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Abstract 

We study a prey-predator model with harvesting where the fishing 

effort is considered as a function of time. The analysis focuses on the 

equilibrium points and the optimal harvesting strategy. 

1. Introduction 

For a long time, fishing has been considered as a main activity for large 

parts of the human population. But the excessive exploitation of fish stocks 

is a global problem that current management policies are struggling to solve 

[21]. The implementation of this management requires mostly scientific 

studies. The authors in [9, 15, 10, 16] conducted studies to better knowledge 

and understanding the functioning of the fisheries system on the one hand, 

and on the other hand, to try to improve the fisheries situation. The study of 

prey-predator models plays an important role in ensuring the survival of 

species [2, 3, 7, 14, 13]. We are interested in a prey-predator model of 

aquatic species (fish) with harvesting on prey. We consider that the harvest 

function per unit effort is proportional to the stock of prey available for 

harvesting and that the fishing effort is a function of time. The model is 

presented as follows: 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )( ) ( )
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
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

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
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−
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




 −=

tEctpmqx
dt

tdE

tyty
Dty

tax
e

dt

tdy

tkty
Dty

tax

K

tx
trx

dt

tdx

,,min

,,min1

 (1) 

with ( ) ( ) 00,00 00 ≥=≥= yyxx  and ( ) .00 0 ≥= EE  

( )tx  and ( )ty  represent prey and predator densities, respectively, at 

time t, ( )tE  is fishing effort at time t, ( ) ( ) ( )txtmqEtk =  is the harvest 

function at time t and βγµ ,,,,,,,,,, qmpDaeKr  are positive constants: 

r is the growth rate of prey, K is the limiting capacity of the environment, µ  
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is the mortality rate of predators, e is the conversion rate of prey to 

predators, a is the predation rate, D measures other causes of prey mortality 

outside of predation, γ  is the maximum amount of food predator needs per 

unit of time, p is the constant price per unit of biomass, m is the fraction of 

the prey stock available for harvesting such that ,10 << m  q is the capture 

coefficient, c is the cost of fishing constant per unit effort and β  describes 

the dynamics of fishing effort. In system (1), 
( )

( ) Dty

tax

+  is the amount of food 

a predator has access to and 
( )

( ) 





 γ+ ,min

Dty

tax
 is the amount of food a 

predator receives per unit time. In this model, the constant predation rate a is 

obtained by integration of a continuous and 1-periodic function [12]. Several 

mathematicians have conducted studies on the model to explain the effects 

of the water level fluctuations on the life of fish [4-6, 18]. Sarkar et al., in 

[1], also studied the effects of water level fluctuation taking into account     

the interactions with invertebrates. The model was recently studied in [17] 

where harvesting was non-selective. 

Remark 1. Without the third equation of system (1) and for ,1=m  the 

model (1) is well studied in [12]. 

The rest of the paper is organized as follows: Section 2 is devoted to the 

mathematical analysis of the model. We prove the existence and uniqueness 

of the solution, determine the boundary conditions of the solutions, and 

study the equilibrium points. In Section 3, we propose an optimal harvesting 

strategy. Finally, Section 4 provides the conclusion. 

2. Mathematical Analysis 

We find that if the fishing effort is greater than ,
qm

r
 then 

( )
,0<

dt

tdx
 

and therefore, both the species will disappear. Thus we consider the 

following hypothesis: ( ) :1H  ( ) .0, ≥∀< t
qm

r
tE  
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2.1. Existence and uniqueness of the solution 

Lemma 2.1. Let G be a Banach space, R→Gf :  be a function and 

.R∈γ  Set ( )( ).,min,: γ→ xfxGh ֏R  If f is locally Lipschitzian, then 

the function h is locally Lipschitzian. 

