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Abstract

This paper deals with a class of generalized backward stochastic

differential equations driven by two mutually independent fractional

Brownian motions (FGBSDEs in short). The existence and uniqueness
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of solutions for FGBSDE as well as a comparison theorem are

obtained.
1. Introduction

Backward stochastic differential equations (BSDEs) were first introduced
by Pardoux and Peng in 1990, who established a fundamental existence and
uniqueness result under the Lipschitz assumption [14]. This pioneering work
laid the groundwork for BSDEs to become a powerful tool in various fields
such as financial mathematics, stochastic control, and the stochastic
interpretation of solutions to partial differential equations (PDEs). The
application of BSDEs in finance, particularly in option pricing and risk
management, has been particularly influential, as it allows for the modeling

of problems with terminal conditions that naturally arise in these contexts.

Over the years, BSDEs have been extended to accommodate more

complex scenarios, including those involving fractional Brownian motion
(fBm) ( BtH )i>p» Which is characterized by the Hurst parameter H. The fBm

has garnered significant attention due to its ability to model long-range
dependencies and self-similar processes, which are observed in various fields

such as finance, telecommunications, and physics [11-13]. However, since
. . . 1 . .
fBm is not semimartingale when H # —, the classical stochastic calculus

tools, such as the It6 calculus, cannot be directly applied. This presents a
significant mathematical challenge when defining the fractional stochastic

integral, a key component in BSDEs driven by fBm.

To address these challenges, two primary approaches to defining
stochastic integrals with respect to fBm have been developed. The first
approach, the pathwise Riemann-Stieltjes integral introduced by Young [16],
is based on regularity conditions and exhibits properties similar to the
Stratonovich integral. This integral is well-suited for dealing with problems
involving pathwise analysis but can be cumbersome in certain stochastic

contexts due to the need for regularity conditions.
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The second approach, developed by Decreusefond and Ustunel [5],
utilizes the divergence operator, also known as the Skorohod integral, which
is defined within the framework of Malliavin calculus. This method allows
for the definition of an integral with respect to fBm that retains a zero-mean
property, making it more analogous to the It6 integral. The Skorohod integral
is particularly useful in stochastic control and filtering problems, where
anticipative calculus plays a crucial role. These developments have led to a
broader understanding and applicability of BSDEs driven by fBm, as seen in
the work of Hu and Peng [8], who studied BSDEs driven by fBm and

established connections to PDEs.

The mathematical intricacies of fBm-driven BSDEs have further led to
the exploration of new classes of equations. Recently, Aidara and Sagna [1]
introduced BSDEs driven by two mutually independent fractional Brownian
motions with stochastic Lipschitz coefficients. This extension not only
broadens the scope of BSDEs in modeling complex systems with multiple
sources of uncertainty but also poses new challenges in terms of proving
existence and uniqueness results. The interplay between the two fBm
processes introduces additional layers of complexity, particularly in the
analysis of the dependence structure and the handling of non-Markovian

dynamics.

Inspired by these advances, this paper focuses on a more generalized
class of BSDEs, namely fractional generalized BSDEs (FGBSDEs). These
equations extend the classical BSDE framework by incorporating an integral
with respect to a continuous increasing process. This new term adds a
dimension of complexity and richness to the study of BSDEs, as it introduces
a form of path dependency that is not present in standard BSDEs. The
inclusion of this term is motivated by the need to model phenomena where
the stochastic process is influenced by cumulative effects over time, which is

a common scenario in fields such as finance and physics [9].

The FGBSDEs considered in this paper are represented by the following

equations:
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T T
Yy =&+ -[t f(s, ns, Vs, Zyss Zz,s)ds + L g(s, s, Ys)dAg
T Hy T Hy
-| Z,dBY —| Z,4dBy2, tel0,T], (1.1)
t ’ ’ t ’ ’

where {BlHt1 ,te[0,T]} and {BZH 2,te[0, T]} are two mutually independent

fractional Brownian motions, and {A{,t €[0, T]} is a continuous real-

valued increasing process. The novelty of this equation lies in the integral

with respect to A, which introduces a new type of memory effect, reflecting

cumulative influences that grow over time.

