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AN INNOVATIVE METHOD FOR SOLVING 

LINEAR AND NONLINEAR FRACTIONAL 

TELEGRAPH EQUATIONS 

 

Abstract 

This work investigates and solves the time-fractional telegraph 

equations (TFTEs) occurring in electromagnetism, which serve as 

mathematical models in several practically significant applied research 
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domains. Elzaki transform (ET) is employed in this process. Caputo 

sense describes fractional derivatives. Solutions of TFTEs were found 

in an easy-to-understand, step-by-step way using ET. In addition, 

instances are given to show how the phrase can be applied and how 

valid it is for the problem-solving form. The exact solutions and the 

analytical solutions accord well for the tested problems. This work 

also discusses the convergence of the ET technique to the exact 

solution of TFTEs. Several examples of linear and nonlinear TFTEs 

are used to demonstrate the suggested methodology. The novel 

technique’s results show that it is an effective way to solve TFTEs, 

and it makes the procedure easier. 

1. Introduction 

There are numerous applications for the integral transform in 

mathematics. Integro-differential equations, integral equations, and linear 

DEs can all be solved with ET. This method is not appropriate for solving 

nonlinear DEs due to the nonlinear variables. Nonlinear DEs can be solved 

using ET support for the homotopy perturbation approach, differential 

transform method, and any other methods. These days, nonlinear equations 

are very important. Applications of nonlinear phenomena are significant          

in engineering, physics, and applied mathematics. Finding new exact or 

approximate solutions to nonlinear PDEs requires creative thinking, which  

is challenging even in fields like applied mathematics and physics where 

precise solutions are crucial. 

Several workers have focused on investigating the solutions of nonlinear 

PDEs using a variety of approaches in recent years. Numerous techniques 

have been attempted, such as the homotopy perturbation, differential 

transform, variational iteration, Laplace variational iteration, differential 

transform, ET, Laplace; double Laplace, and ET transforms [1-12]. 

Numerous analytic and numerical techniques, including the local fractional 

variational iteration approach, the Yang-Laplace transform, and others, have 

been developed to solve nonlinear PDEs with fractional derivatives. 
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While they have a long history in mathematics, fractional derivatives 

(FDs) were not used in scientific fields for a very long period. One       

reason why FDs are disliked could be the predominance of non-equivalent 

definitions. Another problem is that it is hard to interpret the geometric 

significance of FDs because they are nonlocal. Nonetheless, in the last 20 

years, mathematicians and engineers have started to focus considerably more 

on fractional calculus. It was found that FDs may be used to simulate a 

variety of applications, especially those that are multidisciplinary. For 

example, FDs can be utilized to solve the fluid-dynamic traffic model’s 

issue. Based on actual data, a number of researches suggest fractional PDEs 

and DEs with fractional order features for seepage flow in porous media. 

Over the last ten years, scientists have found that the best explanation for          

a variety of physical phenomena, including dumping laws and diffusion 

processes, comes from non-integer order derivatives. These findings 

stimulated interest in the study of fractional calculus in many fields, 

including natural philosophy, technology, and alchemy. 

Heaviside developed telegraph equations in 1880, have been applied to 

many problems in a range of scientific fields. The telegraph equation [13] 

describes the difference and time in electric communications with current 

and voltage. Telegraph equations of fractional orders have been solved  

using a variety of numerical and analytical methods, such as the reduced 

differential transform technique [18], the Adomian technique [14], the 

homotopy perturbation technique [15], Laplace decomposition in 

conjunction with HPM [16], and the modified Adomian decomposition 

method (MADM) [17]. With less computation, the VIM used to examine the 

suggested model’s solution produced the same outcome as the ADM         

[19]. Furthermore, the hyperbolic telegraph equation is studied using the 

Chebyshev tau technique [20]. An attempt has been made to gain a better 

understanding of the anomalous diffusion processes seen in blood flow 

investigations by taking up the fractional telegraph equations. Hyperbolic 

equations with analytic or analogous asymptotes, like the telegraph equation, 

can sometimes provide a better model of random motion when it comes to 

fitting the data obtained from certain blood flow tests. Specifically, the 
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telegraph equation more accurately represents numerous experimental data 

than the heat equation, as reported in certain publications. 

