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Abstract 

A new study has been developed that considers the size-dependent 

interaction between viscoelastic deformation and thermal fields, 

incorporating the fractional heat conduction law with and without 

energy dissipation. The model is used for a particular one-dimensional 

problem involving a polymer micro-rod of arbitrary length 

experiencing three different types of thermal loading without the 

presence of any heat source. The study uses Laplace transforms and 

numerical inversion to examine how fractional order, nonlocal 

elasticity, and nonlocal thermal conduction impact thermal dispersion 

and thermo-viscoelastic response. Comparative numbers demonstrate 

the effects of various parameters. Findings demonstrate that nonlocal 

thermal and viscoelastic characteristics have a significant impact on all 

recorded field values, offering possible suggestions for the creation 

and assessment of thermal-mechanical attributes in nanoscale devices. 

List of Symbols 

µλ,  Lame’s constants 

ρ  Density 

t Time 
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T Absolute temperature 

0T  Reference temperature so that 100 ≪TTT −  

EC  Specific heat at constant strain 

ijσ  Components of stress tensor 

ijε  Components of strain tensor 

ije  Components of strain deviator tensor 

iu  Components of displacement vector 

iq  Components of heat flux vector 

k Thermal conductivity 

e Dilatation 

tα  Coefficient of linear thermal expansion 

Q Strength of the heat source 

2
0C  ρ= 0K  

γ  tK α= 02  

0K  ,
3

2 µ+λ=  bulk modulus 

0T  γδρ= 0
2
0C  

0η  kCEρ=  

ε  ,0 ECργδ=  thermal coupling parameter 

υττ ,0  Relaxation times 

0δ  Non-dimensional constant 

( )tR  Relaxation function 
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ijδ  Kronecker delta function 

A,, ∗∗ βα  Empirical constants 

ζξ,  Nonlocal parameters 

βα,  Fractional orders 

1. Introduction 

Nanostructural materials exhibit a high degree of versatility across a 

range of temperatures. However, the challenge of engineering at scales 

involving significant geographical and temporal dimensions is frequently 

linked to heat conduction processes. According to the classical theory of 

uncoupled thermoelasticity, two phenomena have been postulated that do not 

conform to empirical observations: a parabolic heat equation characterized 

by infinite propagation rates of heat waves, and a conduction equation 

devoid of elastic terms, as suggested by Nowinski [1]. 

To address the incongruity between the classical theory and empirical 

observations, Biot [2] introduced the concept of coupled thermoelasticity 

theory. Despite this advancement, the theory encountered a second issue         

due to the presence of mixed parabolic-hyperbolic heat equations. Various 

generalizations have since been proposed to overcome these challenges. 

Notably, the Cattaneo [3] heat conduction equation stands out for its 

simplicity, offering a finite propagation speed based on the Fourier law, 

which it successfully replaces. Lord and Shulman (LS) [4] advanced the 

theory with an extended form known as homogeneous elastic media theory, 

incorporating a relaxation time (LS) to modify the Fourier law, as outlined 

by Cattaneo’s framework. 

The application of these generalized theories to practical scenarios is 

explored in Kaminski’s [5] publication. Theoretical research has also     

made significant contributions to the field, such as the demonstration of 

uniqueness theorems under different conditions by Ignaczak [6], Sherief and 

Dhalival [7], Ezzat and El-Karamany [8], and Sur [9]. The Green and Naghdi 
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(GN-II) paper, published in [10], delves into the delineation of criteria 

necessary for the application of unequal entropy output in the formulation of 

governing equations, subsequently examining the outcomes across various 

categories of classical thermoelasticity. Within the realm of thermoelastic 

theory devoid of energy dissipation, Chandrasekharaiah [11] presented a 

theorem establishing uniqueness. Furthermore, El-Karamany and Ezzat         

[12] alongside Lata [13], and Lata and Kaur [14] have made significant 

contributions to the advancement of a generalized Green-Naghdi theory of 

thermoelasticity, alluding to its application without energy dissipation. 

In recent years, there has been an expanding array of physical 

phenomena that have been described utilizing fractional calculus. Ezzat        

[15, 16] has employed the Taylor’s series expansion of time-fractional           

order, as introduced by Jumarie [17], to develop a fractional model              

for heat conduction within magneto-thermoelasticity theories and 

magnetohydrodynamics. Within the realm of continuum mechanics, an 

increasing number of fractional models have emerged from scholars such as 

Yu et al. [18], Ezzat et al. [19, 20], El-Attar et al. [21], Amin et al. [22], and 

Yang [23]. This presentation aims to provide a comprehensive review of        

the presentation of general fractional derivatives as a means to facilitate 

understanding within this area of research. 