Proof. Since f is locally Lipschitzian, there exists a positive constant k 

such that 

( ) ( ) .,, 212121 Gxxxxkxfxf
G

∈∀−≤−  

Since h can be rewritten as 

( ) ( ) ( )( ),
2
1 γ−−γ+= xfxfxh  

( ) ( ) ( ) ( ) ( ) ( ) γ−+γ−−−=− 212121 2
1

xfxfxfxfxhxh  

( ) ( ) ( ) ( )[ ]γ−−γ−+−≤ 21212
1

xfxfxfxf  

( ) ( ) ( ) ( )[ ]21212
1

xfxfxfxf −+−≤  

( ) ( )21 xfxf −≤  

.21 Gxxk −≤  

Hence, h is locally Lipschitzian. □ 

Theorem 2.1. Let ,00 ≥x  00 ≥y  and .00 ≥E  Then the system (1) 

admits a unique positive solution ( ) ( ) ( )( )tEtytx ,,  such that ( ) ,0 0xx =  

( ) 00 yy =  and ( ) .0 0EE =  



Optimal Harvesting Strategy for Prey-predator Model … 421 

Proof. Let 
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From Lemma 2.1 we can say that functions 1f  and 2f  are locally 

Lipschitzian. The function 3f  is also locally Lipschitzian. According to the 

Cauchy-Lipschitz’s theorem [11], the system (1) admits a unique solution 

( ) ( ) ( )( )tEtytx ,,  such that ( ) ,0 0xx =  ( ) 00 yy =  and ( ) .0 0EE =  

For the positivity of the solution, we use the property of isoclines [19]. 

The axes x, y and E are zero isoclines of the system, so no trajectory can 

intersect one of these three axes. Thus any trajectory resulting from an initial 

condition taken in the positive frame remains inside this frame for all .0≥t  

So any solution of the system (1) remains in the quadrant .3
+R  This 

completes the proof. □ 

Lemma 2.2 [8]. Let a and b be two strictly positive real numbers. 

• If ( ) ( )( )tbxatx
dt

dx −≤  with ( ) ,00 >x  then ( ) .suplim
b

a
tx

t
≤

∞+→
 

• If ( ) ( )( )tbxatx
dt

dx −≥  with ( ) ,00 >x  then ( ) .inflim
b

a
tx

t
≥

+∞→
 

Theorem 2.2. Assume that the hypotheses ( )1H  and 

( ) :2H  0>−µ D
aeK

 

hold. Let the set A be defined by 

( ) .0,0,0,, 3







 <≤µ

µ−≤≤≤≤∈= + qm

r
E

DaeK
yKxEyxA R  

Then the solution of the system (1) is bounded and belongs to the region A. 



Daniel ZAMBELONGO et al. 422 

Proof. Since the solution of system (1) is positive, we have ( ) ,0≥tx  

( ) ,0≥ty  and ( ) 0≥tE  for all .0≥t  

Using the first equation of the system (1), we have 

( )
.1 





 −≤

K

x
r

dt

tdx
 

According to Lemma 2.2, we obtain 

( ) .suplim Ktx
t

≤
+∞→

 

So for an arbitrary ,01 >ε  there is a 01 >T  such as 

( ) ., 11 TtKtx >∀ε+≤  

Using the second equation of the system (1), we have 

( ) ( )
1

1 , Tt
Dy

Kae
y

dt

tdy >∀





 µ−+

ε+≤  

( )( ) 11 , TtyDKae
Dy

y >∀µ−µ−ε++≤  

( )( ) ., 11 TtyDKae
D

y >∀µ−µ−ε+≤  

According to Lemma 2.2, we obtain 

( ) ( )
.,suplim 1

1 Tt
DKae

ty
t

>∀µ
µ−ε+≤

+∞→
 

As 1ε  is arbitrary, ( ) .,suplim 1Tt
DaeK

ty
t

>∀µ
µ−≤

+∞→
 

Under the hypothesis ( ),2H  we have .0>µ
µ−α DeK

 