There are numerous uses for the telegraph partial differential equations 

in diverse domains. Finding the approximate solution of hyperbolic PDEs is 

one use for it in the mathematical modeling of transmission lines. Reaction-

diffusion process representation in biological and technical fields is another 

use. In addition, the telegraph equation is applied to random walk, wave 

propagation, and signal analysis problems. It is also used to investigate     

how microwaves affect signal transmission in telecommunications water. In 

addition, the telegraph equation finds application in finance for non-linear 

conversions of traditional telegraph procedures, including option pricing. 

This study will clearly provide and illustrate the new approach, which is 

predicated on the new integral transform (ET). In this work, we also explore 

the possible applications of this new transform with the recently developed 

approach to solving TFTEs. This method works well for impulse functions 

as well as functions with discontinuities. 

Definition 1. The R-L operator, of the order ,0>α  of a function 

,1, −≥µ∈ µCW  is 

( ) ( ) ( ) ( )1

0

1
, 0,J W v W v dv

κ α−α κ = κ − α >Γ α   

( ) ( )0 .J W Wκ = κ  (1) 

Following are some necessary properties of :α
J  

For , ,n
W C n Nµ∈ ∈  , 0α β ≥  and :1−≥γ  

(1) ( ) ( ) ,J J W J W
α β α+βκ = κ  

(2) 
( )

( )
1

.
1

J W
α γ α+γΓ γ +

= κ
Γ γ + α +
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Definition 2. According to Caputo, the FDs of ( ),κW  are as follows: 

( ) ( )l l
D W J D W

α −ακ = κ  

or 

( ) ( ) ( )( )11
( ) .

l lC
a

a
D W W d

l

κ −α−α
κ κ = κ − τ τ τΓ − α   (2)

 

For 1 , , 0,l l l N− < α ≤ ∈ κ >  and 1,l
W C−∈  the following are the 

basic properties of the operator :C
a D

α
κ  

(1) [ ] 0,C
a D c

α
κ =  

(2) ( )[ ] ( ) ,C
a D I W W

α α
κ κ κ = κ  

(3) [ ] ( )
( )

1
,

1
C
a D

α β β−α
κ

Γ β +
κ = κ

Γ β − α +
 

(4) ( )[ ] ( ) ( ) ( )
1

0

0 ,
!

m k
kC

a
k

I D W W W
k

−
α α

κ
=

κκ = κ −   

where c, α and β are constants. 

2. Elzaki Transform 

Elzaki has demonstrated how to use the modified Sumudu transform, or 

ET, to solve PDEs, ODEs, and IEs. ET is a useful tool when Sumudu and 

Laplace transformations are not able to solve DEs with variable coefficients 

[21]. ET is a powerful tool in applied mathematics and engineering, see          

[22-26]. The essential ideas of this change are presented as follows: 

The ET of ( )κW  is 

( )[ ] ( ) ( )
0

, 0.vE W v W e d T v

κ∞ −
κ = κ κ = κ >   (3) 
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If ( )vT ′  is the ET of the derivative of ( ),κW  then 

(a) ( ) ( ) ( )0 ,
T v

T v vW
v

′ = −  

(b) ( ) ( ) ( ) ( ) ( )
1

2

0

0 , 1,
n k

n

n
n k

k

T v
T v v W n

v

−
− +

=
= − ≥  

where ( )vT
n

 
is ET of the nth derivative of the function ( ),κW  see [9].  

A useful ET that is utilized in this paper is stated below. 

Let ( )[ ] ( ).E W T vκ =  Then  

(1) [ ] ( )2 1 , 1,E v
α+κ = Γ α + α > −  

(2) [ ( ) ( )] ( ) ( ) ( ) ( ) ( )1

2 3

0 0
0 .

n n

n n n

T v W W
E W vW

v v v

−
− −

′
κ = − − − ⋅ ⋅ ⋅ −  

Let ( )[ ] ( ), , .E W r T r vκ =  Then the ETs of partial derivatives of 

( )κ,rW  are 

( ) ( ) ( ), 1
, , 0 ,

W r
E T r v vW r

v

∂ κ  = − ∂κ 
 

( ) ( ) ( ) ( )2

2 2

, , 01
, , 0 ,

W r W r
E T r v W r v

v

 ∂ κ ∂
= − −  ∂κ∂κ  

 

( ) ( )[ ],
, ,

W r d
E T r v

r dr

∂ κ  = ∂ 
 

( ) ( )[ ]
2 2

2 2

,
, ,

W r d
E T r v

r dr

 ∂ κ
= 

∂  
 

( ) ( ) ( ) ( )
1

2

0

, ,
, 0 , 1.

