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Abstract 

An introduction to optimal control, a fundamental concept in 
engineering and science disciplines, is a process of finding ways of 
controlling dynamic systems in such a way that they achieve certain 
goals while being subjected to given state limitations. The 
conventional approaches developed in the past have been integral to 
solving optimal control problems, including the maximum principle 
belonging to Pontryagin and the dynamic programming method. While 
relatively straightforward, these methods are not always amenable to 
higher-dimensional scenarios, interacting forces, or other non-trivial 
constraints. This paper presents a new methodology to extend classical 
optimal control, considering both direct and indirect optimization 
techniques. The direct methods, Euler and Runge-Kutta, Trapezoidal, 
and Hermite-Simpson, do not require the explicit derivation of the 
analytical control laws to execute control trajectories. Semi-analytical 
techniques, such as the shooting method, are based the control laws on 
proposed adjoint differential equations. This paper presents the basic 
outline of the classical optimal control problem and discusses the 
direct and indirect optimization methods. It is illustrated by 
referencing various examples, like the fixed-rate royalty payment 
approach. After outlining each framework, we identify the positive 
and negative aspects of the approach in questions of consistency and 
performance. Finally, the problems on the synergy of direct and 
indirect methods are considered further, and areas of further 
development of the presented methods and their integration with the 
more sophisticated tools, such as machine learning are identified. It 
can be concluded that the approach of using both direct and indirect 
optimization methods presents great potential in modernizing the 
classical optimal control, which challenges the conventional 
techniques and indicates potential for further development of the 
control system optimization. 
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1. Introduction 

It is also a cornerstone of disciplines like engineering, economics, and 
science since it provides a framework for engineering ways to manage 
dynamic systems and achieve goals while avoiding certain outcomes [9]. For 
these control problems, the necessary tools have been available for a long 
time within the classical approaches of optimal control specified by the 
Pontryagin maximum principle, dynamic programming, and the calculus of 
variations. 

However, as technology and system developments increase, the problems 
that will require solutions become evident. This has resulted in the search for 
innovative ways of modernizing the approach to optimization problems, such 
as the combination of direct and indirect optimisation methods that, if 
advanced, could further extend the realm of control system optimization 
beyond more classic approaches. 

To address these concerns, this paper discusses the integration of direct 
and indirect methods in reformulating classical optimal control. The direct 
optimization methods, in which no attempt is made to formulate the control 
laws analytically, but direct attempts are made to optimize the control 
trajectories, are pronounced as a shift. In the placement of predicting and 
calculating the value of a function, Euler, Runge-Kutta, Trapezoidal, and 
Hermite-Simpson methods seem to hold great promise in the precision of the 
control of output and the proper and efficient handling of constraints. 

Conversely, indirect optimization procedures include the shooting 
method, and inferred control laws using related first-order adjoint differential 
equations. Although these methods have been integral in optimal control 
theory, they fail in nonlinear dynamical systems with high dimensions. 
Unlike the direct method, which only focuses on achieving specific 
objectives and has certain drawbacks that the indirect method incorporates 
into its system, a combination of the two methods provides a way out of the 
drawbacks as a new and more efficient method for optimal control. 
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This paper provides comprehensive details of these modernization 
endeavours with actual life examples illustrating how the modernisation 
agenda has been implemented, including fixed-rate royalty payment 
structures. In comparative analysis, the advantages and disadvantages of 
direct as well as indirect optimization methods are identified. 

This research contributes to the existing body of knowledge on the best 
methods of controlling dynamical systems by proposing a solution to update 
the classical methods. Thus, the possibilities for reformulating the optimal 
control problems using the advantages of both direct and indirect approaches 
are shown. 

2. Classical Optimal Control Problem 

The classical optimal control theory, although very important in a 
theoretical setting, always encounters some difficulties regarding realistic 
scenarios of system behaviour, large state and control space, and tight 
constraints. 