Viscoelastic materials are becoming a popular topic in engineering due 

to their outstanding rheological properties by nature Meyers and Chawla 

[24]. Significant progress has been made thus far in the viscoelastic theory of 

the static and dynamic reactions of viscoelastic structures, we refer to Ezzat 

[25, 26] and El Sherif et al. [27] for details. Viscoelastic nanomaterials, 

characterized by their exceptional mechanical, thermal, and chemical 

properties, have been identified as a prime candidate for the development of 

nanodevices by Shi et al. [28]. Concurrently, their diminutive size and 

robustness have led to their extensive application as resonators in 

micro/nano structures by Eom et al. [29], Currano et al. [30], and others. 

Furthermore, these materials have played a crucial role in the advancement 

of micro/nano-electromechanical systems (MEMSs/NEMSs), as evidenced 
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by the contributions of Toril et al. [31] and Abouelregal and Marin [32]. 

Within the realm of micro/nano engineering, viscoelastic micro/nano 

structures have been employed in MEMSs/NEMSs for the purpose                   

of dissipating vibrational energy. To date, a plethora of research has              

been conducted on the viscoelastic behaviors of micro/nano structures, 

encompassing dynamic response (Lyu et al. [33]), bending (Sobhy and 

Zenkour [34]), and vibration (Attia and Abdel Rahman [35]). 

The challenge of maintaining precise control at the nanoscale level          

has led to a common occurrence of experimental findings on viscoelastic 

nanomaterials being marred by notable limitations. Furthermore, there            

is a notable inconsistency among experimental reports regarding the 

performance of materials under slightly varied test conditions. To mitigate 

these issues, it is recommended that theoretical modeling approaches be 

employed to offer fresh perspectives and foundational principles for the 

thermal management of viscoelastic nanocomposites. Additionally, a 

comprehensive understanding of thermo-viscoelastic interactions at the 

nanoscale is essential, as demonstrated by Yang and Chen [36]. 

In the pursuit of enhanced performance within engineering applications, 

subjected to increasingly severe loads and climatic conditions, there is a 

significant demand for materials based on polymers. For instance, 

polyimides, renowned for their exceptional mechanical properties across a 

wide temperature range, are regarded as among the most critical materials        

in the aerospace sector, as highlighted by Ferry [37]. Conversely, the 

phenomenon of thermoelastic coupling, particularly in the context of heat 

conduction and deformation, is seldom observed. Consequently, there is an 

urgent need for a comprehensive theoretical framework that elucidates the 

interaction between these two fields, specifically in terms of displacement 

and temperature, or stress and heat flow. The primary objective of this 

research is to address this gap, as evidenced by the references provided (Lata 

and Singh [38], and Ezzat et al. [39]). 
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2. Mathematical Modeling 

The governing equations for a thermo-viscoelastic media, devoid of any 

heat source, can be delineated as follows, incorporating both the spatial 

nonlocal effects of viscoelastic deformation and heat transmission: 

(1) Equation of motion: 

 .
2

2

,
t

ui
jij

∂
∂ρ=σ  (1) 

(2) Kinematic relation: 

 ( ).
2

1
,, ijjiij uu +=ε  (2) 

(3) Nonlocal stress-strain-temperature relations, Yang and Chen [36]: 

( ) ( ) ,
3

1 0
22

ijijkkij
kk

ijij KtR γθδ−δε+





 δε−ε=σ∇ξ−  (3) 

where 0TT −=θ  and ,1
0
≪

T

θ
 

 ( ) ( ) ,20,12
0

1 µ=




 −µ= 
−αβ− ∗∗

RdtteAtR
t

t  (4) 

and 

( )
( ) ( ) .0,0,0,0,10 <>

αΓ
β<≤>β<α< ∗

∗
∗∗

tR
dt

d
tRA  

(4) Nonlocal fractional heat equation with and without energy 

dissipation (Hassaballa et al. [40]): 

( ) .1,0,
!

11 0
022

, ≤βα<






∂
∂γ+∂

θ∂ρ










∂
∂
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∂
∂τ=θ α
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β

β
β
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(5) The fractional heat flux: 

( ) .1,0,1
!

1 ,
220 ≤βα<−=∇ζ−











∂
∂

α
τ+

∂
∂τ α

αα

β

β
β
υ jiji Tkq

tt
 (6) 

The equations use a comma for material derivatives, following the 

summation convention. 

