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THERMAL BEHAVIOUR OF A CIRCULAR PLATE 

UNDER CAPUTO-FABRIZIO FRACTIONAL 

IMPACT WITH SECTIONAL HEATING 

 

 

Abstract 

Recent advances in the understanding of the precise physical thermal 

behaviour of various solids under the effect of fractional-order 
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derivatives have boosted the study of thermoelasticity, which is 

primarily important in various industrial designs of usable structural 

materials. We investigated a thin circular plate that was subjected        

to additional sectional heating on its top and lower surfaces while 

creating thermal insulation around its outside border. In this work, we 

maintained the heat transfer equation while accounting for the impact 

of Caputo-Fabrizio fraction-order derivatives. According to specified 

boundary constraints, the integral transformation approach is used to 

assess the analytical solution of the displacement, temperature change, 

and thermal stresses. Furthermore, various functions and fractional 

parameters are computed using the material properties of aluminium 

metal plates for numerical purposes. 

1. Introduction 

The area of thermoelasticity has a long history and is expanding quickly 

because of its many possibilities in the creation of realistic structural 

designs. The domains of aeronautics, nuclear fields, nuclear reactors, and 

contemporary propulsive technologies like jet and rocket engines are           

all directly correlated with temperature. The field of thermal stresses 

originates from the high temperatures connected to combustion processes. 

Additionally, somewhat intense thermal stresses are frequently linked to 

technology such as shipbuilding, fracturing, spacecraft and missiles. A 

remarkable number of theoretical and experimental research articles have 

been written about different facets of thermal stresses in engineering 

structures. Authors in [1] examined the bending and stresses caused by 

thermal influences in a thin circular plate problem that was simulated with 

an axisymmetric heating element and restrained and insulated edges. The 

article [2] used the integral transformed approach to ascertain the impact of 

thermal strains and bending in a thin circular plate caused by internal heat 

accumulation. Analytical and numerical investigations were conducted by 

[3] to solve the heating issue for temperature-dependent stress in a thin 

circular elastic-plastic plate. The fundamental transformation method is used 

to solve the problem of temporary transfer of heat in a thin circular plate 

under various boundary circumstances, yielding an infinite series [4]. A thin 
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circular plate with homogeneous internal heat production and a parabolic 

variation in temperature was the subject of a transient thermoelastic stress 

measurement in [5]. 

Using the Laplace and Hankel transform methods, a general approach 

for the 2-dimensional issue of a thick circular plate with sources of heat in 

altered couple stresses and thermoelastic dispersion in the setting of one       

and two relaxed durations has been established in [6]. Under the specified 

thermal operation and residual strains in the thin circular elastoplastic plate, 

the dimensional problem is defined and investigated in [7]. A computational 

investigation of the impact of two thermal parameters for axisymmetric 

distortion in a 2-dimensional isotropic thick circular plate with no dissipating 

energy is performed in [8] by using Laplace and Hankel transforms. 

Analytically, computationally, and through experimentation, the thermally 

generated oscillations of merely supported and clamped circular plates have 

been investigated [9]. In order to calculate the conductive temperature, 

movement sections, and stress conceptually and numerically, the article [10] 

took into consideration a thick circular plate with an axisymmetric supply of 

heat and traction-free below and top surfaces. 

Instead of using the Fourier law and conventional heat transfer formulas, 

nonclassical models make use of broader equations that have caught the 

attention of many scholars recently. To ascertain the effects of the fractional 

ordered gradient of a few other parameters on the contours of temperature, 

deviation, and tension got observed on the thin circular plate [11]. In [12], 

the variations in order of fraction strain were investigated for a uniformly 

thick circular sheet with hyper-two-temperature ring pressure. By using the 

fractional ordering method for thermoelastic diffusion, a 2-dimensional 

thermoelastic situation involving a thick circular plate with finite thickness 

has been examined to look at the impact of frequency [13]. A thorough 

frame-invariant fractional-order structure to support the analysis of 

physically nonlinear bends and postbuckling of not local plates under 

coupled mechanical and heat loads is provided in [14]. Using the integral 

transform approach, the duration of a fractional thermal reaction in a thick 

plate when it becomes heated internally is calculated in [15]. While solving 
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the time-fractional phase heat transfer equation for an axisymmetric 

functional grading temperature-sensitive hollow cylinder, the effects of 

convective boundary variables and internal heat production have been 

considered in [16]. 