n
k

n n

n
n k

k

W r T r v
E v W r n

v

−
− +

=

 ∂ κ
= − ≥ 

∂κ  
  
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Lemma 1. ET of R-L operator of order 0>α  can be expressed as 

follows: 

[ ( )] ( ).E J W v T v
α ακ =  (4) 

Proof. We have, for ,0>α  

[ ( )] ( ) ( ) ( )1

0

1
E J W E W d

κ α−α  κ = κ − α κ κ Γ α   

( ) ( ) ( ) ( )1 1
,T v G v v T v

v
α= =

Γ α
 

where 

( ) [ ] ( )1 1 .G v E v
α− α+= κ = Γ α  

Lemma 2. ET of Caputo FDs for 0, 1 ,m m m Nα > − < α ≤ ∈  is 

[ ( )] ( ) ( ) ( ) ( ) ( )1

2 3

0 0
0 .

mc m

m m m

T v W W
E D W v vW

v v v

−α −α
κ − −

′ κ = − − − ⋅ ⋅ ⋅ −  
 (5) 

Proof. Since 

[ ( )] [ ( )( )] [ ( ) ( )],
m mc m m

E D W E J W v E W
α −α −α
κ κ = κ = κ  

we find the result by using equation (4). 

Equation (5) can be written as 

[ ( )] ( )[ ] ( ) ( )
1

2

0

1
0 .

m
kc k

k

E D W E W W v
v

−
α −α+
κ α

=
κ = κ −   (6) 

2.1. Mittag-Leffler functions (M-LFs) 

The M-LFs are regular and significant in FDE solutions. Because of           

the growing interest in non-traditional models and pure and practical 

mathematics among researchers and academics, the scientific community is 

becoming more interested in M-LFs. By concentrating on the idea of M-LFs, 
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we may explain a wide range of events in a range of processes that develop 

or decay too slowly to be adequately captured by conventional functions like 

the exponential function and its surroundings. 

We now define the M-LFs and the generalized M-LFs, respectively, 

( ) ( ) ( ) ( ),

0 0

, .
1

n n

n n
n n

∞ ∞

θ θ ϑ
= =

κ κε κ = ε κ =
Γ θ + Γ θ + ϑ   

For special values of ,, ϑθ  the M-LFs are given by the following: 

(1) ( ) ( ),1 ,θ θε κ = ε κ   

(2) ( )0,1
1

,
1

ε κ = − κ   

(3) ( )1,1 ,e
κε κ =   

(4) ( )2
2, 2

sinh
,

κε κ = κ   

(5) ( )2
2,1 cos ,ε − κ = κ   

(6) ( )2
2, 2

sin
.

κε − κ = κ  

We now establish the subsequent lemma, which is helpful in determining 

the function ( )κW  from its ET. 

Lemma 3. If Ca ∈>ϑθ ,0,  and ,
1

a
v

>θ  then the inverse ET is 

 ( )
1

1 1
, .

1

v
E a

av

ϑ+
− ϑ− θ

θ ϑθ
 

= κ ε − κ 
+ 

 (7) 

Proof. Noting that 

( ) ( ) ( )
1

1 1 1

0 0

1
,

1 1

n n n n

n n

v
v v a v a v

av av

∞ ∞ϑ+
ϑ+ ϑ+ θ θ+ϑ+

θ θ
= =

= = − = −
+ +    
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we have 

( ) ( )
( )

11
1 1 1

0 01

n n
n n

n n

av
E E a v

nav

∞ ∞ θ+ϑ−ϑ+
− − θ+ϑ+

θ
= =

   − κ
= − =   Γ θ + ϑ+     

   

( )
( ) ( )1 1

,

0

.
n

n

a
a

n

∞ θ
ϑ− ϑ− θ

θ ϑ
=

− κ= κ = κ ε − κΓ θ + ϑ  

3. Analysis of Proposed Scheme 

Using the subsequent nonlinear TFTEs and initial conditions, we 

demonstrate the fundamental concept of this approach: 

( ) ( ) ( )
2

2
, , , , , 0, 0 2,c W W

D W r NW r g r r
r

θ
κ

∂ ∂κ = − + κ + κ κ ≥ < θ ≤∂κ∂
 

( ) ( ) ( ) ( )1 2, 0 , , 0 .W r r W r rκ= ϒ = ϒ  (8) 

Using ET in equation (8), we obtain
 

[ ] ( ) ( )
2

2
, , .c W W

E D W E NW r g r
r

θ
κ

 ∂ ∂= − + κ + κ ∂κ∂ 
 

Applying ET’s property, we obtain  

( )[ ] ( ) ( )2 31
, , 0 , 0E W r v W r v W r

v

−θ −θ
κθ κ − −  

( ) ( )
2

2
, , .