This paper aims to explore the existence and uniqueness of solutions to
such FGBSDEs and to establish a comparison theorem. The comparison
theorem 1is particularly important in demonstrating how solutions to
FGBSDEs behave under different initial conditions or parameters, which is
crucial for applications in finance where such equations are used to model

derivative pricing under different market conditions.

Furthermore, we explore the connection between FGBSDEs and
associated partial differential equations (PDEs). This connection underscores
the deep interplay between stochastic analysis and PDEs, a relationship that
has been instrumental in advancing both fields. The study of FGBSDEs also
opens up new avenues for research, particularly in areas where the
cumulative effects and long-range dependencies modeled by fBm and

continuous increasing processes play a crucial role.

In summary, this paper contributes to the growing body of literature on
BSDEs by extending the framework to include fractional generalized
BSDEs, offering new insights into the behavior of such systems under
complex stochastic dynamics. By building on the work of Aidara, Sagna,
Borkowska, and others, we provide a rigorous mathematical treatment of
these equations, with potential applications in various fields where modeling

under uncertainty is paramount.
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2. Preliminaries

2.1. Fractional Stochastic calculus
We assume that there are two mutually independent fractional Brownian

motions B e {BlHl , B;' 2} with Hurst parameter H > %

Let Q be a non-empty set, F a o-algebra of sets Q, P a probability
measure defined on & and {%,t [0, T]} a c-algebra generated by both

fractional Brownian motions.

The triplet (Q, Z, P) defines a probability space and E the

mathematical expectation with respect to the probability measure P.

. . . H . .
The fractional Brownian motion B'' is a zero mean Gaussian process

with the covariance function
E[BHBH] = %(tZH M jtosPY), ts>o.
Denote

ot, s)= H2H - 1)[t-s]?" 72, (t,5) e R%.

Let £ and m be measurable functions on [0, T]. It has been defined that

tet )
€&y = [ [ o v)E@W)dudy and £} = (& )

Note that, for any t € [0, T], (&, ), is a Hilbert scalar product. Let H

be the completion of the set of continuous functions under this Hilbert norm

I-]; and (&n),, be asequence in H such that (§;, &j) = §j;.

Let %H be the set of all polynomials of fractional Brownian motion

(! )iso- Namely, 2 contains all elements of the form
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Flo) = 1{ [} awet!, [ el [ s |

where f is a polynomial function of n variables.

The Malliavin derivative DtH of F is given by

n T T T
DHF = ;%( [, amaf [ emasf. ... | an(t)dBt”]&j(SL

0<s<T.

Now, we introduce the Malliavin ¢ -derivative ]D){_| of F by
H T H
DHF = J . )DL Fas.

We have the following theorem (see [[7], Proposition 6.25]):

Theorem 2.1. Let F : (Q, F, P) -> H be a stochastic processes such
that

TeT
E(" FI2+ j ) j JIDYR |2dsdtJ < 4o,

. T .
Then, the 1t6-Skorohod type stochastic integral denoted by Io FsstH exists

in L2(Q, F, P) and satisfies

-
H
EUO FsdBs j =0 and

T Y 2 (T (T nHepH
E[ j  FotlB! ) - E[” FIB+ J' i J' | DE'FDf Fsdsdt].

Now, we recall the fractional Itd6 formula (see [[6], Theorem 3.1]).

Theorem 2.2. Let oy, 5, € H be deterministic continuous functions.
Denote
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t t Hy t H,
X, = Xq +Ioa(s)ds +J.Ocl(s)dBLS +J.002(s)d82,s,
where X, is a constant, a(t) is a deterministic function with
t
I |a(s)|ds < +oo.
0

Let F(t, x) be continuously differentiable with respect to t and twice

continuously differentiable with respect to x. Then

toF toF
Pt X0) = FO0, Xo) + [ Go(s Xs)ds + [ S (s, Xs)aXs

1(to*F

— d 2 d 2
2J0 o2 (s, Xs)[@” o s +E” o5 ||S}ds, 0<t<T.

Let us finish this section by giving a fractional It6 chain rule (see [[6],
Theorem 3.2]).