So for an arbitrary ,02 >ε  there exists a 12 TT >  such that 

( ) ., 22 Tt
DaeK

ty >∀ε+µ
µ−≤  
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According to the hypothesis ( ),1H  we have ( ) .0, ≥∀< t
qm

r
tE  

Therefore, E is bounded for all .0≥t  

The proof is complete. □ 

Proposition 2.1. Assuming 

 
( )

( ) 








µ+
γµ+γ<

20

0 4
,min

rK

Dr

x

Dy
a , ( )3H  

for all ,0≥t  

( ) ( )( ).Dtytax +γ<  

Proof. Let ( ) ( ) ( )( ).Dtytaxtu +γ−=  

Now, we show that if the hypothesis ( )3H  is satisfied, then ( )tu  is 

strictly negative for all .0≥t  

For ,0=t  we have 

( ) ( ) ( )( ) ( )
,000

0

0
0 






 +γ−=+γ−=

x

Dy
axDyaxu  

with .00 >x  According to the hypothesis ( ),3H  
( )

.
0

0
x

Dy
a

+γ<  Thus 

( ) .00 <u  Suppose there is a positive 0t  such that ( ) 00 =tu  and 
( )

.00 ≥
dt

tdu
 

Using the system (1), we obtain 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )



 −+−






 −= 000

0

00
0

0 1 txtmqEty
Dty

tax

K

tx
trxa

dt

tdu
 

( )
( ) ( ) ( ) .00

0

0






 µ−+γ− tyty

Dty

tax
e  
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By using the fact that ( ) ( )
,0

0 D
tax

ty −γ=  we have 

( ) ( )( ) ( ) ( ) ( ) ( )000
2

0
0 txtaqmEtxratx

K

ar

dt

tdu −µ++−=  

( ) ( )
( ) ( ) Dtx

Dty

ty
eaa γµ−+γ+− 0

0

0  

( )( ) ( ) ( ) .0
2

0 Dtxratx
K

ar γµ−µ++−≤  

So under the hypothesis ( ),3H  
( )

,00 <
dt

tdu
 and this constitutes a 

contradiction. 

Thus, for all ,0>t  we have ( ) 00 ≠tu  or 
( )

.00 <
dt

tdu
 

This means that for all ( ) .0,0 <> tut  □ 

Remark 2. Under the hypothesis of the previous proposition, the system 

(1) can be rewritten in a simplified form as follows: 

 

( )












−β=

µ−+=

−+−





 −=

.

,

,1

Ecpmqx
dt

dE

y
Dy

eaxy

dt

dy

mqEx
Dy

axy

K

x
rx

dt

dx

 (2) 

2.2. Equilibrium points 

Proposition 2.2. The system (2) admits five (05) points of equilibrium 

such that 

  (i) ( ),0;0;00P  

 (ii) ( ),0;0;1 KP  
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(iii) the equilibrium point 
( )

( ) 






 −
22 ;0;

mqKp

cKpmqr

pmq

c
P  exists under the 

assumption 

( ) ,:4 cpmqKH >  

(iv) the equilibrium point ( )0;;3 yxP  exists if and only if 

( ) ,
242
Kae

Dr
a

Ke

Dr
arr

µ+>µ+−+  with 

( ) 






 µ+−+−=
Ke

Dr
arar

r

K
x

4
2

2  and 

( ) ,
42

2
2 







 µ+−+µ−−µ=
Ke

Dr
ar

Kae

Dr
ar

r

Kae
y  

(v) the positive equilibrium point ( )∗∗∗∗
EyxP ;,  exists under the 

assumptions 

( ) :5H D
pmq

ace >µ    and   ( ) :6H ,10 p
erKpmq

c <µ−−<  

where 

;
pmq

c
x =∗    D

pmq

ace
y −µ=∗    and   .1 






 µ−−=∗

erKpmq

c

pmq

r
E  

Proof. By solving the following system: 

( )












=−β

=µ−+

=−+−





 −

,0

,0

,01

Ecpmqx

y
Dy

eaxy

mqEx
Dy

axy

K

x
rx

 

we obtain the equilibrium points 210 ,, PPP  and .∗
P  □ 

Proposition 2.3. (i) The point 0P  is an unstable equilibrium. 
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 (ii) The equilibrium points 1P  and 3P  are also unstable. 