The preceding equations form an elaborate framework encompassing the 

nonlocal fractional thermo-viscoelasticity model, including scenarios with 

and without the presence of energy dissipation. 

The research delves into the study of thermo-viscoelastic materials, 

concentrating on one-dimensional scenarios where the characteristics of  

features are influenced by factors such as space ( )x  and time ( ).t  It explores 

various aspects related to the displacement components: 

 ( ) .0,0,, === zyx uutxuu  (7) 

The strain-displacement relation: 

 .
x

u
e ∂

∂=  (8) 

The displacement equation: 

 .
2

2

t

u

x ∂
∂ρ=∂

σ∂
 (9) 

The constitutive equation: 

 .
3

2
1 02

2
2 γθ−∂

∂






 +=σ





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
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x
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x
 (10) 

The energy equation: 


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The heat flux equation: 

 .1,0,1
!

1
2

2
20 ≤βα<∂

θ∂−=







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∂ζ−


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




∂
∂

α
τ+

∂
∂τ α

αα

β

β
β
υ x

q
xtt

 (12) 

The above equations allow us to present the non-dimensional variables 

that follow: 

( ) ( ) ,,,,,,,, 0
2
0100 tCtuxCux η=ζξη=ζξ ∗∗∗∗∗  

.
3

2
,,,

1

000000
R
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Rq
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KK
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In non-dimensional form, equations (8)-(12) become 
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3. Limitative Situations of a Nonlocal Systematical Formulation 

   (i) The system of equations (13)-(18) in the limiting case ,2µ=R          

and ,0,,, →ζξβα  transforms to the work of Biot [2] in the coupled 

thermoelasticity theory. 

  (ii) The system of equations (13)-(18) in the limiting case ,0>R  and 

,0,,, →ξζβα  coupled thermo-viscoelasticity (CTV) transforms to the 

work of Gross [41] in the coupled thermo-viscoelasticity theory ignoring the 

rheological volume properties. 

 (iii) The system of equations (13)-(18) in the limiting case ,2µ=R  

,1=α  ,0=β  and 0, →ζξ  transforms to the work of Lord and Shulman 

[4] in the generalized thermoelasticity theory with thermal relaxation. 

 (iv) The system of equations (13)-(18) in the limiting case ,2µ=R  

,1=β  and ,0,, →ζξα  transforms to the work of Green and Naghdi [10] 

in the generalized thermoelasticity theory without energy dissipation. 

  (v) The system of equations (13)-(18) in the limiting case ,2µ=R  

0, →βα  and ,0, >ζξ  transforms to the work of Yu et al. [18] in the 

nonlocal thermoelasticity theory. 

 (vi) The system of equations (13)-(18) in the limiting case ,0=β=α  

,0>R  and ,0, >ζξ  transforms to the work of Yang and Chen [36] in 

nonlocal thermo-viscoelasticity theory. 

(vii) The system of equations (13)-(18) in the case, ,1,,,0 ≤ζξβα<   

provides result for the nonlocal fractional thermo-viscoelasticity theories 

with and without energy dissipation. 

4. Model Construction in the Laplace Transforms Domain 

The expression that specifies the parameter s for the Laplace transform 

is 
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( ){ } ( ) ( )

{ ( )} ( ){ }
0,0 >








=

== 
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dttgesgtgL
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, 

for equations (13)-(18), and with the uniform starting conditions, we obtain 

the following interconnected system of equations: 

,uDe =  (19) 

,2
usD =σ  (20) 

( ) ( ) ,11 22 θ−+=σξ− uDRD  (21) 

 ( ) ( ),1 222
uDDD ε+θζ−ω=θ  (22) 

( ) ,1 22
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Merging the previous equations results in a system made up of the two 

equations provided below: 

,21
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5. Application: A Polymer Micro-rod Subjected to 

Different Types of Thermal Loading 

Consider a homogeneous, isotropic, thermo-viscoelastic polymer micro-

rod with a small length 0ℓ  with a left end surface free of traction and a base 

supporting its right end surface. The coordinate axes are chosen with an           

x-directional action on the mid-plane at ,0=x  as shown in Figure 1. 

 

Figure 1. Schematic of a polymer micro-rod problem. 

The mechanical boundary conditions can be expressed as: 

( ) ,0,0 =σ t  or ( ) ,0,0 =σ s  (27) 

 ( ) ,0,0 =tu ℓ  or ( ) .0,0 =su ℓ  (28) 

The thermal boundary conditions are assumed to be 

 ( ) ( ),,0 tgt =θ  or ( ) ( ),,0 sgs =θ  (29) 

( ) ,0,0 =tq ℓ  or ( ) ,0,0 =sq ℓ  (30) 

where q represents the components of the heat flux vector perpendicular        

to the surface pole. Condition (29) shows the thermal load at the left end at 

time ,0=t  while condition (30) shows the heat input at the right end. 

