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Abstract 

In this paper, we study the inverse problem for the wave equation  

with the second-order d’Alembert operator in an unbounded domain 

in a space with a non-uniform metric. For physical applications, 

inverse problems for second-order partial differential equations are of 

particular interest. Such inverse problems are encountered in the study 

of wave processes, processes of electromagnetic interactions, as well 

as in various reduction processes. Moreover, if there are external 

acting forces with respect to the indicated equations that allow 

additional information about the solution of the original equations, 

then we obtain classes of inverse problems of a coefficient nature with 

the d’Alembert operator, which are of particular interest to scientists 

in this field, in which the results of this article are relevant. Also, the 

relevance of the problem under study is due to the fact that it is         

an inverse problem, where the sought quantities are the causes of 

some known consequences of a particular process. Whereas for direct 

problems, the methods for solving are well known. Thus, this paper 

provides a solution to the inverse problem of mathematical physics 

with a hyperbolic operator and generalizes existing results.  

1. Introduction 

It is known that for physical applications, direct and inverse         

problems for second-order partial differential equations, called equations of 

mathematical physics [1, 2], are of particular interest. The classes of these 

equations are different, and therefore the methods for studying them are 

different. The noted classes of equations, in particular, are found in the 

theory of waves, in problems of the hereditary environment, in the theory of 

interaction [3, 6, 8, 11, 13, 15], for example, as the sin-Gordon equation, 

nonlinear equations of the Whitham-Schrödinger type, among others. In 

many applied problems, it is known that there are inverse problems [4, 7-10], 

where integral equations of Volterra or Fredholm type degenerate. Under 

certain conditions, these equations are transformed to Volterra-Abel or 

Fredholm-Abel integral equations of the third kind, for example, refer to            

[7, 8]. Moreover, based on the theory of these integral equations, it is 
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possible to prove the correctness of [1, 2] or conditional correctness of 

studied problems in [5, 12]. To this end, this article studies the inverse 

problem with the second-order d’Alembert operator in an unbounded 

domain: 
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In this case, the unknown is the vector function ( )ZuU ,=  in ( )QW
p

γ  - 

space with a weight function with norm: 
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The study consists of two situations. First, we consider how the original 

inverse problem is transformed into an integral form. For this, a special 
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version of the auxiliary function method is proposed [8], so that the original 

problem is transformed to a system of Volterra-Abel integral equations        

and Volterra integral equations of the first kind, where Volterra integral 

equations of the first kind are conditionally correct Volterra equations. Next, 

taking into account the regularization method [5, 8], we study the indicated 

system. In this case, the regularizability of the original inverse problem is 

established in ( ).QW
p

γ  

2. Main Results 

2.1. Transformation of the inverse problem to integral form 

The proposed algorithm modifies the auxiliary function method applied 

to the study of the direct transfer problem with the d’Alembert operator in an 

unbounded domain in [9]. 
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Therefore, from differential equation (1.1), taking into account (2.1) and 

(2.2), it follows that 



Regularization of the Inverse Problem ... 477 
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Differential equation (2.3) is a first order equation, and the 

transformation (2.1) reduces the order of the differential equation. From this 

equation, it follows that 
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where 
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From this, it is clear that (2.4) contains three unknown functions: ,ϑ  ,1V  

.2V  Therefore, taking into account ( )∗  from (2.4), we define the function: 
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Then from the system (2.4), we obtain 
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where (2.7) is a system of Volterra integral equations of the second kind 

with respect to the variable. Therefore, if executed 
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where 
iPL ’s  are the coefficients of the initial approximation operators. 

Based on the Picard method, we have 

Lemma 1. Under conditions ( ),∗  (2.8), system (2.7) is uniquely solvable 

in ( ),1,1 ΩC  and, based on (2.1), (2.2), the solution is a unique function 

( ).2,2 Ω∈ Cu  

2.2. Regularizability of the Volterra integral equation 

If the conditions of Lemma 1 are met, taking into account (1.4) from 

(2.6), we have 
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Next, carrying out integration by parts from (2.9), we obtain 
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The first integral equation of the system (2.10) is a Volterra-Abel 

integral equation of the second kind and is subject to the conditions: 
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The indicated equation is uniquely solvable in [ ].,0 TC  

This means, based on the last conclusion regarding the first integral 

equation of the system (2.10), while assuming the conditions: 
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and 
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we can conclude that the function ( )tθ~  is continuous. Thus the function ( )tθ  

is continuous, and 
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Taking into account the results obtained regarding the first and second 

relations of the system (2.10), we study the Volterra integral equation of the 

first kind: 
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in particular, for example: 
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and since it is required that the solution (2.15) exists in a weighted space 

( ),,0 TL
p
γ  regularizability is proved in this space. 

In order to prove regularizability, we introduce an equation with a small 

parameter: 
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Evaluating (2.19), we have 
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Moreover, based on the norm ( ),,0 TL
p
γ  from (2.16), it follows that 
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Next, based on 
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where ( )tεξ  is the residual function, and the following is assumed: 
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In this case, it is taken into account that if ( ),,0 TLZ
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where pL⋅  is the norm in ( )( ).,0 TL
p φ  Then, estimating (2.23) in the 

sense of ( ),,0 TL
p
γ  taking into account (2.24), we have 
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Therefore, based on the results obtained, it follows that equation (2.15) 

is regularizable in ( ),,0 TL
p
γ  and 

( ( ))

[ ] ( )( )( )






≤+ε≤+−≤

 →ε≤ξ=−

∗εε
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γγγ

γγ

.22
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NNQOZZZZ

QOZZ

ppp

pp
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 (2.26) 

Lemma 2. Under conditions (2.16), (2.24) and (2.26), the permissible 

estimation error between the functions ZZ ,ε  is of the order of ( )( )ε∗QO  in 

( ).,0 TL
p
γ  

Therefore, taking into account the results of Lemmas 1, 2 relative to the 

vector function ( ) ( )Ω∈= γ
p

WZuU ,  holds, and 

( ) ( ) ( ) .0,02,2 MZuU TLCW pp ≤+=
γγ ΩΩ  (2.27) 

In addition, we note that based on the theorem of Friedrichs [14], the 

function ( )Ω∈ 2
Lu  (no going back), the function ( )ZuU ,=  is evaluated 

in ( ),~ Ωγ
p

W  and 

( ) ( ) ( ) .,0 ∗ΩΩ ≤+=
γγ

MZuU TLLW ppp  (2.28) 
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Theorem 1. Under the conditions of Lemmas 1, 2 and (2.27) (or (2.28)), 

the inverse problem (1.1)-(1.3) is regularizable in ( )Ωγ
p

W  ( ( )).~ Ωγ
p

Wor  

3. Conclusion 

In this paper, we considered the inverse problem with the second-order 

d’Alembert operator in an unbounded domain, which, using the modified 

auxiliary function method, is transformed into a system of integral equations 

of Volterra type. Using the regularization method, the regularizability of the 

original inverse problem in a space with a non-uniform metric is proved. 
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