(iii) The equilibrium point 2P  is stable under the assumption ( )c
H5  and 

unstable under the assumption ( ).5H  

(iv) The positive equilibrium point ∗
P  is locally asymptotically stable 

under the assumptions of its existence. 

Proof. The Jacobian matrix of the system (2) is 

( )
( )

( )
( )

.

0

0

2

,,
2

2

























−ββ

µ−
++

−
+

−−
+

−−

=

cpmqxpmqE

Dy

eaDx

Dy

eay

qmx
Dy

aDx
qmE

Dy

ay

K

rx
r

EyxJ  

The Jacobian matrix associated with the point 0P  gives: 

( ) .

00

00

00

0
















β−
µ−=

c

r

PJ  

The matrix ( )0PJ  has three distinct real eigenvalues ,01 >=λ r  =λ2  

0<µ−  and .03 <β−=λ c  So the point 0P  is an unstable point. 

The Jacobian matrix associated with the point 1P  is 

( )
( )

.

00

001





















−β

µ−

−−−

=

cpmqK

qmK
D

aK
r

PJ  

The eigenvalues of the matrix ( )1PJ  are: ,01 >−=λ r  02 <µ−=λ  

and ( ).3 cpmqK −β=λ  Under the assumption ( ),4H  ,03 >λ  so 1P  is an 

unstable equilibrium. 
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Concerning the point ,2P  we have 

( )
( )

.

00

002























−β

µ−

−−−

=

Kpmq

cKpmqr

pmqD

eac

p

c

pmqD

ac

Kpmq

cr

PJ  

The calculation of the characteristic polynomial P gives 

( ) ( ) .
2

2








−β+λ+λ






 λ−+µ−=λ cKpmq

mqKp

rc

Kpmq

cr

pmqD

eac
P  

Assuming that 
Kpmq

cr
S

−=  and ( ),
2

cKpmq
mqKp

rc −β=π  we have 

0<S  and 0>π  under the hypothesis ( ).4H  Thus under the hypothesis 

( ),5H  that is, ,D
pmq

eac >µ  the point 2P  is unstable and stable if :D
pmq

eac <µ  

( ).5
c

H  

For ( ),0,, yxP  the associated matrix is 

( )
( )

( )
( )

.

00

0
2

2

3

























−β

++

−
+

−−

=

cxpmq

Dy

yxea

Dy

yea

xqm
Dy

xaD

K

xr

PJ  

The characteristic polynomial of ( )3PJ  is 

( ) ( )[ ]λ−−β=λ cxpmqP  

( ) ( ) ( )
.

3

2

22
2










+
+

+
+λ










+
++λ×

DyK

yxDea

DyK

yxrea

Dy

yxea

K

xr
 



Daniel ZAMBELONGO et al. 428 

Assuming that 
( ) ( )3

2

2
DyK

yxDea

DyK

yxrea

+
+

+
=π  and 

( )
;

2 










+
+−=

Dy

yxea

K

xr
S  

we have: 0>π  and .0<S  

Moreover, under the hypothesis ( ),4H  ( ) .0>−β cpmqK  Therefore, 

3P  is an unstable equilibrium. 

For ,∗
P  the associated matrix is 

( )

( )

( )
.