Direct optimization methods can be considered as an approach that is 
non-related to deriving analytical control laws when the primary interest is 
the direct optimization of control trajectories. Several approaches, such as 
Euler, Runge-Kutta, Trapezoidal, and Hermite-Simpson methods, help 
transform optimal control issues into finite-dimensional ones. This approach 
allows the control inputs to be chosen efficiently while considering such 
dynamics and limitations. Direct optimization methods can be applied to a 
large variety of situations since they do not require the appearance of special 
expressions. In this research, the program construction was carried out using 
the AMPL programming language [4]. 

On the other hand, indirect optimization methods like the shooting 
method find the control laws by solving the adjoint differential equations 
associated with the given optimal control problem. Although these methods 
have been useful in analyzing historical systems, they have been poorly 
suited to address nonlinear dynamics and complex systems with many 
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variables. Integrating indirect methods into modern approaches seeks to 
unlock their potential by combining them with the efficiency and adaptability 
of direct optimization. The shooting method routine was implemented using 
C++ programming [10]. 

This research also touches on the fixed-rate royalty payment issue, a 
topic studied by many previous researchers. For instance, Cai et al. [2] 
examine the impact of fixed royalty payments on sustainable fashion brand 
franchising, using game theory to model interactions between franchisors and 
franchisees. Horal et al. [5] discuss defining and justifying Ukraine’s 
distribution ratio of oil and gas royalties under decentralization. Meanwhile, 
Yahya and Habbal [12] propose a blockchain-based music royalty payment 
scheme, arguing that blockchain’s decentralized nature can provide a secure 
and transparent platform for royalty distribution in the music industry. 

3. Direct Optimization Method 

Direct optimization methods handle complex dynamics, high-
dimensional state and control spaces, and intricate constraints. Since direct 
methods give rise to systems of equations, these methods naturally 
incorporate various constraints such as state and control constraints, path 
constraints, and boundary conditions. In terms of adaptability to complex 
dynamics, direct methods are based on solving systems of algebraic 
equations; the presented direct methods can be used to effectively control 
understood complex system dynamics and possess the ability to work in 
high-dimensional states and control spaces. In the numerical precision aspect, 
direct optimization methods do not involve forming an indirect program and, 
therefore, can provide a great level of exactness and, therefore, solutions of 
high numeric accuracy that are useful in solving other complex optimal 
control problems. 

When implementing methods like Euler, Runge-Kutta, Trapezoidal, or 
Hermite-Simpson in an optimization context using the AMPL programming 
language with the MINOS solver [4], the following steps are typically 
followed: 
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(1) Problem formulation: The formulation of the basic optimal control 
problem is presented, including the definition of the objective function as 
well as the dynamic model representing state variables. 

(2) Discretization of time: The time domain is discretized into a finite 
number of time intervals or time steps, often represented by discrete time 
points such as the initial and final times. 

(3) Control parameterization: A parameterization for the control inputs 
over the time intervals is selected. In the case of the Euler method, control 
inputs may take on a piecewise constant nature over each time step. 

(4) State and control variables: State and control variables are defined as 
decision variables within the AMPL model. 

(5) Initialization: State variables are initialized at the initial time. 

(6) Objective function formulation: The objective function, representing 
the performance to be maximized, is composed. This frequently involves 
discretizing an integral or sum over the time intervals using the Euler 
approximation. 

(7) Dynamics discretization: Continuous-time dynamics are discretized 
using the Euler method. Within each time interval, the state transition is 
approximated. 

(8) Constraint formulation: If state and control constraints exist, they are 
formulated as constraints within the AMPL model. 

(9) Optimization problem setup: The optimal control problem is 
formulated as a nonlinear optimization problem within AMPL. The objective 
function is designed for maximization, and constraints are introduced to 
represent dynamics and existing constraints. 

(10) AMPL scripting: An AMPL script is authored to specify the 
optimization problem, encompassing decision variables, the objective 
function, constraints, and any settings specific to the solver. 
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(11) Solver selection: The MINOS solver is chosen to solve the 
optimization problem. Care is taken to ensure that the AMPL installation is 
configured correctly for using the MINOS solver. 

