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Abstract 

The aim of this article is to prove the uniqueness of solutions to           

mixed problems for pluriparabolic equations with nonlocal boundary 

conditions. The proofs are based on a priori estimates established in 

non-classical function spaces. 

1. Introduction 

This paper deals with a priori estimates and continuous dependence of 

the solution of a following class of pluriparabolic fractional equations 
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satisfying the initial condition 

( ) ( ) ( ) ( ),...,,,0,...,,,,,0,, 11210,0, niiiii ttttttxxtxu +−=∈ϕ= ℓ  (1.2) 

and weighted integral boundary conditions 
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where EF i ,,, ψϕ  and G are the known functions, ,10 <α<  .∗∈ Nn  The 

left Caputo derivative α
tD  and the gamma function Γ  are, respectively, 

defined as 

( ) ( ) ( )∫ α
α

τ−
τ

τ∂
∂

α−Γ=
t

t
t

du
txuD

0
,

1

1
,  

( ) ∫
∞+ −α−=αΓ

0

1 .dxex
x  

Next, we formulate the main conditions: 

Condition 1. There are non-negative constants 3210 ,,, cccc  such that 
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Condition 2. (1) The function a is positive and continuous on ( ),,0 ℓ  

such that ( ) ,5cxa ≤  where 5c  is a positive constant. 

(2) ( ( )).,,,,, 1
RR ICGECF ∈ψΩ∈  

The existence and uniqueness of solutions to initial and boundary-value 

problems for fractional differential equations have been extensively studied 

by many authors; see for example, [1-4, 7, 9-12, 14-16]. Some of the 

existence and uniqueness results have been obtained by using the well-

known Lax-Milgram theorem, by fixed point theorem and energy-integral 

method [1, 2, 5, 6, 8, 15]. 

A suitable variational formulation is the starting point of many 

numerical methods, such as finite element methods, spectral methods, and 

Laplace transform method [7, 16]. Thus, the construction of a variational 
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formulation is essential, and relies strongly on the choice of spaces and their 

norms. 

Motivated by this, we extend and generalize the study for PDEs with 

integral conditions to the study of fractional PDEs with integral conditions. 

In this paper, we extend an energy-integral method to the study of a 

mixed-type fractional differential equation. 

This paper is outlined as follows: After this introductory section, in 

Section 2, we present abstract formulation of the posed problem and make 

precise the concept of solution of the problem. Finally, we establish a     

priori estimates which are derived to show the uniqueness and continuous 

dependence of the solution upon the data in Section 3. 

2. Preliminaries 

We introduce now a new function ( ) ( ) ( ) ( ).,,, xtxwtxutxv iϕ−−=  

Then the problem (1.1)-(1.4) can be formulated as 
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Instead of searching for the function u, we search for the function v. So 

the solution of problem (2.1), (2.2), (2.3) and (2.4) will be given by ( )txu ,  

( ) ( ) ( ).,, xtxwtxv iϕ++=  

In this paper, we establish a priori estimates which are derived to show 

the uniqueness and continuous dependence of the solution upon the data 

(2.1), (2.2), (2.3) and (2.4). For this, we consider the problem (2.1)-(2.4) as a 

solution of the operator equation 

 ,fLv == F  (2.5) 

with domain of definition ( )LD  consisting of function ( )Ω∈ 2Lv  such that 
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where v satisfies conditions (2.3) and (2.4). The operator L is considered 

from E to F, where E is the Banach space consisting of functions 

( ),2 Ω∈ Lv  satisfying (2.3) and (2.4) with the finite norm 
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Here F is the Hilbert space of vector-valued functions f=F  obtained by 

completing of the space ( )Ω2L  with respect to the norm 

 ( ) ( )∫ ∫Ω
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Definition 1. A solution of the operator F=vL  is called a strong 

solution of the problem (2.1), (2.2), (2.3) and (2.4). 

3. A Priori Estimates and its Applications 

Theorem 3.1. Let conditions (1) and (2) be fulfilled. Then for any 

function ,Ev ∈  there is the a priori estimate 

 ,
F
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E

≤  (3.1) 

where c is a constant which may depend on T but not depend on v. 
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Taking the square of the norm in the space ( )Ω2L  of ( ),vaM x L  we obtain: 
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Integrating by parts the two last terms on the left-hand side in (3.3) with the 

use of boundary conditions, we get 

( ) ( )∫ ∫∫Ω Ωξ 







∂
∂=







 ξ







ξ∂
∂

ξ∂
∂

,,,
2

2
2

0
dxdt

x

v
taJbdxdtd

v
taJb x

x
 (3.4) 

( ) ( ) ( )∑∫ ∫∫
=

Ω ξ
α








 ξ







ξ∂
∂

ξ∂
∂








 ξξξ−
n

i

xx

t
dxdtd

v
taJbdtvaD

i
1

00
,,2  

( ) ( ) ( )∑∫ ∫
=

Ω
α

∂
∂








 ξξξ−=
n

i

x

x

t
dxdt

x

v
taJbdtvaD

i
1

0
,,2  

( ( ) ( )) ( )∑∫ ∫
=

Ω ξ
α









ξ∂

∂=
n

i

x

t
dxdt

v
taJbtxvxaD

i
1

0
.,,2  (3.5) 

Applying an elementary inequality to (3.5), we have 
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Substituting (3.4) and (3.6) in (3.3), it follows that 
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By virtue of the condition (1), from (3.7), we observe that 
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 The proof of Theorem 3.1 is 

complete. 

Proposition 3.1. The operator L from E to F admits a closure. 

Proof. Suppose that ( )LDvn ∈  is a sequence such that 

0 → ∞+→n
nv  in E, (3.10) 

 gLv
n

n  → ∞+→
 in F. (3.11) 

Then, we must show that .0≡g  Equation (3.10) implies that 

 0 → ∞+→n
nv  in ( ).Ω′D  (3.12) 

By virtue of the continuity of the derivation of ( )Ω′D  in ( ),Ω′D  we 

have 

 0 → ∞+→n
nvL  in ( ).Ω′D  (3.13) 



Uniqueness of the Solutions of Nonlocal Pluriparabolic … 111 

We see via (3.11) that 

 gv
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then 
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By virtue of the uniqueness of the limit in ( ),Ω′D  (3.13) and (3.15) 

imply that .0≡g  

Corollary 1. Under the conditions of Theorem 3.1, there is a constant 

0>C  independent of v such that 

 ( )., Ω′∈≤ DvvLv
FE

 (3.16) 

Corollary 2. If a strong solution exists, it is unique and depends 

continuously on f, provided v is considered in the topology of E and f is 

considered in the topology of F. 

Corollary 3. The range ( )LR  of the operator L  is closed in F and 

( ) ( ),LRLR =  where ( )LR  is the range of L. 
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