By using the fractional-order framework for thermoelasticity, the  

authors in [17] were able to find traction-free thermoelastic half-spaces        

with specified axisymmetric distributions of temperatures and determined 

the thermoelastic interaction. Reference [18] examined the temperature, 

displacement, and stress field caused by the interior heat source and then 

resolved a fractional ordering thermoelastic issue involving a thin hollow 

circular disc under an axisymmetric energy source. In order to obtain a 

solution using the Laplace transform approach, authors in [19] applied the 

fraction thermal elasticity concept to a two-dimensional problem for a sphere 

with an axisymmetric distribution of heat. In order to examine the transitory 

reactions brought on by a moving heat origin, the unifying fractional 

thermoelastic model is created in [20]. Atangana-Baleanu, tempered-Caputo 

type, and Caputo-Fabrizio are three novel definitions of fractional 

derivatives that theoretically bring new insights into fractional 

thermoelasticity. 

Numerous scholars have been interested in the Caputo-Fabrizio 

fractional derivative for many years due to its occurrence in a wide range of 

applications and the fact that its kernel is non-local and nonsingular of 

convolution. Utilizing derivatives with fractional order in the Caputo-

Fabrizio sense, this kind of fractional derivative model is helpful not only in 

illustrating thermoelastic challenges but also for research including the 

exponential kernel in the human liver [21, 22]. After successfully describing 

the many uses of the Caputo-Fabrizio fraction derivative of the function, the 

article [23] analyses it in both traditional and distributional situations. By 

using the Caputo-Fabrizio fractal derivative operation with no singular 

kernel, further numerically distinct characteristics got suggested in [24]. A 

numerical approximation has also been made of it using the classical initial 

derivative’s two-point limit forward difference equation. 
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In source [25], a weighted Caputo-Fabrizio fractional derivation of           

the Caputo notion was explained. Additionally, the associated nonlinear          

and linear fractional differential formulas were examined, along with          

their corresponding applications. The nonlinear partial differential model          

of fractional equations has been modified to include Caputo-Fabrizio 

derivatives of fraction order as well [26]. It was demonstrated that this new 

derivative meets the requirements of the mixed partial and the expanded 

equation. Furthermore, the analysis verifies the presence and exclusivity of 

the precise result [27]. A time-fractional Caputo derivative and a time-

fractional Caputo-Fabrizio derivative enabled to solve the advection partial 

differential equation. Considering the definitions of the two differential 

operators, an observation was made in [28]. Atangana, Baleanu, and Caputo-

Fabrizio derivatives are compared by [29]. The non-singular Caputo-Fabrizio 

differential formulation for the 1D infinite potential problem was used in 

[30] to address fractional Schrödinger difficulties for time, space, and time-

space. The phase delays and a heat transfer formula with a fractional 

derivative were proposed by [31] to solve the thermoelastic problem using 

the Caputo-Fabrizio fractional derivative operation. 

In order to ascertain the analytical outcomes for thermal stress 

measurements by using integral transform methods, the article [32] applied 

convection boundary circumstances to the curving surface of the cylinder, 

where sources of heat are created as a linear function of temperature. For an 

epoxy matrix composite material reinforced with graphite fibre, the integral 

transform approach was used by [33] to explore the coupling and uncoupling 

effects of temperature, moisture, and thermal stresses. Additionally, the 

related study conducted by a few additional researchers is referenced in [34] 

to [42]. 

From the review of the literature, it can be seen that no quasi-static 

approach problem of thermoelasticity has been studied in relation to the 

Caputo-Fabrizio derivative in the equation of heat transfer. In order to study 

the change in temperature and stress function, it is anticipated that a thin 

circular plate with additional sectional heating at the bottom and higher 
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surfaces is going to be used in this problem to know the overall thermal 

response. 

2. Statement of the Problem 

A novel definition of a fractional derivative with a smoother kernel that 

considers the temporal and spatial variables was introduced by Caputo and 

Fabrizio [42]. It has been found that the Laplace transform technique works 

well for explaining temporal modelling analysis. This new method with a 

regular kernel sparked interest because it may be possible to characterize a 

class of non-local platforms that can better explain material heterogeneities 

and fluctuations across various scales than classical local theories or 

fractional models with a singular kernel. 

 

Figure 1. Geometry of problem in context of Caputo-Fabrizio derivatives. 