From equation (23), condition (30) reduces to: 

 ( ) .0,0 =θ′ sℓ  (31) 

By substituting equations (27) and (29) into equation (21), we have 

( ) ( ).,0 2 sgsu β=′  (32) 

For a bounded region, the general solution of equation (25) is considered 

to be 

( ) ,sinhcoshsinhcosh, 2211 xkDxkCxkBxkAsxu +++=  (33) 

where the parameters A, B, C and D are influenced by x and s. 
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From equations (25) and (33), we obtain 

( ) ( ) ( )xkBxkA
k

k
sx 11

12

1
2
1 coshsinh, +β

β−=θ  

( ) ( ).coshsinh 22
22

1
2
2 xkDxkC

k

k +β
β−+  (34) 

Using the boundary conditions (27)-(32) in equations (33) and (34), we 

get 

( ) ( ),,tanh
2
2

2
1

12
012

2
2
1

12 sg
kk

k
Bksg

kk

k
A

−
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−
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2

2
1

22
022

2
2
1

22 sg
kk
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Dksg
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C
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β−=

−
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By using equation (25), equations (33) and (34) yield to 
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The form of the stress field can be obtained from equations (20) and (36), as 

( ) ( ) ( ) ( )
.
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cosh

cosh

cosh
,

02

02
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01
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2
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2
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To obtain complete solutions in the Laplace transform domain, we must 

determine the function ( )sg  and consider the following three types of 

thermal loading: 

Case (i). Thermal shock 

( ) ( ) ω≥ω−= ttHtg ,  or ( ) .0

s

e
sg

sω−θ=  (39) 
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Case (ii). Uniformly laser pulse irradiation 

( ) 0,
16 3

2

≥=
−

te
t

t
tg pt

t

p

 or ( )
( )

.
18

1
3+

=
pst

sg  (40) 

Case (iii). Harmonic thermal heat 

( ) 0,sin0 ≥θ= twttg  or ( ) ,
22

0

ws
sg

−
θ=  (41) 

where ω  is the thermal shock parameter, pt  is the time duration of a laser 

pulse, w is the angular thermal parameter, and 0θ  is a constant. 

6. Numerical Results 

This study employs a nonlocal systematical formulation to establish the 

size-dependent relationship between viscoelastic deformation and thermal 

fields in a thermo-viscoelastic solid setting. 

The Laplace transform in equations (36)-(38) is inverted using a Fourier 

series expansion method proposed by Honig and Hirdes [42]. Five-digit 

accuracy was ensured by using the Fortran 77 computer language to 

construct the numerical code. 

We take into consideration the qualities of a polymethyl methacrylate 

(Plexiglas) material in order to comprehend the numerical computations. The 

values of physical constants are displayed in the following table: 

Table 1. The parameters of polymethyl methacrylate (Plexiglas) are given as 

in Ezzat [43] 

33 mkg1065.2 ×=ρ  KmN1016.1 26×=γ  mKW4.1=k  

K370Pa,107.3 0
10

0 =×= TK  GPa87.15=λ  GPa26.31=µ  

mF10392.0 10−×=ε  ( )kgKJ670=EC  K1105.5 7−×=αT  

The calculations were done for multiple nonlocal parameters ( ),, ζξ  

fractional order ( ),, βα  speed of a moving heat source ( ),v  thermal shock 
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time parameter ( ),ω  time duration of a laser pulse ( )pt  and angular thermal 

parameter ( ).w  The numerically estimated non-dimensional temperature, 

displacement and stress at different points of x are displayed in Figures 2-8 

for Problem (I) and Figures 9-10 for problem (II). 

6.1. Verification procedure 

The model predictions are compared with El-Karamany and Ezzat [12] 

in the absence of nonlocal effects for Case (i) in Figure 2. The starting and 

stopping conditions are identical to those in that reference. The results due to 

the classical theory (CTV) with the generalized Green-Naghdi theory of 

Type II (GN-II) are illustrated. Figure 2 demonstrates that the solution for 

1≈β  resembles the generalized thermo-viscoelasticity theory, indicating 

that the new theory may maintain the finite wave velocity advantage (Sherief 

and Abd El-Latief [44]). 

 

Figure 2. The variation of the temperature against distance for different 

theories. 