(12) Optimization problem solving: The AMPL script is executed to 
solve the optimization problem utilizing the MINOS solver. This leads to 
choosing the most appropriate control analysis which results in attaining best 
control inputs within limitations enhancing the performance function. 

(13) Results retrieval and analysis: After the optimization process is done 
the optimal control inputs and the state trajectories are extracted from the 
solution of the solver and are analyzed. 

(14) Post-processing: The results are post-processed as necessary to 
facilitate the visualization of the optimal control strategy, the analysis of state 
trajectories, or the implementation of the control strategy within a real-world 
system. 

(15) Iterative refinement: Based on the problem size and the quality of 
the outcome, there is always a possibility that the solution may need to be 
refined by altering various factors such as discretization, size of time step or 
any other factors. 

4. Indirect Optimization Method 

Either uses a concept of indirect methods involving optimizing the 
Hamiltonian, which comprises a system’s dynamical equations and its 
objective function, as described by Kirk [6]. These methods work using the 
concept of obtaining the so-called adjoint differential equations, which help 
to determine how the objective function is affected by the changes of state 
and control variables. Indirect optimization methods offer several benefits for 
solving optimal control problems. 

The indirect methods help in obtaining regular information about the 
inherent dynamics of the system and consequently develop easily 
understandable and effective control mechanisms. In addition, the indirect 
methods often lead to analytical control laws and often supply closed-form 
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solutions which help in comprehending system behaviour. Substituting the 
shooting method, an indirect method of solving the optimal control problem 
stated above using C++ entails some steps [10]. The process involves the 
following steps: 

(1) Problem formulation: The problem of control is formulated, including 
the criterion to be optimized, which is the objective function dynamic 
system. 

(2) Initialization: State variables and control inputs are initialized at the 
initial time. 

(3) Guess control inputs: An initial guess is made for the control inputs 
over the entire time horizon. 

(4) Dynamics integration: Using the estimated control inputs, the 
dynamic system is numerically integrated forward in time. Numerical 
integration techniques like the Newton and Golden Section Search are used. 

(5) Solve adjoint equations: The adjoint differential equations associated 
with the optimal control problem are formulated and solved. These equations 
provide sensitivity information regarding how changes in the control inputs 
impact the objective function. 

(6) Update control inputs: The guessed control inputs are updated using 
the information derived from the adjoint equations. This update is aimed at 
aligning the control inputs with the optimality conditions. 

(7) Convergence check: A check for convergence is performed by 
comparing the updated control inputs with the previous guess. If the 
convergence criteria are met, the process proceeds to the next step; 
otherwise, it returns to step (4), and the process is repeated. 

(8) Results analysis: Upon achieving convergence, an analysis of the 
final control inputs, state trajectories, and the value of the objective function 
is conducted. These results constitute the representation of the optimal 
control strategy. 
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(9) Iterative refinement: Depending on the complexity of the problem 
and the quality of the results, there may be a need to iterate and enhance the 
solution by adjusting the initial guess, integration method, or other 
parameters. 

(10) C++ implementation: The steps outlined above are implemented in 
the C++ programming language. As needed, libraries and tools are used to 
solve adjoint equations and perform numerical integration. 

(11) Compile and run: To address the optimal control problem, the C++ 
code is compiled and run. 

(12) Visualisation of results: To obtain insights into the best control 
approach, the results which include control trajectories, state trajectories, 
costate information, and the objective function are displayed. 

5. Comparative Analysis: Direct and Indirect Method 

It is noteworthy that direct methods are superior in dealing with various 
dynamical features and constraints as they directly solve for control inputs. 
Due to that, they can establish precise, detailed control conditions and 
approaches; hence, they are suitable for complex process circumstances. 
However, there is a disadvantage of this approach, which is that it becomes 
inevitable to use numerical approximations when discretizing, which may 
influence the quality of the solutions to be obtained.  

However, the indirect methods offer an understanding of the system 
sensitivities and almost always lead to analytical control laws; the solution is 
precise and easily interpretable. They are especially useful where it is 
necessary to obtain an analytical solution for performing stability analysis 
and making decisions [1]. 