Theorem 2.3. Assume that for j =1, 2, the processes p jo O and 9 i

satisfy
T T T
EUO u2j(s)ds + Jo oc2j(s)ds + Io S%(S)ds} < 400,

Suppose that ID)tHlaj(s) and ]D)tHZSj(s) are continuously differentiable with

respect to (s, t) € [0, TP for almost all e Q. Let X and Y; be two

processes satisfying

1,8

t t t
H H
X, = Xo + Ioul(s)ds N joal(s)ds . J.Osl(s)de,g, 0<t<T,

t t t
Y, =Y, + Iouz(s)ds 4 IO ay(s)dBM + joaz(s)dsz'*g, 0<t<T.
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If the following conditions hold:
T T
E{ j | Do (s) |2dsdt} < +o and E[ j | D2, (s) |2dsdt} < 4o
then

t t
XYy = XoYo + IO X (dY + JOYSdXS

t
+ [ fon(9)DENYs + an(5)DE X + 8, (5) DE2Ys + 9,(5)DE X Jds,

which may be written formally as

d(X¢Yy) = X¢dYy + YedXq + [o (DI, + 0 () DI1X,

+9,()DM2y, + 9, (D2 X, ]dt.
2.2. Definitions and notations

Let G be an open connected subset of RY such that for some
re €*RY), G ={x; £(x)> 0} and 8G = {x; £(x) = 0} and |V/(x)| =1
for x € 0G.

Let ng € G and (1, At) be a solution of the following reflected SDE

with respect to fractional Brownian motions

t t t
me=no + [ b(s)ds + [ VAS)dAs + [ oi(s)dByY

Jyocran
+ OGZ(S)dBZ’S’ tel0,T], (2.1)

where the coefficients n, b, o; and o, satisfy:

e 1 is a given constant and b : [0, T] - R is deterministic continuous

function;
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e 61,0,:[0,T] >R are deterministic differentiable continuous

functions and o;(t) # 0, o,(t) # 0 such that
[off =loi[f +1o2F. teo.T] 22)

where

tpet L .
loi I} = Hi2H; —l)jojo|“ ~v[PMi72 6 (U)o (v)dudv, i = 1, 2.

T
e A is a nondecreasing process, Ay = 0, and J-O (nt —a)dA; <0 for
any a € G.
The next Remark will be useful in the sequel.

Remark 2.4. For i =1, 2, the function |c |t2 defined by equation (2.2)

is continuously differentiable with respect to t on [0, T], and for a suitable

constant Cy > 0,

tei[%fT] 2—: 23 > C,, where 6j(t) = J.(: o(t, v)oj(v)dv.

Given £ a measurable real valued random variable and the functions
f:Ox[0,T]JxRxRxRxR >R, g:Qx[0,T]xRxR — R,

we consider the following GFBSDE with parameters (&, f, g, A):

T T
Yi =&+ J.t f(s, s, Ys» 215, Zp,5)ds + Jt g(s, s, Ys)dAg

T T
H H
—It 7, B! —Jt Z,50B5'2, teo, Tl 2.3)

Before giving the definition of the solution for the above equation, we

introduce the following (where p, p > 0):
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. ‘K;ﬁ ([0, T]x R) is the space of all €2 -functions over [0, T]x R,
which together with their derivatives are of polynomial growth,

Vo,1] = {Y =y, n);ye ‘5;6%([0, T]xR), %V is bounded, t € [0, T]},

. ]N}[%),T] and 17(2[(”]’ A) are the completions of Vjo 1] under the following

norms, respectively,

.
IY 2, =E| e"*PM|y,[2dt and

V[2 ] 0 t

0,T

.

2 t+BA 2
VI, <[, e Pan

([0,T],A)

« (0, T} A) = 11N Vo 11.4)) % Vio71 % Vig,7) endowed with

the norm

2
" (Y, Zla ZZ)HQZ([O,T], A)

T T
- E[ [, PN P dag + [ e N 20 P 4] 2o, |2)dt}.

Note that &>([0, T], A) is a Banach space (see, [2, 3]).

