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Abstract

The paper proposes a second-order strong improvement method for
optimal control problems with non-fixed stage time intervals. The
technique of inference algorithms is based on the theory of V. F.
Krotov. Conditions are given for the control to be improvable, which
are closely related to the necessary and sufficient conditions for a

strong local minimum.
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0. Introduction

Mathematical models describing multistage processes are quite common
in practice: technological processes, for example, the processes of obtaining
gasoline and kerosene from oil, assembling various machines, chemical-
technological production and metal production both. So the flights of
medium-range missiles consist of three stages: the first - the main engine
takes the object into airless space, in the second stage, the rocket is
controlled by other engines to achieve a given position in space, the third
consists in choosing a maneuver to hit the target. All these systems are
controllable, and optimal control problems are relevant. These problems
have been studied for more than fifty years, and so far they have not lost
their relevance. We list some of them: [1, 3-24]. The article is structured as
follows: first, the problem of optimal control of a multistage processis posed
in general form, then a formula for the functional increment for a two-stage
process is derived, and an algorithm for successive improvements is
formulated, which can be easily generalized to the case of many stages. The
case is gpecialy investigated when the initial approximation satisfies the
necessary optimality conditions, but does not provide the functional with a
strong local minimum. Using the necessary and sufficient conditions for the
optimality of a strong local minimum, a special improvement algorithm is
constructed.

1. Statement of the Problem

A controlled process is considered, consisting of several stages, and the
moment of the end of the previous stage is the moment of the beginning
of the next stage. Each of the stages is described by its own system of
differential equations:

dx PR i . _ o—

< = P X, u@®), i=0p, (1)
t € [1j, 1i31], T ae not fixed. The initial conditions are determined from
the relations:
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Xo(t0) = 2,
X ()= «'(, X Hw), i=1p. 2
The functions ' (t) are piecewise differentiable and take values in the
Euclidean space R"V; u/(t) e U; ¢ R™) are piecewise continuous; «' are
given functions.

Let x=(2(t), x}(t), ..., xP(t), u= @), ult), .., uP), prime
means transposition. The set of triplets (x(t), u(t), t), satisfying the listed
conditions, as well as differential constraints (1) and initial conditions (2),

will be called the set of admissible ones and denoted by D. It is assumed that
D= @.

We define the functional
1(%, U, ©) = F(xP(tps1), Tps1) = min.
Let us pose the problem of finding aminimizing sequence {(xs, Us, Ts)}
< D onwhich
I(Xs, Ug, Tg) = igf [, s— oo

This sequence will be caled minimizing. Let us introduce the Lagrange
functional in accordance with Krotov’s theory [11] on sufficient conditions

for optimality. Introduce the following constructions. Let (pi (t, xi) be
functions continuously differentiable with respect to their arguments, t

[7is Tival,
Rt x', u') = (p')i(i(t, X fit, X, ui)+(pixi(t, x),
GO(XO(TO), XO(Tl)) = (PO(Tl’ XO(Tl)) - (PO(T@ XO(TO))’

G'(X (1), X (ti41)) = 0' (1131, X (ti12)) = ¢' (1, &' (1, X (1)),
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GP(XP(tp), xP(tp41)) = F(XxP(tp12)) + 0P (i1, XP(1p11))

_(Pp(fp’ Kp(Tp)’ Xp_l(fp)))’
P Lo : T+l . .
L(x u, 1) = Z[G'(x’ (1), X (1i41)) —I R'(t, X', u')dt}.
i=0 fi
The functional L is defined on a wider set E, which is abtained from D by
discarding the differential connection (1).

2. The Problem of Improvement

Let controls u} (t), moments of time ri| and corresponding states xil (t)

be given. It isrequired to find uh (t), xh (t), ri” such that

Ly s o) < 1Ox, up, ).

This problem is called an improvement problem. Solving successively
the improvement problems, we obtain an iterative method that ensures the
monotonicity of the functional over iterations. If improvement algorithms
use a constraint on control variation, then such methods are called weak
improvement methods, and if only state variation, then the strong
improvement methods. In the future, we will carry out the presentation for
two stages, which makes it possible to more clearly demonstrate the
research. The obtained improvement methods can be easily carried over to
the case of p stages.

