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SECOND-ORDER ITERATIVE METHOD FOR OPTIMAL 

CONTROL PROBLEMS OF MULTISTAGE PROCESSES 

 

Abstract 

The paper proposes a second-order strong improvement method for 

optimal control problems with non-fixed stage time intervals. The 

technique of inference algorithms is based on the theory of V. F. 

Krotov. Conditions are given for the control to be improvable, which 

are closely related to the necessary and sufficient conditions for a 

strong local minimum. 
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0. Introduction

Mathematical models describing multistage processes are quite common

in practice: technological processes, for example, the processes of obtaining

gasoline and kerosene from oil, assembling various machines, chemical-

technological production and metal production both. So the flights of

medium-range missiles consist of three stages: the first - the main engine

takes the object into airless space, in the second stage, the rocket is

controlled by other engines to achieve a given position in space, the third

consists in choosing a maneuver to hit the target. All these systems are

controllable, and optimal control problems are relevant. These problems

have been studied for more than fifty years, and so far they have not lost

their relevance. We list some of them: [1, 3-24]. The article is structured as

follows: first, the problem of optimal control of a multistage process is posed

in general form, then a formula for the functional increment for a two-stage

process is derived, and an algorithm for successive improvements is

formulated, which can be easily generalized to the case of many stages. The

case is specially investigated when the initial approximation satisfies the

necessary optimality conditions, but does not provide the functional with a

strong local minimum. Using the necessary and sufficient conditions for the

optimality of a strong local minimum, a special improvement algorithm is

constructed.

1. Statement of the Problem

A controlled process is considered, consisting of several stages, and the

moment of the end of the previous stage is the moment of the beginning

of the next stage. Each of the stages is described by its own system of

differential equations:

     ,,0,,, pitutxtf
dt
dx iii

i
 (1)

 ,, 1 iit i are not fixed. The initial conditions are determined from

the relations:
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  ,0
00 x

     .,1,, 1 pixx i
i

i
i

i
i   (2)

The functions  txi  are piecewise differentiable and take values in the

Euclidean space      im
i

iin RUtuR ; are piecewise continuous; i  are

given functions.

Let       ,...,,, 10 txtxtxx p       ,...,,, 10 tututuu p  prime

means transposition. The set of triplets     ,,, tutx  satisfying the listed

conditions, as well as differential constraints (1) and initial conditions (2),

will be called the set of admissible ones and denoted by D. It is assumed that

.D

We define the functional

      .min,,, 11   pp
pxFuxI

Let us pose the problem of finding a minimizing sequence   sss ux ,,

D  on which

  .,inf,,  sIuxI
D

sss

This sequence will be called minimizing. Let us introduce the Lagrange

functional in accordance with Krotov’s theory [11] on sufficient conditions

for optimality. Introduce the following constructions. Let  ii xt,  be

functions continuously differentiable with respect to their arguments, t

 ,, 1 ii

       ,,,,,,, ii

x

iiiii

x

iii xtuxtfxtuxtR ii 

          ,,,, 0
0

0
0

1
0

1
0

1
0

0
00  xxxxG

           ,,,,, 1
111 i

i
i

i
i

i
i

i
i

i
i

i
i

ii xxxxG  

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          1111 ,,   p
p

p
p

p
p

p
p

p
pp xxFxxG

    ,,, 1
p

p
p

p
p

p x  

         





 



 

p

i

iii
i

i
i

ii i

i
dtuxtRxxGuxL

0

1
1 .,,,,,

The functional L is defined on a wider set E, which is obtained from D by

discarding the differential connection (1).

2. The Problem of Improvement

Let controls  ,tu i
I  moments of time i

I  and corresponding states  txi
I

be given. It is required to find     i
II

i
II

i
II txtu ,,  such that

   .,,,, IIIIIIIII uxIuxI 

This problem is called an improvement problem. Solving successively

the improvement problems, we obtain an iterative method that ensures the

monotonicity of the functional over iterations. If improvement algorithms

use a constraint on control variation, then such methods are called weak

improvement methods, and if only state variation, then the strong

improvement methods. In the future, we will carry out the presentation for

two stages, which makes it possible to more clearly demonstrate the

research. The obtained improvement methods can be easily carried over to

the case of p stages.