In this article, we examine a straightforward issue involving a thin, 

circular, thermoelastic plate with a thickness of h that is located in         

space ,0: brD ≤≤  .0 hz ≤≤  The materials that make up the plates are 

isotropic and homogeneous. Further sectional heating is placed on the upper 

and lower surfaces, while the outer border is kept thermally insulated, in 

order to increase the problem’s significance and use. This kind of material-

property-based structural design is most helpful when analyzing temperature 

swings and stress-bearing capacity for a variety of industrial designs. It      



Thermal Behaviour of a Circular Plate ... 517 

may also be applicable in space technology, where extreme heat might be 

damaging. 

2.1. Equation of heat transfer 

The following differential formula can be satisfied by the heat transfer 

equation expressed using the Caputo-Fabrizio fractional derivative method: 
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where Caputo-Fabrizio [42], differential operator of order ( )1,0∈α  for an 

absolutely continuous function ( )tT  is defined as below: 
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The modified Caputo-Fabrizio definition mentioned above has the 

benefit of having a nonsingular kernel. 

Moreover, as stated in equation (1), the Laplace transform that occurs of 

the Caputo-Fabrizio derivative is defined as [42]: 
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2.2. Boundary constraints 

The heat transfer equation (1) is subjected to the following significant 

initial and boundary constraints as below: 

Initial constraint 

( ) 00,, =zrT  for all .0,0 hzbr ≤≤≤≤  (5) 

Boundary constraints 

( ) 0,, =tzbT  for all ,0,0 >≤≤ thz  (6) 
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( ) ( )0,0, rretrT
t −δ= ω−  for all ,0,0 >≤≤ tbr  (7) 

( ) ( )0,, rrethrT
t −δ= ω−  for all ,0,0 >≤≤ tbr  (8) 

where ( )0rr −δ  is the Dirac delta function, 0>ω  is a constant, and 

( )0rre
t −δω−  is the additional sectional heat available on its surface at 

.,0 hz =  Also, .0 0 br ≤≤  

2.3. Stress-displacement relationship 

The displacement component ( )tzrU ,,  is governed by the problem of 

differential equations: 
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 (9) 

with 

 0=U  at ,br =  (10) 

where v and ta  stand for the Poisson’s ratio and the plate material linear 

coefficient of thermal expansion, respectively. 

The stress functions rrσ  and θθσ  are given by 
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where the stress components ,rrσ  zzσ  and zθσ  are all zero inside the plate 

in the plane state of stress, and µ  is the Lame’s constant. 

The subject under investigation is mathematically formulated by the 

equations (1) through (12). 
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3. Solution of the Problem 

3.1. Solution of heat transfer equation 

Applying the finite Hankel transform to equation (1) and imposing 

corresponding initial and boundary constraints from (5) to (8), we get 

( ) ( ) ( ) ( )tzTD
z

tzT
ktzTk n

CFn
nn ,,

,,
,, 02

2
2 ξ=









∂
ξ∂+ξξ− ∗α

∗
∗  (13) 

with transformed boundaries as 
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For the finite Hankel transform, which is defined as follows, the sign ( )∗  

indicates the function of the transformed domain and nucleus 
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Next, we present another integral transform that reacts to types (15) and 

(16) boundary conditions as  
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Further analyzing equation (13), using equations (15) and (16) in 

combination with the transform given in equation (17), we get 
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with transformed initial condition as 

 ( ) ,00,, =ξ∗
mT n  (19) 

where ∗
T  is the transformed function of ∗

T  and m is the transform 

parameter. 

The symbol ( )−  means a function of transformed domain and the 

nucleus given in the interval hz ≤≤0  with operational property: 
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After performing calculations on equation (18), the reduction is made to 

the following differential equation: 
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Next, on applying Laplace transform defined in equation (3) with initial 

condition (20) and further on taking its corresponding inversion, we get 
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Finally, on inverting for Hankel transform and transformed stated in 

(18), we obtain the desired expression of temperature distribution as below: 
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3.2. Determination of thermoelastic displacement 

Substituting value of ( )tzrT ,,  from equation (22) in equation (9), we 

obtain the thermoelastic displacement function ( )tzrU ,,  as 
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3.3. Determination of stress functions 

Simplifying equations (11) and (12) with the use of (23) yields the 

formula for radial and tangential stresses as: 
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4. Numerical Computations 

The following aluminium metal material parameters are used for 

numerical computations and are emphasized in Table 1. 