3. Two-step Process: Functional Increment Formula

Let the systems of differential equations and the functional to be
minimized be given on timeintervals [tq, t1] and [tq, T5]:

% = f(t,x u), x(tg)=Xy teltg 1l ©)

@ -0ty 0 v = kXt ) @
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ut)eU c R™, vt)eV c R™, x(t)e R, y(t) e R, moments in

time tq, 1, arefixed, tq isnot fixed,
I(t1, X, U, Y, v) = F(Y(t2)).
We introduce the functions
G%(11) = %1, x) - ¢°(70, Xo),
0 0 ' 0
RY(t, x, u) = ox(t, X) f(t, x, u)+o;(t, X), teltg, 1l
Gl (11, ¥, X) = ¢' (12, ¥) = 0x(11, &' (X(11))) + F(Y).
L et us compose the Lagrange functional
L(ty, X, U, ¥, ©) = G2ty X) + Gy, ¥, X(11) + F(y)

_ UT; RO(t, x, u)dt + J‘rlz RYt, y, u)dt]

We introduce the following functions:
Ho(t, x, p°, u)= pO’f(t, X, U),
Ht y, phov) = prolt v, v),

Ho(t, X, po) = maxHO(t, X, po, u), Hl(t, Y, pl) = max Hl(t, Y, pl, L),
ueU ueV

Po(t, X) = max RO(t, X, U), Pl(t, y) = max Rl(t, Yy, V),
ueU veV

u(t, x, po) = arg max Ho(t, X, po, u), (5)
ueU
o(t, y, p') = agmax H(t, y, p, v) (6)

veV
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and the functional

M(ty, X, y)=  min  L(tg, X, Y, U, v).

Then

PO(t, x) = HO(t, x, o3) + 0,  PY(t, y) = H(t, yy) + of,
Mz, x ) =62+ G- [ PO nat - [ AP, yyat
‘EO ‘El

Let it be giventhat (7, X(t), U(t), Y(t), O(t)). Introduce the functional

Ma(ty, X, y) = GOty, X) + Ga(ty, ¥, X(11))

_ I” PO(t, x)dt —ITZ PLt, y)dt
10 “

0 [P xwPan s Py - st

where Ga(11, v, X) = ¢'(tz, ¥) = ¢'(1y, k(X)) + aF (y).
Consider the increment of the functional M ,:
Ma(t1, X% Y) — Ma(Ty, X, Y)

= G%(13, X) - G%(%y, X) + Ga(1a, Y, X) - Ga(Ty, Vi, X)

~ |:I T1+AL Po(t, Xt - J‘Tl Po(t, R)dt + J‘TZ Pl(t, y)dt — J‘TZ Pl(t, y)d‘c:|

10 70 T+A; 1
A=) | [, 22 T2 W2
+ 85 Lo(x x(1))? +Ll (v - yt)dt |
We expand the increment in a Taylor series in the vicinity of the point
(71, X(t), ¥(t)) up to terms of the second order in Ax and Ay and up to
terms of the first order in At, where x=x-X(t), y=y-¥y(t), t=

71 — 71. We have
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= (G0 + GL ) Ax + GL Ay+(GO + G} A

+ 2 [AX(GY, + GL ) Ax + AyG1 AX + AXGE Ay+Ay’Gl AY]

- j”(dp%ldzpjdt J’ (dp1+ dPl)dt
TO 2 Tl

+ PO(7y, X(7) - PH(ay, V(Tl))}

I\JlH

O [z s [y - se0)2a ]+ o0,
The functions ¢°(t, x) and ¢°(t, ) are set in linear-quadratic form
0(t, ) = v00) (x - X(O) + 5 (x ~ X(1) o°(t) (x - X(1),
gt ) = v (v - ¥O) + 5 o) y,

where (1), \yl(t)—nl, n, are vectors, respectively, aO(t), oi(t) -

M x Ny, NyxnNy are symmetric matrices. Functions 0%, ¢! set o that

A, it does not depend on X, y, X2, y2, we abtain the following relations:
w0 = —HY - o%(H% - H), )

v v
o®=-H +(1-a)EM —6%HO —HO ®-6HO &% (8

yoX Xy vy
1 1 1,41 1

y*=-Hy-oc(H [ -H",), 9)

y-otHl —H)
ol = -H} + @-a)E™ —o'HY, —H! o'-o'HY, ot (10)

vy wy yhyt
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vO(71) = wH(E)xx(X(7),
0%(7y) = W (T ey (X(70) + Kx(X(31)0 (1) kx(X(7),
yi(T2) = —aFy (¥(%2),
o'(T2) = —aFyy(V(%2))
and the expression for A9, becomes
AM, = (HY(7y, Y(70), vH(7) - HOGL, Y(7), wO (7)) At + o).

The derivatives of the functions H? and H! are calculated along
(t, X(t), yO(t)) and (t, ¥(t), y'(t)), respectively, EM™), E(™) are the unit
matrices.

4. Method of Improvement
The resulting constructions define the method of successive

improvements.

Algorithm.

(1) At each stage, the initial controls u' (t) and v' (t) and the moment
r{ of the stage change are set, from equations (3)-(4) which are determined
X' (©), y' (t).

(2) Parameters a € [0, 1], B > 0 are set and from the system (7)-(10),
wefind yO(t), wi(t), s°(t), ol(t).