3. Two-step Process: Functional Increment Formula

Let the systems of differential equations and the functional to be

minimized be given on time intervals  10 ,   and  :, 21 

     ,,,,,, 1000  txxuxtf
dt
dx

(3)

        ,,,,,, 2111  txyytg
dt
dy

(4)
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  ,1mRUtu    ,2mRVtv    ,1nRtx    ,2nRty  moments in

time 20 ,   are fixed, 1  is not fixed,

    .,,,, 21  yFyuxI

We introduce the functions

     ,,, 00
0

1
0

1
0 xxG 

         ,,,,,,,,, 10
000  txtuxtfxtuxtR tx

         .,,,, 1121
1 yFxyxyG iI

x
I 

Let us compose the Lagrange functional

        yFxyGxGyuxL  11
1

1
0

1 ,,,,,,,

    .,,,,
1

2

2

1

10




   







dtytRdtuxtR

We introduce the following functions:

   ,,,,,, 000 uxtfpupxtH 

   ,,,,,, 111   ytgppytH

       ,,,,max,,,,,,max,, 11110000 


pytHpytHupxtHpxtH
VuUu

       ,,,max,,,,max, 1100 


ytRytPuxtRxtP
VUu

   ,,,,maxarg,,~ 000 upxtHpxtu
Uu

 (5)

   


,,,maxarg,,~ 111 pytHpyt
V

(6)
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and the functional

 
    
    

 .,,,,min,, 11 :
:





uyxLyx
Utuu
Utvv

M

Then

        ,,,,,,, 11110000
tytx ytHytPxtHxtP 

      









1

0

2

1
.,,,, 1010

1 dtytPdtxtPGGyxM

Let it be given that         .,,,,1 ttytutx   Introduce the functional

      11
1

1
0

1 ,,,,,  xyGxGyx aaM

    









1

0

2

1
,, 10 dtytPdtxtP

        ,
2

1 1

0

2

1

22




   







dttyydttxx

where         .,,,, 1
1

2
1

1
1 yFxyxyGa 

Consider the increment of the functional :aM

   yxyx aa ,,,, 11  MM

       xyGxyGxGxG aa ,,,,,, 1
1

1
1

1
0

1
0 

        



     





















1

0

1

0

2

1

2

1

,,,, 1100 dytPdytPdtxtPdtxtP

        .
2

1 1

0

2

1

22




   







dttyydttxx

We expand the increment in a Taylor series in the vicinity of the point

    tytx ,,1 up to terms of the second order in x  and y  and up to

terms of the first order in ,  where  ,txxx   ,tyyy  

.11  We have
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     
 10110

11
GGyGxGG ayaxxaM

   yGyyGxxGyxGGx ayyaxyayxaxxxx  11110
2
1










 





  









2

1

1

0

12120
2
1

2
1

dtPddPdtPddP

     



 11

1
11

0 ,, yPxP

         .
2

1 1

0

2

1

22 



   







odttyydttxx

a

The functions  xt,0  and  ,0 t  are set in linear-quadratic form

              ,
2
1

, 000 txxttxxtxxtxt 

         ,
2
1

, 111 ytytyytyt 

where     21
10 ,, nntt  are vectors, respectively,      tt 10 ,

,21 nn  22 nn  are symmetric matrices. Functions ,0 1 set so that

aM it does not depend on x, y, ,2x ,2y we obtain the following relations:

 ,00000
00 

 HHH x (7)

    ,1 000000000
0000

1 


HHHEaH
xx

n
xx (8)

 ,11111
11 

 HHH y (9)

    ,1 111111111
1111

2 


HHHEaH
yy

n
yy (10)
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      ,11
1

1
0  xx

              ,11
1

111
1

1
0  xxx xxxx

    ,22
1  yaFy

    22
1  yaFyy

and the expression for aM  becomes

            .,,,, 1
0

11
0

1
1

11
1  oyHyHaM

The derivatives of the functions 0H  and 1H  are calculated along

    ttxt 0,,   and     ,,, 1 ttyt   respectively,    21 , nn EE  are the unit

matrices.

4. Method of Improvement

The resulting constructions define the method of successive

improvements.

Algorithm.