Direct methods normally put the optimal control problem in a finite-
dimensional figure by using methods that have a fast convergence and can be 
easily computed. This is especially useful for high-state and control spaces, 
as is normally the case with most problems [7, 8]. On the other hand, the 
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indirect methods require the solution of the differential equations governing 
state and the adjoint variables that may be computationally expensive 
particularly for complex systems. Some of the indirect methods are iterative 
in form, and this also causes slower convergence as compared to others [7, 
8]. 

Constraints are incorporated in the optimization process by direct 
methods that lead efficiently to formulations of overall solutions without 
complications of path constraints and boundary conditions. Though indirect 
approaches to optimization can also manage constraints, their use can make 
the derivation of equations of adjoint more cumbersome and affect the 
optimality conditions. 

A major difference between these two methods is that the direct methods 
are numerical and do not involve the analytical aspect that is found in 
indirect methods. This is because the indirect methods provide one with 
analytical control laws and system sensitivities and, therefore, provide a 
deeper insight into the behaviour of the system. 

Another advantage of the direct methods is that they enable the solution 
of large-scale systems, thus making them useful in solving very large 
problems. But as we move upwards, we might come across a problem of 
scalability, particularly as the numbers of features increase. The indirect 
method may fail in a high-dimensional system by reason of the formulation 
of adjoint equations for each of the state variables. 

6. Formulation of Classical Optimal Control Problem 

The classical optimal control problem is the mathematical model applied 
to identify the best control policy to be employed by a dynamical system 
within an applied time. It is concerned with finding the control variables or 
inputs which yield the minimum, maximum or desired value of an objective 
function while satisfying the system of equations and constraints. On the 
other hand, a non-classical optimal control problem can also be described as 
a sort of optimization problem that is different from a standard or 
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conventional optimal control problem in one or more aspects. Nonetheless, 
non-classical optimal control problems add difficulties or deviations from the 
standard structure of classic optimal control issues, including a dynamical 
system, control inputs, an objective function, constraints, and time horizon. 

Cruz et al. [3] have introduced a new category of variational problems 
called non-classical (or non-standard) variational problems. As opposed to 
the conventional variational problems, these are personalized by the notion of 
the objective function, which is a measure of the disparity between two 
integrals. This makes way for approaching similar great optimization 
problems that are hard to solve with classical approaches. 

Another relevant study is Zinober and Sufahani [14], in which the 
authors analyze a non-standard optimal control (OC) problem in an economic 
context. This problem concerns the royalty payment scheme represented with 
a two-stage piecewise function. According to the authors’ findings, a solution 
must be made under the framework of Pontryagin’s maximum principle, 
which is the most basic idea of optimal control. 

Let us consider a dynamic system described by a set of state variables 
denoted as ty  and a set of control inputs denoted as ,tu  

.tuty  (1) 

The goal is to maximize the objective function while satisfying system 
dynamics and constraints over a given time horizon ., fi tt  The objective 

function discussed by Spence [11] is rooted in the concept of the learning 
curve. This concept suggests that as firms gain experience through repeated 
production, they become more productive and can lower their costs. 
Essentially, the more a company produces, the better it gets at production, 
leading to improved efficiency and cost savings over time: 

f

i

t

t

tyt dteueueJ 1.012.05.0025.0 1  (2) 
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subject to 

.0.1  (3) 

The cost function in this context involves the royalty payment function, 
denoted by .  It combines state variables, control inputs, and auxiliary 

variables, each weighted by specific coefficients. The goal is to optimize this 
cost function to meet performance criteria while adhering to constraints. 
Now, the cost function to be maximized can be expressed as follows: 

Maximize 
f

i

t

t

tyt dteueueJ .2 1.012.05.0025.0  (4) 

Zinober and Kaivanto [13] attempted to solve the cost function using 
matrix formulation, considering current demand values and discount rates for 
optimizing royalty payments. However, they encountered challenges, 
particularly when the royalty payment level changed, which complicated the 
differentiation process needed to compute the optimal objective function. As 
systems grow more complex and constraints become more detailed, the 
limitations of traditional methods become apparent. This has led to exploring 
modernization strategies incorporating direct and indirect optimization 
methods. 