00

0
2

2



























β

+
−

+

−
+

−−

=

∗

∗

∗∗

∗

∗

∗
∗

∗∗

∗

pmqE

Dy

yeax

Dy

eay

qmx
Dy

aDx

K

rx

PJ  

Consider ( )
















=∗

333231

232221

131211

aaa

aaa

aaa

PJ  with 

( )

( )
















==β=

=
+

−=
+

=

−=
+

−=−=

∗

∗

∗∗

∗

∗

∗
∗

∗∗

.0;0;

,0;;

,;;

333231

2322221

1321211

aapmqEa

a
Dy

yeax
a

Dy

eay
a

qmxa
Dy

aDx
a

K

rx
a

 

By calculating the determinant of the matrix ( ),∗
PJ  we have 

( ( )) ( )2112221131det aaaaaPJ −=∗  

( ) ( ) 










+
×

+
+

+
×β= ∗

∗

∗

∗

∗

∗∗∗
∗

Dy

eay

Dy

aDx

Dy

yeax

K

rx
pmqE

22
 

.0≠  
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The characteristic polynomial of ( )∗
PJ  is of the form: 

( ) ,32
2

1
3

AAAP +λ+λ+λ=λ  

where 

( )
( )

( )

( )
( )

( )

( ) ( )
( )


















+
β==

+
+β+

+
=

−+−=

+
+=+−=

∗

∗∗∗

∗

∗∗
∗∗

∗

∗∗

∗

∗∗∗

.

,

,

2

2
2

3122133

2
2

2

2

2211311321122

222111

Dy

Eyx
mqeapaaaA

DyK

yarex
Exmqp

Dy

yxeDa

aaaaaaA

Dy

yeax

K

rx
aaA

 

We have 01 >A  and .03 >A  

Now, we determine the sign of :321 AAA −  

( )
( )

( ) 










+
+β+

+
=− ∗

∗∗
∗∗

∗

∗∗∗

2
2

2

2

321
DyK

yarex
Exmqp

Dy

yxeDa

K

rx
AAA  

( ) ( ) ( )
.

22

2

2 










+
+

++
+ ∗

∗∗

∗

∗∗

∗

∗∗

DyK

yarex

Dy

yxeDa

Dy

yeax
 

Thus, .0321 >− AAA  

According to the Routh-Hurwitz criterion [19], the eigenvalues of the 

matrix ( )∗
PJ  have negative real parts. Therefore, the point ∗

P  is locally 

asymptotically stable. □ 

Remark 3. According to the hypothesis ( ),5H  if ,
pqD

ace
m µ<  then the 

trajectories converge towards equilibrium ∗
P  (Figures 1 and 2). However,  
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if ,
pqD

ace
m µ>  then the trajectories converge towards the equilibrium 2P  

(Figure 3). In this case, the predator disappears. 

For figures below, the constants are as: ,12=r  ,40=K  ,11=a  

,5=D  ,6=q  ,20.1=e  ,45.0=µ  ,25.1=β  ,3.1=p  ,15.1=c  

( ) ( ) ( )( ) ( ).5,15,70,0,0 =Eyx  

 

Figure 1. Convergence of the solution towards the equilibrium point ∗
P  for 

.4.0=m  
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Figure 2. Phase portrait for .4.0=m  

 

Figure 3. Convergence of the solution towards the equilibrium point 2P  for 

.88.0=m  

Theorem 2.3. If the existence conditions ( )5H  and ( )6H  hold, then ∗
P  

is globally asymptotically stable. 
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Proof. Let V be a function defined by 

( ) ( ) ( ) 















−−α+












−−α= ∗
∗∗

∗
∗∗

y

y
yyy

x

x
xxxEyxV lnln,, 21  

( ) ,ln3 












−−α+ ∗
∗∗

E

E
EEE  

where 21, αα  and 3α  are positive constants to be determined. 