Definition 2.5. A triplet of processes (Y, Zj 1, Zy t)g<t<7 i called a
solution to fractional GBSDE (2.3), if (Y;, Zy 1, Z2.t)o<t<T € B%([0,T] A)
and satisfies equation (2.3).

The next proposition will be useful in the sequel.

Proposition 2.6. Let (Y, Z) 1, Z5 t)g<t<T € 2*([0, T], A) be a solution
of the fractional GBSDE (2.3). Then almost for all t € [0, T ],
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Hiy _ 61 Hyy _ Go(t)
]D)t Yt = Gl(t) Zl,t and Dt Yt = Gz(t) Zz’t.

3. Fractional GBSDE

3.1. Existence and uniqueness of solution

We assume that the coefficients f and g of the GFBSDE and § satisfy the

following assumptions:

(H1) & =h(ny), where h: R — R is a differentiable function and

E[e"T PAT | &1 ] < +oo.
(H2) There exists a constant K > 0 such that forall t € [0, T], x € R,
(y,y) e R?, (z,71) € R?, (25, 25) € R?,
[ ]
’ ! ’ 2
| f(t %, y, 21, 20)— f(t, x, ¥, 71, 25)|
12 12 12
<SK(Iy=-yI +lz -z +[zn-25[);
n |12 12
.|g(ta X, y)_g(ta X, y)| s K|y_y | .
We first establish a priori estimate on the solution.

Proposition 3.1. Under the conditions (H1) and (H2), if (Y, Z;, Z,)

€ %2([0, T], A) is a solution of equation (2.3), then there exists a constant
Csuch that, forall t € [0, T],

:
E(e”HBAHYt *+ j e PAs|vg 2(ds + dAg)
t

T T
+ L eHsThAs| Zy.s *ds + L eHsThAs| Zys |2dsj
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.
< CE(eWBAT & P+ j t e"StPAs| £(s, 1, 0,0, 0)ds

.
+j e"SPAs| g(s, m, 0) |2dAsj.
t

Proof. By C we will denote a constant which may vary from line to line.

From the It6 formula,

.
= M HPAT | §|2 + ZJ. eusJrBAS'Ys f(s, nss Ys» Z1,s> Z2,5) 08
. ;55 £2,
T Ls+pA T Ls+BA H
+ 2_[ e">TPRsY g(s, ng, Ys)dAg — 2_[ et TPRs 7z, Dg'1Y ds
t t :
T Ls+pA H T Ls+pA H
2 J' e"stPAsz. pHay gs 2j e's+PAsy 7, dBM!
t ) t s N

T T
- 2J.t 6“S+BASYSZZ,SdBZ|:|§ - “Jt eHS+[3As|YS |2dS

T
S+BA 2
_BL e PAs v, PdAs.
Taking mathematical expectation on both sides, we have

.

E[e“”“tl Vel [ eS| v, P uds + aAg)
.

+ 2L e"s*Phs () (DEY + 22,511))?2\(5)(15}

.
_ E{e”T”LBAT e + 2j eHSTBASY £ (s, g, Vs, Zy1 s, 25 5)dS
. , ,
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.
+ ZL MBSy g(s, n, Ys)dAs}
T us+pAg Hy T us+BAs H»
_2E j e Yoz, <08 + J' e YsZ, sdB2 |
T .
Using the fact that E_[t e”S+BASYSZi,SdBi'jS' = 0, we deduce
T
E{e”HBAH Y[ + j t eHSTPAs |y, 2 (uds + BdA)
T us+pA H H
t 2j e"stPAs 7, DMy, 1z, DH2Y,)ds
t s’ 1)
.
= E{eHHBAT e + 2L M PASY F (s, Mg, Vs, Zy . Z5 )OS
T is+BAs
+ ZJ.t e Y<9(s, ng, Ys)dAg |.