W W
E NW r g r

r

 ∂ ∂= − + κ + κ ∂κ∂ 
 (9) 

Equation (9), after two sides are each treated as the Elzaki inverse, yields 

the following result: 

( ) ( ) ( )
2

1

2
, , , ,

W W
W r G r E v E NW r

r

− θ  ∂ ∂κ = κ + − + κ  ∂κ∂  
 

where ( ),G r κ  represents the term that comes from all or some of the 

function ( ),g r κ  and the initial conditions that are prescribed.
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To solve the problem iteratively, make use of the following relations: 

( ) ( )
2

1
1 2

, , ,n n
n n

W W
W r E v E NW r

tx

− θ
+

  ∂ ∂ κ = − + κ  ∂∂    
 

( ) ( )0 , , .W r G rκ = κ  (10) 

The following is thought to be the series form solution to equation (8): 

( ) ( )
0

, , .n

n

W r W r

∞

=
κ = κ  (11) 

From equation (10), the following ( ) ( ) ( )0 1 2, , , , , , ... ,W r W r W rκ κ κ  can 

be inferred. The solution can then be found using equation (11). 

3.1. Convergence analysis 

The convergence of the ET method to the exact solution of TFTEs is 

discussed in this subsection.  

Theorem 1. In a Banach space B, 
0

,n
n

W
∞

=
  in equation (11) converges to 

Ba ∈  if ( )0 1 ,∃ ≤ ξ <  s.t. 1 .W Wτ τ−∀τ ∈  ≤ ξN   

Proof. The partial sum sequence is described as { } 0
,a

∞
τ τ=  

0 0

1 0 1

2 0 1 2

0 1 .

W

W W

W W W

W W W

a

a

a

aτ τ

=
= +
= + +

= + + … +
⋮

 

It is now required to demonstrate that { } 0
a

∞
τ τ=  is a Cauchy sequence in 

B. Note that 

1
1

1 1

0 0

,n n n

n n

W W W W Wa a

τ+ τ
τ+

τ+ τ τ+ τ
= =

− = − = ≤ ξ ≤ ≤ ξ  ⋯  
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for all N∈λτ, . As ,λ≥τ  

( ) ( ) ( )1 2 11a a a a a a a aτ λ τ τ− + λ− τ−τ λ− = − + − + + −⋯  

( )1 1 2 1a a a a a aτ τ− τ− λ+ λτ−≤ + + +− − −⋯  

1 1
0 0 0W W W

τ τ− λ+≤ ξ + ξ + + ξ⋯  

( )1 1 2 1
0 0

1
.... .

1
W W

τ−λ
λ+ τ−λ− τ−λ− λ+− ξ≤ ξ ξ + ξ + + ξ = ξ

− ξ
 

Then, ( )1 2 ....τ−λ− τ−λ−ξ + ξ + + ξ  is a geometric series and .10 <ξ≤  

Thus, 
,
lim 0.a aτ λτ λ→∞

− =  

This means that the series solution 
0

,n
n

W W
∞

=
=   is as given in equation 

(12), converges, and we have the required. 

3.2. Numerical applications 

We now consider the recommended course of action to maximize            

the impact of the TFTEs. Better numerical results are obtained with the 

recommended system. The following examples show the efficacy. 