(3) New trgjectories x'" (t), ylt (t) are determined from equations (3)-(4)
at u=0 x y®+c2x-x), u=10e y wt+ol(y - yt)), where T
and v are given by formulas (5)-(6), r{' = r{ + By, Aty = HO - H1,

thereby obtaining new controls and a new value 1.



Second-order Iterative Method for Optimal Control Problems ... 29

(4) The values of the functionals | "and 1" are compared. If thereisno
improvement, then the parameters o and B decrease and the process is

repeated, starting from item 2.

If \yo(t) and \yl(t) are given, the equations with respect to o9 and ot
turn into matrix Riccati equations, which may not have a solution on the
intervals [tg, t1] and [tq, t2]. In [2], such systems were investigated in

detail; it was shown that there exists an o* such that for al o < o, the
system of equations (7)-(10) will have a solution.

The algorithm can be easily extended to the case when the functional |

includes the integral terms |, = f:l £O(t, x, u)dt and I, = I:z gO(t, x, u)dt.
0 1

In this case, the functions HO and H! are written in the form HO =

w9 —af®and H = y'g-ag® ae [0, 1].

Example 1.

Stage 1 Stage 2

X = U, y =V,

X(0) = %o, y(1) = X(1),

t [0, 1], telr, T],

1t 2 1.2 107 2

I1_§I0u . |2_§y(T)+§jru (t)ct.

Functional

I =11+ 15.
Tisfixed, T isnot fixed.

Let us choose the parameter o =1. Write the functions HO =
02

°u —%uz and HO = P Find the derivatives
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0
H% =u, HY=0 HY =0 H° =0
p Y

0 0 40 1_.1 12
Mo = P75 Mg =4 HE=Po=50%

Hi =P Hl-o HL -0 HY =p, HY =1 Hi-w
2 W p p'p*

Let us choose aninitial approximation U(t) = 0, v(t) = 0, T = T, X(t) = Xg.

The system of equations (7)-(10) takes the form \|/0 = —cowo, o0 =

%, yl=—olyl o=, yO@)=yi®), o%F) =) kT

— _1 and yX(T)=—y(T). Thedecision o(t)= 1_1, Vi) =——0

t-T t-T-1’
s0(t) = 1 ,wot) = - X Following the algorithm, we solve
t-T-1 t-T-1
the equations:

X = (\VO + GO(X - Xo)), x(0) = xo,

y = +cl(y-x) ¥ =X,

and solution takes the form

_ X s T _ X

X('[)_T+1|t T-1, u= T+1° (11)
_ X T __ X

y(t)_T+1|t T-1, v= T+1 (12)

The values of functionals are given by

2 2 2
|1—1 onf’ |2=1 on(T_ﬂ |=L2'
2(T+1) 2(T+1) 2T +1)
2
Initial approximation is given by | :%. Note that the obtained

approximation is optimal and does not depend on T-change of stage.
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5. Algorithm Properties

Let us make the following assumptions regarding the problem statement:

(1) The functions Ho(t, X, po), Hl(t, Y, pl) are continuous and twice

continuously differentiable with respect to x, po, y and pl, respectively.

(2) There are continuous po and p1 twice differentiable functions with

respect to U(t, X, po) and vo(t, v, pl) and such that
HOt, x, p°, Ut x, p%) = RO, x p°),

HY(t v, P4 Tt v, pY) = Ht v, pY).
(3) The function F(y) is twice continuously differentiable with respect
toy.
Let us formulate the necessary optimality conditions for the two-stage

optimal control problem. Let (u*(t), v¥(t), t*) be the optimal process. Then
the conditions of the Pontryagin maximum principle are satisfied, i.e.,

dd_)ik = f(t, X"(1), u'(t).  X'(t0) = X0,
dc)i,t* _ g(t, y*(t), U*(t)), y*(’t*) _ K(X*(t*)),

- 0 w0 ) WO = W RO,

1
S = HIE Y v 0 v = Ry (o))
HO(, X" (1), wO(), u™ (1) = max HO(, X" (1), wO(), u), (13)

H(E v (1), wh(t), V' (1) = max H( y* (1), (D), v), (14)
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HO(™, X" (7%), wO(r"), U™ (") = HY(E", ¥ (x"), wi(e"), v (x"). (15)
Consider two cases: (1) the initial approximation does not satisfy the
required optimality conditions; (2) satisfies the conditions of optimality.
Now, we formulate an improvement theorem.

Theorem. If the initial approximation does not satisfy the necessary
optimality conditions, then it isimproved by the algorithm.

Let along the initial approximation (x'(t), u' (), y'(t), v'(t), 1})
conditions (13)-(14) are satisfied, and H%(z], -) = HY(x{, -) = 0. Then the
solution of equations (3)-(4), closed by the synthesis of controls
u(t, x, Wo + csox), v(t, y, \ul + cly), will give a solution u = u' (1),
x=x'(t), v=0'(t), y=y'(t). Then on the set of admissible ones, we
obtain the estimate

al < -p(H(x1, )~ H(1, ) + o(wy),
therefore, o and B can be chosen so that Al < 0.