It is known that, by Proposition 2.6, D?lYS = gl(s) Z; s and ]D)HZY
18

—==<7Z5 5. By Remark 2.4, we obtain

E{e“HBAW Y [P+ j tT eHSPAs| v¢ |2 (uds + BdAg)

F20of @ 2, P 4 2 P

< E[e“T+BAT e + 2LT e"StPASY £ (s, g, Vs, Z1ss Zo.5)ds

+2f tT e PAsy (s, ns, Ys)dAS} 3.1)
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Using standard estimates 2ab < Aa® + %bz (where A > 0) and

assumption (H2), we obtain

.
. 2]<]jt eHSTPASY £ (s, mg, Vs, Zs, 2y )ds

T
<2E[ e PNV F(s. g Vs, 216, Z2.)
t 2 b
- f(S, nS’ 09 0’ O) | +| f(s’ n89 Oa 09 O)l)ds

2 T
< K 2n +k2k EI eHStPAs v |2 ds
t

K T
o Ef @S2 P v 255 s

;
# 5[ eS| 1(s,ng. 0.0, 0)ds

T
. 2EJ‘t e”S+BASYSg(s, Ns, Ys)dAg

T
< ZEIt eHS+BAS|YS |(| g(S, nSa YS) - g(S, T]5a O)l + | g(S, T]5a O)DdAS

2 T
< %EJ‘ eHS+BAs|YS |2dAs
t

T
+ %EL et ™PAs| g(s, 0) PdA,.

K + 233 + 4
Ao

K +7\,0
Mg

Choosing A = A such that p, > and Cj =

we deduce from (3.1),
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.
E[e“t+BAt|Yt ? + j t e"StPAs| v( 12 (ds + dA)
T ls+pA 2 2
S RGN E R PN T
T
<CB T I o [T eI £(s g, 0,0,0) e

T
+J ehSPAs| g(s, 0) |2dAS}. O
t

The main result of this subsection is the following theorem:

Theorem 3.2. Assume that the assumptions (H1) and (H2) are true.
Then the fractional GBSDE (2.3) has a unique solution

(Yt’ Zl,t’ ZZ,t)Ogth € %2([0’ T]: A)

Proof. Consider the mapping I': 82([0,T], A)— %%([0,T], A) driven
by (U,V,V,)—> TU,V,Vy)=(Y, Z;,Z,). We will show that the
mapping I is a contraction, where (Y, Z;, Z,) is a solution of the following

fractional GBSDE:

T T
Yi =&+ J‘t f(s, s, Us, Viss V2,s)d5 + L g(s, Ms, Ug)dAg

T T
H H
_It 2, B! —jt Z, 50852, telo, Tl (3.2)

Define for a process & e {U,V,V,, Y, Z;,2Z,},8=38-38 and the

functions:
Af (S) = f(S, Ms» YS’ ZI,S’ ZZ,S) - f(S, MNs> YSI’ Zl,,s’ Zé,s)’

Ag(S) = g(S, MNs> YS) - g(S, MNs> YSf)
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Then, the triplet (Y, Z;, Z,) solves the fractional GBSDE:
_ T T T_ H
v, = L Af(3)ds + jt Ag(s)dA _L 7,508/
T oH
[ Z82 teloT]
t 4 s

Applying Ito formula to e***P At| Y |2 , we obtain that

_ T _ T _
etBAY ;2 = 2jt e PASY Af (s)ds + 2It e"HPASY Ag(s)dA,
T us+BAss  mHIy T us+BAs7  mHoy
—2J.t e Zy sDg stS—z_l.t e Z;, sDg 2Ysds
T us+pAgy 7 H; T us+BAsy 7 H>
_QIt e YsZ1,50B; g —2It e YsZ3,50B;

T _ T _
—nf eS| Y Ps - B[ et PAs| ¥ Paa,
t t
Taking mathematical expectation on both sides, we have

_ T _
E[e“”“tl VP e PRV, P uds + o)
T _ _ _ _
+2 j etSHPAs(Z, DY, + Z, SID)yzYS)ds}
t 9 bl

T _ T _
= ZEUt eHSTPASY AF (s)ds + jt e”s+BASYsAg(s)dAs}.
By the same computations as in Proposition 3.1, we deduce that

— T Va
B eI TP [, P 21 + (-2

T _ —
2o @ 2, P o 2y P
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Kol (7 usepag it 2 T stBAsqo 2 1T 12
<5 E € |Ug [“(ds+dAg)+ € (Vis|"+[Vas[)ds|,

te[0,T]. (3.3)