(1) At each stage, the initial controls  tu I  and  tI  and the moment

I
1  of the stage change are set, from equations (3)-(4) which are determined

   ., tytx II

(2) Parameters  ,1,0 0 are set and from the system (7)-(10),

we find        .,,, 1010 tttt 

(3) New trajectories    tytx IIII ,  are determined from equations (3)-(4)

at        ,,,~,,,~ 1100 tyyytuutxxxtuu   where u~

and ~  are given by formulas (5)-(6), ,111  III ,10
1 HH 

thereby obtaining new controls and a new value .1
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(4) The values of the functionals II  and III  are compared. If there is no

improvement, then the parameters   and   decrease and the process is

repeated, starting from item 2.

If  t0  and  t1  are given, the equations with respect to 0  and 1

turn into matrix Riccati equations, which may not have a solution on the

intervals  10 ,   and  ., 21   In [2], such systems were investigated in

detail; it was shown that there exists an   such that for all , the

system of equations (7)-(10) will have a solution.

The algorithm can be easily extended to the case when the functional I

includes the integral terms  



 1

0
,,0

1 dtuxtfI  and   .,,2

1

0
2 




 dtuxtgI

In this case, the functions 0H  and 1H  are written in the form 0H
00 aff   and  .1,0,011   aaggH

Example 1.

Stage 1 Stage 2

,ux  ,y

  ,0 0xx     , xy

 ,,0 t  ,, Tt 





0

2
1 .

2
1

dtuI     
T

dttTyI .
2
1

2
1 22

2

Functional

.21 III 

T is fixed,  is not fixed.

Let us choose the parameter .1 Write the functions 0H

20
2
1

uup  and .
2

20
0 p

H  Find the derivatives
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,0,0,0, 0000
00 

xp
xxx

p
HHHuH

,
2
1

,1, 211000
000  pHHpH

ppp

.,1,,0,0,
2

111111
1

1
111

2

 p
ppp

yyy HHpHHH
p

H

Let us choose an initial approximation       .,,0,0 0xtxttu 

The system of equations (7)-(10) takes the form ,000  0

,
20 ,111  ,

211     ,10       T110 , 

1  and    .1 TyT  The decision   ,
1

11



Tt

t   ,
1

01



Tt
x

t

  ,
1

10




Tt
t   .

1
00




Tt

x
t Following the algorithm, we solve

the equations:

     ,0, 00
00 xxxxx 

      ,,0
11  xyxyy

and solution takes the form

  ,
1

,1
1

00






T

x
uTt

T
x

tx (11)

  .
1

,1
1

00






T

x
Tt

T
x

ty (12)

The values of functionals are given by

   
 

 
.

12
,

12
1

,
12

1
2

2
0

2

2
0

22

2
0

1









T

x
IT

T

x
I

T

x
I

Initial approximation is given by .
2

2
0x

I   Note that the obtained

approximation is optimal and does not depend on τ-change of stage.
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5. Algorithm Properties

Let us make the following assumptions regarding the problem statement:

(1) The functions    1100 ,,,,, pytHpxtH  are continuous and twice

continuously differentiable with respect to ypx ,, 0  and ,1p  respectively.

(2) There are continuous 0p  and 1p  twice differentiable functions with

respect to  0,,~ pxtu  and  1,,~ pyt  and such that

    ,,,,,~,,, 00000 pxtHpxtupxtH 

    .,,,,~,,, 11111 pytHpytupytH 

(3) The function  yF  is twice continuously differentiable with respect

to y.

Let us formulate the necessary optimality conditions for the two-stage

optimal control problem. Let       ,, tvtu  be the optimal process. Then

the conditions of the Pontryagin maximum principle are satisfied, i.e.,

       ,,,, 00 xxtutxtf
dt

dx  


         ,,,, 


 txyttytg
dt

dy

        ,,,,, 1000
0

 
txuxtH

dt
d

x

      ,,,,, 22
111

1
  yFtytH

dt
d

yy

            ,,,,max,,, 0000 uttxtHtuttxtH
Uu

 



 (13)

            ,,,,max,,, 1111  



 ttytHtttytH
V

(14)
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             .,,,,,, 1100   yHuxH (15)

Consider two cases: (1) the initial approximation does not satisfy the

required optimality conditions; (2) satisfies the conditions of optimality.

Now, we formulate an improvement theorem.

Theorem. If the initial approximation does not satisfy the necessary

optimality conditions, then it is improved by the algorithm.

