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ON THE EXACT SOLUTION OF THE FUNCTIONAL 

DIFFERENTIAL EQUATION ( ) ( ) ( )tbytayty −+=′  

 

Abstract 

This paper focuses on obtaining the exact solution of the functional 

differential equation: ( ) ( ) ( )tbytayty −+=′  subject to the initial 
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condition   .0 y  The standard series approach is applied to obtain

the solution in a power series form. The convergence issue is

addressed. In addition, the exact solution is established in terms of

elementary functions such as hyperbolic and trigonometric functions.

The exact solutions of some special cases, at particular choices of a

and b, are determined. The obtained results may be introduced for the

first time regarding the solution of the current problem.

1. Introduction

In this paper, we consider a special kind of a delay differential equation

(DDE) in the form:

        ,0,  ytbytayty  (1)

where .,, ba  The initial value problem (IVP) (1) is a special case of

the pantograph delay equation [1-10]. The pantograph is a particular device

which collects the current in electric trains. In fact, the IVP (1) can be solved

via several approaches such as the Adomian decomposition method (ADM)

[11], the homotopy perturbation method (HPM) [12], and the Laplace

transform method [13-17]. However, the standard series method is preferred

in this work for its simplicity when compared with the above approaches.

The standard series method was successfully applied to solve the delay

differential equation describing the light absorption in interstellar physics

(known as the Ambartsumian model) under different situations [18-20]. So,

the objective of this work is to extend the application of the standard series

method to deal with the present model. The convergence issue will be

addressed. In addition, it will be shown that the power series solution has

other equivalent forms in terms of elementary functions such as the

hyperbolic functions, the Mittag-Leffler functions, and the trigonometric

functions.

Also, the IVP (1) enjoys several interesting special cases of the constants

a and b such as ,0,0  baa  and .0 ba  The exact solutions of

such special cases will also be constructed in a direct manner. Moreover, the

special case 0b  is not considered here. This is because it is a trivial case
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in which the corresponding exact solution is already well known as

  .atety 

2. The Standard Series Method

Here, we apply the standard series method in the form:

  





0

,
n

n
ntty (2)

to search for a solution of equation (1). Substituting (2) into (1), we have

   












 
1 0 0

1 ,1
n n n

nn
n

n
n

n
n tbtatn (3)

i.e.,

      .11
0 0

1 







 

n n

n
n

nn
n tbatn (4)

Thus

      



 

0
1 ,011

n

n
n

n
n tban (5)

which leads to

      .011 1   n
n

n ban (6)

Therefore,

 
.0,

1
1

1 








  n

n
ba

n

n

n (7)
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Accordingly,

  ,
!1

1
01  ba

    ,
!2

1

2

1
0

22
12  baba

      ,
!3

1

3

1
0

22
23  bababa

    ,
!4

1

4

1
0

222
34  baba

      ,
!5

1

5

1
0

222
45  bababa

    ,
!6

1

6

1
0

322
56  baba

      ,
!7

1
7
1

0
322

67  bababa

 (8)

Applying the initial condition   0y on the series (3) gives .0   In

view of (8), the coefficients n can be compacted in the form

   

     















.odd...,5,3,1if,
!

,even...,6,4,2if,
!

2
1

2
1

2
22

nbaba
n

nba
n

nn

n

n (9)

2.1. Convergence

Theorem 1. For all ,, ba  the series

  





0

,
n

n
ntty (10)
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with the n defined by (8) or (9) has an infinite radius of convergence and

hence the series converges, .t

Proof. Assume that ρ is the radius of convergence. Then the ratio test

leads to

t
t

t

n

n

nn
n

n
n

n 
















1

1
1 limlim

1

 
.

1
1

lim t
n

ba n

n 



(11)

The term   11  n  according to n is even or odd, hence, the limit (11)

becomes

,,,,0
1

lim
1 




 
tbat

n
ba

n
(12)

which completes the proof. 