6.2. The effect of fractional order ( )βα,  on all fields for Case (i) 

Figures 3-5 display the spatial variations of temperature, displacement, 

and stress at different fractional order values. The solutions obtained from 
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coupled thermo-viscoelasticity ( ,0=β=α  ,0>R  and ,0=ζ=ξ  ),CTV  

and generalized theory of thermo-viscoelasticity without energy dissipation 

( ,0=α  ,1=β  ,0>R  and ,0=ζ=ξ  )II-GN  are represented by dashed 

and dotted lines, respectively. The investigation results of the new model for 

fractional Green-Naghdi-II without energy dissipation in thermo-viscoelastic 

material ( ,0=α  ,2.0=β  ,0>R  and ,0=ζ=ξ  )II-FGN  are depicted 

using solid lines. The study revealed that temperature fields are influenced 

by β  delay and decrease as parameter estimation increases in polymer 

micro-rod. The increase in fractional order leads to a greater displacement 

distribution and a decrease in the stress field at a certain distance x. 

 

Figure 3. The variation of the temperature against distance for different 

theories. 
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Figure 4. The variation of the displacement against distance for different 

theories. 

 

Figure 5. The variation of the stress against distance for different theories. 
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6.3. The effect of nonlocal parameters ( )ξζ,  on all fields for Case (i) 

 

Figure 6. The effects of thermal nonlocal parameter on temperature 

distribution. 

Figure 6 illustrates the influence of the nonlocal thermal parameter 

( )25.0,1.0=ζ  on the temperature distribution. The increase in this 

parameter leads to a rise in temperature field. Thermal waves are reaching a 

stable state based on the values of the nonlocal thermal parameter ,ζ  this 

indicates that the particles rapidly exchange heat with one another, resulting 

in a faster cooling of the temperature than the rest. Additionally, we 

observed that at 1.0=ζ  compared to ,25.0=ζ  the thermal waves in these 

photos appear to cut the x-axis faster. The displacement and stress field 

curves predicted by two distinct values of elastic nonlocal parameter 

( )2.0,1.0=ξ  are shown in Figures 7 and 8. The displacement and stress 

rise at first and then gradually decrease to zero as the distance 

( )5.10 ≤≤ xx  increases. In polymer micro-rod, when ξ  is raised from 0.1 

to 0.2, the displacement and stress field rise which are significantly 

influenced by the factor .ξ  
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Figure 7. The effects of elastic nonlocal parameter on displacement 

distribution. 

 

Figure 8. The effects of elastic nonlocal parameter on stress distribution. 
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6.4. The effect of time duration of a laser pulse pt  on temperature field 

for Case (ii) 

Figure 9 shows the temperature distribution for ,2.0=α  3.0=β  (FGN-

II) and 15.0=ξ=ζ  when 15.0=t  and ( ).1.0,02.0=pt  The figures 

illustrate the impact of the time duration of a laser pulse .pt  This field has 

been affected by the parameter of the time duration of a laser pulse ,pt  

where the increase in the value of the parameter pt  causes decrease in 

temperature. From this figure, we observe that the new model reveals 

thermal wave with finite propagation speed. 

 

Figure 9. The variation of the temperature against distance for different 

values of time duration of a laser pulse. 

6.5. The effect of on angular thermal parameter w on temperature field 

for Case (iii) 

Figure 10 illustrates that the temperature distribution varies with 

distance for angular thermal parameters, ( ),15,10=w  from this figure, we 

noticed that the thermal waves are smooth, continuous, and steady, 

influenced by angular thermal parameter, allowing particles to easily 

transport heat, resulting in a higher temperature decrease rate. The 

temperature increases with an increase in the angular thermal parameter. 
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Figure 10. The variation of the displacement against distance for different 

values of angular thermal parameter. 

7. Conclusion 

For isotropic materials, a novel fractional theory for the Fourier law of 

heat conduction without energy dissipation has been introduced. This   

theory requires that materials should be classified based on their fractional 

characteristics, which is a novel measure for evaluating polymer heat-

transport efficiency. This study might lead to a better understanding of 

polymer interactions as well as the creation of a novel fractional model with 

extensive applicability. With the use of modified GN-II and viscoelastic 

deformation, this work attempts to develop a comprehensive size-dependent 

thermo-viscoelastic coupling model that takes into account two different 

models governing fractional heat transfer with and without energy 

dissipation. The nonlocal parameter on the dimensionless displacement and 

stress has multiple degrees of weakening. This suggests that while creating 

and improving polymer microdevices for use in heat transfer situations, the 

nonlocal effect cannot be ignored (Guo et al. [45]). 
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