Example 1. Consider the following linear TFTE: 

( )
2

2
, 2 , 0, 0 2,c W W

D W r W
r

θ
κ

∂ ∂κ = − − κ ≥ < θ ≤∂κ∂
 

( ) ( ), 0 , , 0 2 .r r
W r e W r eκ= = −  (12) 

Using ET from equation (12), we obtain 

( )[ ] ( ) ( )
2

2 3

2

1
, , 0 , 0 2 ,t

W W
E W r v W r v W r E W

v r

−θ −θ
θ

 ∂ ∂κ − − = − − ∂κ∂ 
 

( )[ ]
2

2 3

2
, 2 2 .r r W W

E W r v e v e v E W
r

θ  ∂ ∂κ = − + − − ∂κ∂ 
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By inverse ET, 

( )[ ][ ]
2

1 1 2 3 1

2
, 2 2 .r r W W

E E W r E v e v e E v E W
r

− − − θ  ∂ ∂ κ = − + − −    ∂κ∂  
 

The iteration formula that makes use of a first approximation is shown in 

the below diagram: 

( )
2

1
1 2

, 2 ,n n
n n

W W
W r E v E W

r

− θ
+

  ∂ ∂κ = − −  ∂κ∂    
 

( ) ( )0 , 2 1 2 .r r r
W r e e eκ = − κ = − κ  (13) 

Equation (13) gives 

( ) [ [ ]] [ ] ( )
2

1 1 2
1

2
, 4 4 ,

1

r
r r e

W r E v E e e E v
θ

− θ − θ+ κκ = = =
Γ θ +

 

( ) ( )
3 2 1

2
2

, ,
2

r
e

W r
θ−κκ = −

Γ θ
 

( ) ( )
4 3 2

3
2

, ,
3 1

r
e

W r
θ−κκ =

Γ θ −
 

( ) ( )
5 4 3

4
2

, , ... .
4 2

r
e

W r
θ−κκ = − Γ θ −  

Then, 

( ) ( ) ( ) ( ) ( )
2 3 2 1 4 3 2 5 4 3

2 2 2 2
, 2 , ... .

1 2 3 1 4 2

r r r r
r r e e e e

W r e e
θ θ− θ− θ−κ κ κ κκ = − κ + − + −

Γ θ + Γ θ Γ θ − Γ θ −
 

If ,2=θ  then ( ) ., 2κ−=κ r
erW

 

We have presented in Figure 1, the exact solution with the numerical 

solution obtained after 4 iterations of the proposed method.
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Figure 1. The exact and numerical solutions of Example 1. 

 

Figure 2. The absolute error curve. 
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Figure 3. Different solutions of Example 1 depend on the values of .θ  

Example 2. Consider the following linear TFTE: 

( )
2 2

2 2
, , 3 2 , 0, 0 2,c W W W

D W r s W
r s

θ
κ

∂ ∂ ∂κ = + − − κ ≥ < θ ≤∂κ∂ ∂
 

( ) ( ), , 0 , , , 0 3 .r s r s
W r s e W r s e

+ +
κ= = −  (14) 

Using ET, we get 

( )[ ] ( ) ( )2 31
, , , , 0 , , 0E W r s v W r s v W r s

v

−θ −θ
κθ κ − −  

2 2

2 2
3 2

W W W
E W

r s

 ∂ ∂ ∂= + − − ∂κ∂ ∂ 
 

( )[ ]
2 2

2 3

2 2
, , 3 3 2 .r s r s W W W

E W r s v e v e v E W
r s

+ + θ  ∂ ∂ ∂
 κ = − + + − − ∂κ∂ ∂ 

 

By the technique used in Example 1, we acquire the recurrent link in the 

subsequent manner: 

( )
2 2

1
1 2 2

, , 3 2 ,n n n
n n

W W W
W r s E v E W

r s

− θ
+

  ∂ ∂ ∂
κ = + − −  ∂κ∂ ∂    

 

( ) ( )0 , , 1 3 .r s
W r s e

+κ = − κ  (15) 
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Then 

( )
2 2

1 0 0 0
1 02 2

, , 3 2
W W W

W r s E v E W
r s

− θ  ∂ ∂ ∂κ = + − −  ∂κ∂ ∂    
 

[ [ ]]
2

1 3
9 ,

( 1)

r s
r s e

E v E e
θ +

− θ + κ= =
Γ θ +

 

( ) ( )
3 2 1

2
3

, , ,
2

r s
e

W r s
θ− +κκ = −

Γ θ
 

( ) ( )
4 3 2

3
3

, , ,
3 1

r s
e

W r s
θ− +κκ =

Γ θ −
 

( ) ( )
5 4 3

4
3

, , , ... .
4 2

r s
e

W r s
θ− +κκ = −

Γ θ −
 

Therefore, 

( ) ( ) ( ) ( ) ( )
2 3 2 1 4 3 2 5 4 3

3 3 3 3
, , 1 3 , .... .