Taking A = X such that %min{u —ho» B—1ho} = 2C, = we get

4K
3
T S+BAg| v |2 T S+BAg1 7 |2
EJ et PR Y | (ds+dAS)+I et PR Z, < [ds
t t :
T S+BAg| 7 2
+f e Z, ¢ Pas

T _ T _
< %E[L eHS™PAs| Oy [2(ds + dA) +J ehsPAs | ¢ PPds
t 2

T _
+ L eSHPAS |\ |2ds} tel0,T]

Thus, the mapping (U, Vi, Vo) > T(U, V}, V,) = (Y, Z;, Z,) determined by
the fractional GBSDE (2.3) is a strict contraction on &2([0, T], A). Using
the fixed point principle, we deduce that the solution to the fractional
GBSDE (2.3) exists and is unique. This completes the proof. O
3.2. Comparison theorem

In this subsection, our objective is to establish the comparison theorem
for the following fractional GBSDEs, for all t € [0, T ],
1,s°

. . T . . . . T . .
Yt(l) = hl(nT)+ Jt f'(s, Ns> Ys(l)’ z{') Zg,)s)ds + L g'(s, Ns» Ys(l))dAs

T T
—L z{JaBth —jt z{) B>, (3.4)
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where i =1,2. By Theorem 3.2, equation (3.4) has a unique solution

(Y (), Zl(i)= zgi)) e B*([0,T], A).

Now, we give a comparison theorem of GBSDEs under Lipschitz

assumptions.

Theorem 3.3. For i = 1, 2, assume that f! and gi satisfy (H1). Let h'

be continuously differentiable. Let (Y 1), Zl(i), Zg)) be solutions of fractional

GBSDEs (3.4) respectively. Suppose that:

() h'(nr) = h*(nr), as;

(i) Forall t € [0, T],
1 me Y,z 20D = 12 e Y,z Z8) or
e 2, 2R, 23 = 12, P, 2, 2) as.
iiiy Forall t € [0, T], g'(t, ne, YY) = g2(t, e, Vi), or

gl(ta Nt» Yt(z)) 2 gz(t, Nt» Yt(z)) as.
Then

Proof. Forall t € [0, T], we denote

2 2 1 5 2 1 5 2 1
Yo=Y -y, 7, = zl(,t) - zl(t) 2y = zgg - z§{

h(nr) = h*(nr) = h'(nr);

Af(t) = £2(t, ne (2, 23, 22 - £t e Y,z 20,

Ag(t) = gz(t’ MNt> Yt(2)) - gl(t’ MNt> Yt(l))
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Then (Y, Z;, Z,) satisfies

.. T T T, . n
Y, = h(nr) + J't Af (s)ds + L Ag(s)olz\s_[t 7, B

"7, Bt
- 5 sdBg 4, efo, T]. 3.9
t b
Applying the extension of the It6 formula to e"'*P At| A |2, we have
n T o
B I P [ A s + pany)
T Ls+PAs N I
+ 2C0It e Ly oo Zis |7 +[ 22,5 [)ds
T us+BAgy; + T us+PAgy +
< 2EL e Y Af (s)ds + 2EIt e Y& Ag(s)dAs. (3.6)

In view of (H1) and (ii), Young’s inequality and Jensen’s inequality, for any

A > 0, we have:

T .
ZEJ eHSHPASYF AT (s)ds
t

T A
— ZE(J‘t eHS+BAsYS+(f2(t’ Nt Yt(z), Zl(’zt)’ Zé’zt))
- fl(t’ MNt» Yt(l)’ Zl(,lt)’ Zé}%))ds )
Lt

T ~
< 2E‘[ e“S+BASYS+(f2(t, N, Yt(2)7 2(2) Zézt))
‘ s

- 12t e Y, 28, Z8))ds
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2 T .
<M +K ;: K EI e”S+BAS| Ve Pds
t

KT A )
o] PG 0 Zys P el 2y Pas

T .
ZEJ‘t eFSHPASY FAs(s)dA
T .
- 2E.[t euS+BASYs+(g2(t, Nt Yt(Z)) -g'(t, Nt» Yt(l)))dAs