Let along the initial approximation          IIIII ttytutx 1,,,, 

conditions (13)-(14) are satisfied, and     .0,, 1
1

1
0  II HH Then the

solution of equations (3)-(4), closed by the synthesis of controls

 ,,,~ 00 xxtu   ,,,~ 11 yytv  will give a solution  ,tuu I

     .,, tyyttxx III   Then on the set of admissible ones, we

obtain the estimate

      ,,, 11
0

1
1  oHHaI II

therefore,   and   can be chosen so that .0I

Consider the second case: conditions (13)-(14) are satisfied, condition

(15) is not satisfied. In this case, as shown in [2], there will also be an

improvement.

Consider a special case when conditions (13)-(15) are satisfied for

.1  Then the system (7)-(10) is divided into the adjoint system and the

matrix Riccati equations:

        ,;,, 1011
1

1
00

0
II

x
II

x txH
dt

d 
(16)

      ,;,, 2122
10

1
 II

y
I

y tyFH
dt

d
(17)

,00000000
0

0000 



HHHH

dt

d
xx

xx
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               ,11
1

111
1

1
0 II

x
III

xx
II

x
II xxx 

 ,; 10
It  (18)

,11111111
1

1111 



HHHH

dt

d
yy

yy (19)

      .;, 212
20  I

yy tyF (20)

The derivatives of the functions 0H  and 1H  are calculated along

    ttxt I 0,,   and     ,,, 1 ttyt I   respectively. It is known that the

matrix Riccati equation may not have a solution over the entire required time

interval.

Let us write down a second-order algorithm for the case when the

necessary optimality conditions are satisfied, the matrix Riccati equation

contains a singular point  .; 21 
It

Algorithm (Singular point case).

(1) The parameter   is selected so that the singular point coincides with

.1
I

(2) Find a symmetric submatrix   of the matrix   with the property

   .detlim
01




t
It

(3) The limit is found

   .lim 1





t

tt

(4) The parameter 0  is set.

(5) The solution of the system  bb ,0  is determined.
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(6) The system is integrated

        ,,,,, 11 txxttytytg
dt

dy I  ,; 21  It

             ,,0,,, 111
1

111
IIIIII xybygy 

thereby finding  ty II and

             .,,~ 11 tytytttytt IIIIIII 

(7) If ,III II   then the parameter   decreases and the process repeats

from item (5).

The improvement process can be constructed in a similar way for the

case of a singular point in matrix equation (18).

Let us illustrate the resulting scheme by an example.

Example 2.

           Stage 1    Stage 2

,ux  ,y

  ,00 x    , xy

 ,,0 t  ,, Tt 

  



0

2
1 .

2

1
dttuI    

T
dtTyI .22

2

Functional

.21 III 

We take as an initial approximation   ,0tu I   ,0 tI accordingly

  ,0txI   .0ty I The selected controls satisfy the conditions of the

Pontryagin maximum principle. For this problem, we define the auxiliary

functional J  in the form
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    
T

dtTyJ
0

22 .1,0,

Consider functions

  211 ,,, uytH 

and

    ,4,, 211 ytH   .2,,~ 11 ppyt 

The equation for  t  takes the form

  .2,
2

2

 TI
I

I

Its solution is determined by the following formula:

  .
1

2




tT
tI

Consider the three cases. For 1T  and ,1  tI exists over

the entire interval  ,, T therefore, the initial approximation gives

the functional I a strong local minimum. For 1T  and ,1

  


tI

t 0
lim and the control   ,0tu   ,ct  where c is an arbitrary

constant, is optimal. For 1T  and ,1  tI exists only on a part

of the segment  ,, T  and in accordance with the algorithm, the control

  0 t  can be improved. Choosing ,1 T we have

     ,,~,
2  tcty

t
v

y
t

tI   ,ctv 

        0222222  TTcTcTcI

for any .0c
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Let us consider another option. If   is a fixed value and there is

no singular point at 1  on  ,, T  then the original controls give the

functional I a minimum.

Another situation:   is not fixed. Continuing the control   0 tI

up to 0t  and examining the Riccati equation for the existence of a

singular point on  ,,0 T  we get: if a singular point exists, then the initial

approximation is improved, and if it does not exist, then   ,0tu I

  ,0 tI and the functional I is given a minimum.

6. Conclusion

The paper proposes a second-order successive improvement method

for multi-step processes. Conditions for the unimprovability of the original

approximation are given. A special case of the algorithm is developed when

the necessary conditions are met optimality, but there is a singular point of

the Riccati equation at least at one of the stages. The operation of the

algorithm is illustrated with test examples.
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