1 2 3 1 4 2
r sw r s e

θ θ− θ− θ−
+  κ κ κ κκ = − κ + − + − Γ θ + Γ θ Γ θ − Γ θ − 

 

If ,2=θ
 
then ( ) .,, 3κ−+=κ sr

esrW
 

 

Figure 4. Plots of solutions to equation (14) obtained for 1.0=s  and 

.15.0=κ  
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Table 1. Solution for the first five approximations with exact solution of 

equation (14)  

r  75.1=θ  85.1=θ  95.1=θ  2=θ  Exact 

0. 1.2832034304119277 1.255282057546795 1.2315710995754274 1.2214011577765744 1.2214027581601699 

0.25 1.6476658194298148 1.6118140670021688 1.581368594312918 1.568310130556956 1.5683121854901687 

0.5 2.1156447903555167 2.069610229005623 2.0305174682495526 2.0137500688840015 2.0137527074704766 

0.75 2.716541683499492 2.657432136680157 2.6072360382608695 2.5857062713037484 2.585709659315846 

1. 3.488108567105054 3.4122104066201335 3.347757340431209 3.3201125724429015 3.3201169227365472 

Example 3. Consider the nonlinear TFTE: 

( )
2

2

2
, , , 0, 1 2,c W W W

D W r W rW r
rr

θ
κ

∂ ∂ ∂κ = + − + κ ≥ < θ ≤∂κ ∂∂
 

( ) ( ), 0 , 0 .W r W r rκ= =  (16) 

We obtain the recurrence relationship in the following using the same 

technique as in Example 1: 

( )
2

1 2
1 2

, ,n n n
n n n

W W W
W r E v E W rW

rr

− θ
+

  ∂ ∂ ∂
κ = + − +  ∂κ ∂∂    

 

( )0 , .W r r rκ = + κ  (17) 

Then 

( ) [ [ ]] ( )
1

1 , ,
1

r
W r E v E r

θ
− θ κκ = =

Γ α +
 

( ) ( ) ( )
1 2 1

1
2 , ,

1 2

r r
W r E v E

θ− θ−
− θ  θ κ κκ = =  Γ θ + Γ θ  

 

( ) ( )
3 2

3 , ,
3 1

r
W r

θ−κκ =
Γ θ −

 

( ) ( )
4 3

4 , , ... .
4 2

r
W r

θ−κκ =
Γ θ −
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The solution is thus 

( ) ( ) ( ) ( ) ( )
2 1 3 2 4 3

, 1 .... .
1 2 3 1 4 2

r r
W r r

θ θ− θ− θ− κ κ κ κκ = + κ + + + + Γ θ + Γ θ Γ θ − Γ θ − 
 

If ,2=θ  then ( ) ., κ=κ rerW
 

 

Figure 5. The exact and numerical solution of Example 3 for .2=θ  

 

Figure 6. The absolute error for the nonlinear solution of Example 3. 
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4. Results Numerical Analysis 

For ,2=θ
 
we notice from the calculated values of the solution with 

variable ( ) [ ]1
, 0, 0, 2

2
r  κ ∈ ×

  
 in Figure 1 and Figure 6 that the numerical 

solution curve obtained after 4 iterations is confused with the exact one          

of the linear case (problem of Example 1) and the nonlinear problem of 

Example 3. Precisely, we calculated the absolute error committed by the 

method for a value of .5.0=κ  Note that 3109 −×  is the maximum error, as 

shown in the plot for Figure 2. 

Figure 3 illustrates the variations of the solutions obtained for the 

fractional values of 5.1,25.1=θ  and 1.75. 

For the nonlinear case of Example 3, we noticed that the absolute error 

takes an almost linear curve. 

We have shown in this calculation that this method can be useful due          

to its simplicity in obtaining a practical and reasonable solution in terms of 

accuracy. It only takes a few iterations to obtain a digital solution without 

advanced programming.  

5. Discussion and Conclusion 

This article has discussed the derivation, convergence, and application  

of the ET method to both linear and nonlinear TFTEs. We used the first 

approximation in order to solve the problem exactly. The exact solutions of 

TFTEs converged when the ET was applied. Three instances have been 

successfully resolved using this method. We think that our method for 

solving TFTEs will be useful in solving other nonlinear equations. The 

investigation also demonstrated that the figures and table in this paper attest 

to the method’s efficacy in solving TFTEs. Because of how useful and 

simple it is, we also plan to apply it to other fractional PDEs in the future. 
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