T N
< 2EI e“S+BA5YS+(gz(t, Nt» Yt(z)) - gQ(t, Ni> Yt(l)))dAs
t

2 T .
<X ;K EJ' eHSHBAS| Y 2dA,.
t

Then, due to the above inequalities, we obtain
n T n
E{e“”ﬁl\q ‘AL +j eHSTPAS| Ve 2 (uds + BdA)
t
-
A 5 2 5 2
o N R E S
2 T .
MK ; K EJ eHSTPAS| Ve 12 (ds + dAs)
t
KT A s 2.5 P
+7J't Pty o Zis P+ | Zas P)ds. (3.7)

23+ K

Choosing A = Ao such that min{u, B} > and Ay > we

K
2C,

have
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E[e"™PAY YT P1<0, telo, T]
This implies
v >y, as, telo, T].
This completes the proof of the theorem.

3.3. Connection with partial differential equations

Consider the following fractional GBSDEs:

dYt = _f(t9 Nt» Yta Zl,ta Z2,t)dt - g(t’ Nt Yt)dAt
+2, B + 7, (B2
YT =¢&1.

Denote

~ d d
50 = | gsllon 2+ ggloz 12|
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(3.8)

Then the function u(t, X) satisfies the following partial differential

equation (PDE in short):

Ui, X) + 3 SOUR (L X) + O, X)

+ f(t, X, u(t, x), o7(t)uy(t, x), oo (t)uy(t, x)) = 0;
VIt uy(t, x) + g(t, x, u(t, x)) = 0;
u(T, x) = h(x).

Now, we have the following theorem:

(3.9)

Theorem 3.4. If the PDE (3.9) has a solution u(t, x) which is

continuously differentiable in t and twice is continuously differentiable in x,

then

(Yt’ Zl,t’ ZZ,t) = (U(t, nt)a Gl(t)u;((t’ nt)’ GZ(t)u;((t’ nt))

satisfies the fractional GBSDE (3.8).
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Proof. From the fractional It6 formula (Theorem 2.2), we get

du(t, np) = uf(t, e )dt + uj(t, ) [b(t)dt + VA dA, + oy (t)dB/ Y
+ 0y (1)dBYZ ]+ 2 B0 U (¢, ny)dlt
U )+ DO ) + 5 Ot o)
+ Uy (t, n) VA dA + o (t)uy(t, 1) dB;

' H
+ op(t)uy(t, n)dB, .
Since u(t, X) satisfies the PDE (3.9), we have
dut, ne) = —f(t, ng, u(t, np), o (OUK(E M), oo (t)ui(t, my))dt

— g(t, n, u(t, n))dA; + oy (£ U (t, ) dBy

' H
+ oy (DU (t, nt)de,tz.
Thus, the proof is complete. n

Remark 3.5. From the above proof, we also see that if the nonlinear
partial differential equation (3.9) has a unique solution, then the fractional
generalized backward stochastic differential equation (3.8) also has a unique
solution.

3.4. Application in physics: modeling heat transfer in composite
materials

**Context:** Heat transfer in composite materials, where different layers
of materials are combined to create a system with unique thermal properties,
is a key area of applied physics. These materials can exhibit long-term
dependency behaviors and memory effects, particularly in systems where
thermal conductivity varies complexly with time and space, such as in
materials exposed to fluctuating thermal conditions or extreme environments.
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**Modeling with FGBSDEs:** Fractional generalized BSDEs
(FGBSDEs) can be used to model heat diffusion in these composite systems,
accounting for both non-Markovian stochastic processes (modeled by
fractional Brownian motions) and cumulative effects (modeled by a

continuous increasing process). In this application, the two fractional

Brownian motions BlHt1 and B; % represent temperature fluctuations within

different layers of the material, each characterized by a Hurst parameter H;
or H,, reflecting the roughness and long-term correlations of the thermal

diffusion processes.

The FGBSDE equation takes the following form to model the

temperature Y; at a given time t:

T T
Yi =&+ It f(s, s, Vs, Zys, Zz,s)ds + Jt 9(s, s, Ys)dAg
T T
_L AR —L Z, 50B}2. (3.10)
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