Consider the second case: conditions (13)-(14) are satisfied, condition
(15) is not satisfied. In this case, as shown in [2], there will also be an
improvement.

Consider a specia case when conditions (13)-(15) are satisfied for
o = 1. Then the system (7)-(10) is divided into the adjoint system and the
matrix Riccati equations:

0
W= 12 vOed) = v X (), teloidll  (19)
d\|/1 ) 11y _ | I

o = Hy vi(2)=FR(y(w2) telu; ] (17)
do®

_Z_H)(()X_HO OGO_GOHOO _GOHOO 060’
dt Xy yox Yoy
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o%(x1) = (a1 ) k(X' (12))y + 1x(X' (11)) 6 (a1 ) x(X' (51)),
telt: ], (18)

dot

1 1 1 1.1 1,1 1

o T Ty e o ot e (9
0.2\ _ I

o (t9) = -Fyy(¥(r2)), te[r; 1o]. (20)

The derivatives of the functions H® and H! are calculated along

(t, x' (©), wO(t) and (t, y' (t), wh(t)), respectively. It is known that the
matrix Riccati equation may not have a solution over the entire required time
interval.

Let us write down a second-order algorithm for the case when the

necessary optimality conditions are satisfied, the matrix Riccati equation

contains asingular point t, (r{; o]

Algorithm (Singular point case).

(1) The parameter o is selected so that the singular point coincides with

(2) Find a symmetric submatrix G of the matrix o with the property

lim det(5(t)) = .

t—>11+0

(3) Thelimitisfound

x = lim (5() ™

tot

(4) The parameter ¢ > 0 isset.

(5) The solution of the system yb = 0, | b| = ¢ is determined.
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(6) The system isintegrated

.%=mnmwnm¢®+&®w—ﬂmm,tddmﬂ

y(r1) = 9(x1), Y(e1) i) + (0, 0), y(z1) = X! (1),

thereby finding y' (t) and

o' (1) = 5, ¥ (1), vt + 'O () - Y (V).
(7 If 1" > 1" then the parameter ¢ decreases and the process repeats
fromitem (5).

The improvement process can be constructed in a similar way for the
case of asingular point in matrix equation (18).

Let usillustrate the resulting scheme by an example.

Example 2.
Stage 1 Stage 2
X = U, y=v,
x(0) =0, y(1) = X(1),
t [0, 1], telr, T],
_lpro2 2 T2
|1_2j0(u (t)) ct. Iy = y(T)+J‘Todt.
Functional

=1y + 1,

We take as an initial approximation u' (t)=0, v (t) = 0, accordingly
x (t)=0, y'(t)=0. The selected controls satisfy the conditions of the

Pontryagin maximum principle. For this problem, we define the auxiliary
functional J, intheform
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;
Jy = —oyA(T) + J'O vdt, «<[0,1].

Consider functions

Hl(t, Y, \ul, L) = Yo — u?

and

HE yowh) = (w)/4 By, p) = pY2.
The equation for oft) takestheform
2
5!

6I Z—T, GI(T)ZZOL

Its solution is determined by the following formula:

2z
T-t+Ya

o' (t) =

35

Consider the three cases. For T-t<1 and a =1 o' (t) exists over

the entire interval [t, T], therefore, the initiad approximation gives

the functional | a strong local minimum. For T-t=1 and o =1,

lim o' (t) = o and the control u(t) = 0, u(t) = ¢, where c is an arbitrary

t—>1+0

constant, is optimal. For T-t>1and oo =1, o' (t) exists only on a part

of the segment [, T], and in accordance with the algorithm, the control

v(t) = 0 can beimproved. Choosing a. = 1/T, we have

oM=2, §=Y, y)=ct-v, v)=c

| = 3T 12+ (T -1 = (T -1)* ~(T-1) <0

forany c = 0.
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Let us consider another option. If t is a fixed value and there is
no singular point at o =1 on [t, T], then the origina controls give the

functional | a minimum.

Another situation: t is not fixed. Continuing the control v'(t) =0
up to t =0 and examining the Riccati equation for the existence of a
singular point on (0, T), we get: if a singular point exists, then the initial
approximation is improved, and if it does not exist, then u'(t):O,

v' (t) = 0, and the functional | is given a minimum.

6. Conclusion

The paper proposes a second-order successive improvement method
for multi-step processes. Conditions for the unimprovability of the original
approximation are given. A special case of the algorithm is developed when
the necessary conditions are met optimality, but there is a singular point of
the Riccati equation at least at one of the stages. The operation of the
algorithm isillustrated with test examples.
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