x, t) = d;(x).

Then the problem (1.1)-(1.4) can be formulated as

(£r)(x.0) = . D - a(lx)%[b(un, z)%j = ) (6 )0Q @)
i=1

v(x, 1;,0) =0, x0(0, £), t;, ¢ = (11, 15 s 1=15 0, Lisps wos 1), (2.2)
¢
IO a(x)v(x, )dx =0, 101, 2.3)
‘
JO xa(x)v(x, t)dx =0, t0OI, 2.4)
where

wix, 1) = 23320 by, 6Q2x=0)
(x.1) Kza(x) £6) £3a(x) o)
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P 1) = Fe 1) - 23205 pagi) 62 = 0§ g

2 i
~a(x) o ! €3a(x)

2 0 a. 3a(x) + (2¢ - 3x)a'(x)
a0 Jeo

+ e 6( )ai[b(l a, ) 2a(x )—iﬁx—f)a'(x)JG(t)

1 0 '
o (6(J ca, 1)0;(x)).

Instead of searching for the function u, we search for the function v. So

the solution of problem (2.1), (2.2), (2.3) and (2.4) will be given by u(x, t)
=v(x, 1) + wlx, 1) + ¢;(x).

In this paper, we establish a priori estimates which are derived to show
the uniqueness and continuous dependence of the solution upon the data

(2.1), (2.2), (2.3) and (2.4). For this, we consider the problem (2.1)-(2.4) as a

solution of the operator equation
Lv=F=f, (2.5)

with domain of definition D(L) consisting of function v [ L, (Q) such that

a, O 0
D,v, 5 2 0 L,(Q),

where v satisfies conditions (2.3) and (2.4). The operator L is considered
from E to F, where E is the Banach space consisting of functions

v O L,(Q), satisfying (2.3) and (2.4) with the finite norm

Ivlg = ZI (D“ j E)v(E, 1)d jdxdt+fg(%)2dxdt. (2.6)
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Here F is the Hilbert space of vector-valued functions F = f obtained by

completing of the space L,(Q) with respect to the norm

171 = [l [ et r)dafdxdz. ex)

Definition 1. A solution of the operator Lv = F is called a strong
solution of the problem (2.1), (2.2), (2.3) and (2.4).

3. A Priori Estimates and its Applications

Theorem 3.1. Let conditions (1) and (2) be fulfilled. Then for any

function v O E, there is the a priori estimate
Ivig < dl Zv g, 3.1)

where c is a constant which may depend on T but not depend on v.

Proof. Applying the linear operator M ,v = _[ (;C v(&, t)dé, on alv of

(2.1), we get

ZDIIJ‘ a(E)v(E, 1)dE - 2J' 6&( (Jza, )ggja

= [ a®) 1 1)aE. (32)

Taking the square of the norm in the space L,(Q) of M  (alv), we obtain:

Zj ( I EVE, 1 )dEJ dxdz+J' U az( (Jza, )aE)dEj dxdt
_22'[9(,)3'[0%( v(E, 1 )dEjU E((Jza )= jdijdxdt

- J‘ . ( j Ox a(€) f (&, t)dEszxdt. (3.3)
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Integrating by parts the two last terms on the left-hand side in (3.3) with the

use of boundary conditions, we get

j U;;a( (Jsa, 1) E) EJ dxdr = IQbZ(Jxa, t)(%)zdxdt, (3.4)
_2123 I . (Dg on a(®)v(E, t)dEj (I:(%(b(]za, t)g—;)dﬁjdxdt
= —22 j ( , j a(®)v(E, ;)daj (. a, t) " dvdr

_ 22 IQ (D%a(x)v(x. 1) ( J' Ox b(Jza, z)g—gj dxdt. (3.5)

Applying an elementary inequality to (3.5), we have

zgjg(uga(x)v( ))U aa((]g . )azjdEJd "

<s12j (D% a(x)v(x, 1)) dxdt+—j U b(Jza, z)aE Ejzdxdt. (3.6)

Substituting (3.4) and (3.6) in (3.3), it follows that

éj.g (Dg I: a(€)v(E, t)dzjzdxdt + IQ bz(./xa, t) (%)zdxd,
<812J. D a(x)v(x, 1)) dxdt+_I U (sa. 1) aE Ejdedt

+ IQ U:a(z) 1, t)dﬁjzdxdt. 3.7)
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By virtue of the condition (1), from (3.7), we observe that

(1 - 2%, Z [ [ [ " @)t t)dEj dxdi
+(c(% - Clsz”“g(gvj dxdt < J'Q“: a(®) £ (&, t)dEjzdxdt. (3.8)

clzﬁ 2
3|

Hence, if € > 0 satisfies 1 - Kzsl >0 and c(% - >0, it follows

from estimation (3.8) that

Zl | Q[D,‘j [ e z)dajzdxdt R jg(gv) s

2
X
< ch ( J' S al®) £ t)dEj dxdt, (3.9)
where ¢ = L IR The proof of Theorem 3.1 is
. 2 2 ¢iln
min| 1 = £07&; ¢y — c
1

complete.
Proposition 3.1. The operator L from E to F admits a closure.

Proof. Suppose that v,, [ D(L) is a sequence such that
v, OO - 0 inE, (3.10)
Lv, 000 - g inF. (3.11)
Then, we must show that g = 0. Equation (3.10) implies that

v, 00 O'H = 0 in D'(Q). (3.12)

By virtue of the continuity of the derivation of D'(Q) in D'(Q), we

have

Lv, 0O - 0 in D'(Q). (3.13)
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We see via (3.11) that
Lv, DO & g in Ly(Q), (3.14)
then
Lv, 0O & g in D'(Q). (3.15)

By virtue of the uniqueness of the limit in D'(Q), (3.13) and (3.15)
imply that g = 0.

Corollary 1. Under the conditions of Theorem 3.1, there is a constant
C > 0 independent of v such that

Ivig <l Lv |z vOD(Q). (3.16)

Corollary 2. If a strong solution exists, it is unique and depends
continuously on f, provided v is considered in the topology of E and f is

considered in the topology of F.

Corollary 3. The range R(Z) of the operator L is closed in F and
R(L) = R(L), where R(L) is the range of L.
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