7. Experimental Results and Discussion 

The objective function described by equation (4) is optimized using both 
direct and indirect methods. The direct approach uses software tools like 
AMPL, which helps formulate and solve the optimization problem 
efficiently. On the other hand, the indirect method involves programming in 
C++, where a custom solution is developed to address the optimization 
problem through detailed control of the computational process. 

The data in Table 1 shows that the optimal objective function values are 
very similar across methods, aligning up to two decimal places between 
direct methods and up to one decimal place with the shooting method. The 
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final state values are also closely aligned, with Euler, Runge-Kutta, and 
Trapezoidal discretization methods matching the shooting method upto two 
decimal places. However, the Hermite-Simpson approximation only matches 
the shooting method upto one decimal place for the final state value. All 
methods show a close match upto three decimal places for the costate values 
at the initial time. Additionally, the final costate value computed by all 
methods is zero. 

Table 1. Optimal solution 
Methods Final state value Initial costate value Final costate value Objective function 

Shooting 0.369646 0.026387 0.000000 0.659773 

Euler 0.367532 0.026514 - 0.662962 

Runge-Kutta 0.369485 0.026515 - 0.662983 

Trapezoidal 0.364828 0.026515 - 0.662983 

Hermite-Simpson 0.375801 0.026518 - 0.663049 
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Figure 1. Optimal plot for the variables and cost function. 
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Figure 1 illustrates that the cost function from the shooting method 
shows an upward trend, which aligns with the increasing state value. Overall, 
the plots for state, costate, and control values reveal a strong similarity 
between the shooting and discretization methods. 

8. Challenges and Future Research Direction 

Integrating direct and indirect optimization methods to modernize 
classical optimal control brings new challenges and opens avenues for future 
research. 

In the numerical stability context, comparing direct and indirect methods 
can introduce numerical challenges, requiring careful consideration of 
stability and accuracy. In the dimensionality scaling aspect, managing high 
dimensionality entails effective algorithms and approaches to decrease the 
relevance of computational costs. In terms of constraint handling, the 
synthesis of methods that may employ different techniques of constraint 
handling calls for harmonious solution approaches that uphold the constraint 
accord and optimality. 

For future research directions, it is apparent that there is an advantage in 
creating new algorithms that incorporate both direct and indirect control 
methods and can switch from one to another depending on the current 
situation in the system and the environment. For data-driven optimization, 
investigating real-time data to improve optimization decisions yields 
optimum control data. Referring to earning-based optimization, researching 
the application of reinforcement learning and neural networks with 
optimization can lead to the development of control strategies that develop 
over time. 

9. Conclusion 

In this paper, the goal that has been pursued is to update classical optimal 
control using direct and indirect optimization approaches. This integration 
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was planned to deal with issues like complicated structures and further 
dimensions, complicated constraints and new control methodologies in 
various areas. In this way, we were able to illustrate in detail how the fusion 
of these methods alters classical optimal control. The case studies here 
demonstrated the benefits of each method, where direct methods provided 
adaptability and speed in computations while indirect methods provided 
exactness in analysis and significant information. We have, therefore, taken 
the two and compared them, emphasizing how they are particularly relevant 
and have influenced modern controls. The given analysis has shown that the 
selection of direct and indirect approaches is based on the problem’s 
peculiarities and objectives. Whereas direct methods are more 
computationally effective, more interpretive power is provided by indirect 
methods. State and applicational complexities were also discussed, along 
with the directions that can be taken to merge these approaches in the future, 
including hybrid algorithms and data-driven optimization. The application of 
machine learning was also suggested as an idea that can be addressed in the 
future. These methods can then be combined and incorporated into the 
existing classical optimal control, which is considered a considerable 
enhancement in achieving a higher level of accurate control schemes, 
sensitivity flexibility and understanding of the overall control processes. This 
work continues the development of control theory. It can act as a guide for 
researchers and those who are interested in implementing the current 
improvements in optimal control and who want to analyze the potential of 
the synergy of the direct and indirect optimization approaches. 
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