3. The Exact Solution

In this section, the solution of the IVP (1) is to be expressed in exact

forms in terms of some elementary functions such as the Mittag-Leffler, the

hyperbolic, and the trigonometric functions. First of all, the series solution

(2) can be written as

  





1

0
n

n
ntty

 









 

1 1

2
2

12
12 ,

n n

n
n

n
n tt (13)

where 12  n  and n2 are obtained from (9) as

          .
!2

,
!12

22
2

1
12

n
n

nn
n ba

n
baba

n



 

 (14)
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Accordingly, equation (13) becomes

            ,
!2!12

1
1 1

22
2

1
12















  











n n

n
n
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n

ba
n

t
baba

n
t

ty (15)

i.e.,

            .
!22!12

1
0 0

122
22

1
12


















  














n n

n
n

nn
n

ba
n
t

baba
n

t
ty

(16)

3.1. Solution in terms of hyperbolic trigonometric functions  ba 

We have from (16) that

     
 

 
  
















  










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22222212222
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1
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n
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
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
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22221222
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n
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   
  










 

 



1

222
22

!2
sinh1

n

n

n
tba

tba
ba
ba

    .,coshsinh 2222 batbatba
ba
ba 




 

 (17)

3.2. Solution in terms of Mittag-Leffler functions

Here, it is noted that equation (16) can be written using the Gamma

function in the form:
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           


















 













0

122
22

0

1
12

3222
1

n

n
n

n

nn
n

ba
n

t
baba

n
t

ty

(18)

or

      
      

  .
3222

1
0

222
222

0

222

















 







 n

n

n

n

n
tba

tba
n

tba
tbaty

(19)

Using the definition of the two-parameter Mittag-Leffler function

   



 


0

, ,
n

n

n
z

zE (20)

equation (19) takes the following final form:

            .1 222
3,2

222222
2,2 tbaEtbatbatEbaty  (21)

This last form can also be used to establish the solution in terms of

trigonometric functions via some properties of the Mittag-Leffler functions.

This point is declared below.

3.3. Solution in terms of trigonometric functions  ab 

Suppose that .ab  Then we can rewrite (21) as

        222
2,21 tabtEbaty 

     .222
3,2

222 tabEtab  (22)

Applying the following properties:

       
,

cos1
,

sin
2

2
3,2

2
2,2

z

z
zE

z
z

zE
 (23)
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for ,22 tabz  we have

     
,

sin
22

22
222

2,2
tab

tab
tabE



  (24)

     
 

.
cos1

222

22
222

3,2
tab

tab
tabE


  (25)

Substituting (24) and (25) into (33) and simplifying, we obtain

      .,cossin 2222 abtabtab
ab
ab

ty 




 

 (26)

It is easy to show that the solution (26) is periodic with a period equals

22

2

ab 


 provided .ab 

4. Special Cases

In this section, we aim to derive the exact solutions of the IVP (1) at

some interesting special cases for the constants a and b such as ,0a

,ba   and .ba 

4.1. 0a

In this case, the IVP (1) reduces to

      .0,  ytbyty (27)

The solution in terms of trigonometric functions can be directly obtained

by setting 0a  into equation (26), and this gives

       .0,cossin  bbtbtty (28)

4.2. ba 

Let . ba Then the IVP (1) becomes

      ,tytyty    .0 y (29)
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The solution of this case is directly obtained by substituting a and

b into equation (26), thus   .ty  This constant solution satisfies

the IVP (29), .

4.3. ba 

Let . ba Then the IVP (1) becomes

         .0,  ytytyty (30)

On substituting a and b into equation (26), it is noted that the

first term in the right hand side equals
0

0
 which forces us to use L’Hospital’s

rule. This can be done as follows. Equation (26) can be rewritten as

          abtabab
ab
ab

ty 




 

 ,0cossin

   














1

2sin
lim2

0 ab

tab

ab

 
0,1

2sin
lim2

0















ab

t

 ,21 t (31)

where
 

.2
2sin

lim 0 t
t







5. Conclusion

In this paper, exact solutions were obtained for the functional

differential equation      tbytayty   under the condition   .0 y

The standard series approach was applied to obtain the power series

solution. The convergence of the series solution was addressed and proved.

The obtained power series was successfully modified via some algebras

and accordingly the exact solution was established. The exact solution was
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expressed in terms of elementary functions such as Mittag-Leffler functions,

hyperbolic functions, and trigonometric functions. In conclusion, the current

approach can be further applied on the full pantograph model    tayty 

 ,ctby .c
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