Table 1. Material properties 

Modulus of elasticity, E 11
109.6 ×  (dynes/cm2) 

Shear modulus, G 11
107.2 ×  (dynes/cm2) 

Poisson ratio, υ  0.281 

Thermal expansion coefficient, tα  6
105.25

−×  (cm/cm-0C) 

Thermal diffusivity, k  0.86 (cm2/sec) 

Outer radius, b 2 (cm) 

Thickness, h 0.2 (cm) 

0r  1.5 

ω  0.5 

4.1. Graphical analysis 

The link between the Caputo fractional time derivative of order α  and 

the temperature and thermal stress functions is examined in this subsection. 

These distributions in radial and axial directions are graphically shown in 

Figures 2 through 4, accounting for the additional sectional heating at the top 

and lower surfaces of the plates. 

 

Figure 2(a). The spread of temperature in an axial direction. 
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Figure 2(b). The spread of temperature in a radial direction. 

As can be seen in Figure 2(a), for both 5.0=t  and ,1=r  the 

dimensionless axial direction of the temperature distribution function is 

strongly influenced by the fractional parameters .9.0,5.0,1.0=α  A              

more uniform temperature distribution is observed for large values of the 

fractional parameter; alternatively, one finds that the temperature rises as 

parameter α’s value rises. The temperature distribution on the bottom and 

upper surfaces of the plate varies as a result of sectional heating at both 

surfaces, meeting the given mathematical boundary limit. 

The fluctuation of the dimensionless temperature distribution function 

for various fractional parameters 9.0,5.0,1.0=α  is shown in Figure            

2(b) for both 5.0=t  and .2.0=z  There are notable differences in the 

temperature curves for different factors, suggesting that these features could 

be useful for characterizing the material’s properties and helping to build 

innovative structural stress-bearing designs for the sector. Additionally,             

it is discovered that the temperature flow variation at both the inner and 

outer edges is zero, satisfying the mathematically specified boundary and 

indicating the finite propagation of the wave within a limited range. 
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Figure 3(a). Spreading of radial stress in the axial direction. 

 

Figure 3(b). Spreading of tangential stress in the axial direction. 

Figures 3(a) and 3(b) show the distribution of radial and tangential 

stresses in the axial direction for various fractional order parameters. It is 

shown in both plots that the additional sectional heating is causing a uniform 

growth in the flow of stresses at the upper and lower surfaces, and that the 

impact of various fractional parameters is significantly discriminating the 

curve. Therefore, the examination of these kinds of stresses could prove 

beneficial in the evaluation of a practical, highly-heated model that has a 

direct correlation with temperature. 
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Figure 4(a). Spreading of radial stress in the radial direction. 

 

Figure 4(b). Spreading of tangential stress in the axial direction. 

The radial and axial stress patterns in the radial direction are displayed 

graphically in Figures 4(a) and 4(b). The stress functions are zero at both the 

inner and outer borders. While tangential stress distribution exhibits tensile 

characteristics up until the midpoint of the radial direction, and then after it 

becomes compressive, radial stress distribution fluctuates in a compressive 

manner near the inner edge and a tensile manner at the outer edge, this 

fluctuation may also be the result of sectional heating responses. 
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5. Conclusion 

Within the framework of Caputo-Fabrizio fraction order derivatives, the 

analytical expression of the displacement, temperature change, and thermal 

stresses of a thin circular plate are examined. Utilizing the finite integral 

transform approach, the heat transfer equation is solved, and all of the 

derived thermal expressions of stress and temperature are numerically 

computed using the aluminium metal plate’s material parameters. Moreover, 

Mathematica software is used to graphically display the expressions.             

By giving the parameters and functions in the expressions along with 

appropriate values, any specific situation of special interest can be located. 

The temperature and stress function fluctuations are significantly 

impacted by the various values of the Caputo-Fabrizio fractional parameter, 

according to graphical analysis. An important reaction to the additional 

segmental heating at both the top and bottom plate surfaces is obtained by 

thermal tracking of different curves under fractional response. The finite 

speed of wave propagation is demonstrated by the curve phenomenon. 

Lastly, different structural designs may benefit from the categorization of 

materials based on Caputo-Fabrizio fractional parameter features that can 

indicate the impacts of memory allocated on temperature and stress history. 

Therefore, the Caputo-Fabrizio fractional parameter response in solid 

objects could be helpful in the construction of realistic structures or machine 

designs, as well as in engineering applications based on temperature changes 

for various parameters and functions. 
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