• We have ( ) 0,, =∗∗∗
EyxV  and ( ) ,0,, >EyxV  ( ) ≠∀ Eyx ,,  

( ).,, ∗∗∗
Eyx  

• Note that 

( ) ( ) ( )
dt

dE

E

EE

dt

dy

y

yy

dt

dx

x

xx

dt

dV ×−α+×−α+×−α=
∗∗∗

321  

( ) ( )




 µ−+−α+





 −+−−−α= ∗∗

Dy

eax
yymqE

Dy

ay

K

rx
rxx 21  

( ) ( )[ ].3 cpmqxEE −β−α+ ∗  

Using the following system 

( )















=−β

=µ−
+

=−
+

−−

∗

∗

∗

∗

∗∗

,0

,0

,0
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Dy

eax

mqE
Dy

ay

K

rx
r

 

we have 

( ) ( ) ( )
( ) ( )

( )







−−

++
−−−−−α= ∗

∗

∗
∗∗

EEmq
DyDy

yyaD
xx

K

r
xx

dt

dV
1  

( )
( ) ( ) 









++
−−+−α+ ∗

∗∗∗
∗

DyDy

eaDxyeaxeaDxxeay
yy2  
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( ) ( )∗∗ −−βα+ EExxpmq3  

( ) ( ) ( )
( ) ( )

( )







−−

++
−−−−−α= ∗

∗

∗
∗∗

EEmq
DyDy

yyaD
xx

K

r
xx1  

( )
( ) ( ) 









++
−+−−+−α+ ∗

∗∗∗∗∗∗∗
∗

DyDy

yeaxyeaxeaDxyeaxeaDxxeay
yy2  

( ) ( )∗∗ −−βα+ EExxpmq3  

( ) ( )
( ) ( )DyDy

yyeax
xx

K

r

++
−α−−α−= ∗

∗∗
∗

2
221  

( ) ( ) ( )
( ) ( ) 









++
+α+α−−−+ ∗

∗
∗∗

DyDy

yDeaaD
yyxx 21  

( ) ( ) ( ).13 α−βα−−+ ∗∗
pEExxpmq  

By setting ,11 =α  
( )Dye

D

+
=α ∗2  and ,

1
3 pβ=α  we deduce that 

( ) ( )
( ) ( )

( ) ( ).,,,,,0
2

2
2 ∗∗∗

∗

∗∗
∗ ≠∀<

++
−−−−= EyxEyx

DyDy

yyaDx
xx

K

r

dt

dV
 

So according to Lyapunov’s theorem [19], the positive equilibrium ∗
P  is 

globally asymptotically stable. □ 

3. Optimum Harvesting Strategy 

Determining an optimal fishing strategy is always a problem for policy 

makers. The goal is to find a compromise between current and future 

harvests while ensuring economic and political interests. In our work, using 

the Pontryagin maximum principle, we determine an optimal harvesting 

strategy by considering a function that presents the continuous time flow of 

income. 
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Let adU  be a non-empty set defined by 

{ [ ] [ ] }.measurableLebesgue,,,0: maxmin mmTmUad →=  

Consider J a cost function defined by 

( ) ( )
∞+ δ− −=

0
,EdtcpmqxemJ

t  

where δ  is the instantaneous annual discount rate, adUm ∈  is the control 

function, and x represents prey density associated to m. 

Our objective is to maximize the functional J, that is, to find the optimal 

control adUm ∈~  such that 

( ) ( ){ }.,max~
adUmmJmJ ∈=  

Since J is convex and adU  is compact, we can show that an optimal control 

exists [22]. 

Let ( )EyxM
~

,~,~  be the optimal equilibrium point associated with the 

optimal control .~m  Set 

( ) ( ) ( )( ) ( )( ) ∈∀ϕ+=
T

admm UmTxdttmtxtLmJ
0

,,,  

with ( ) ( )( ) ( ) EcpmqxetmtxtL
t

m −= δ−,,  and ( )( ) .0=ϕ Txm  

Thus the Hamiltonian function is defined by 

( ) ( ) ( )( )tmttxtH ,,, λ  

( ) ( ) ( )( ) ( ) ( )( )tmtxtfptmttxtL ,,,,,, +λ=  

( )




 −+−−λ+−= δ−

qmxE
Dy

axy
x

K

r
rxEcpmqxe

t 2
1  

( )Ecpmqxy
Dy

eaxy −βλ+



 µ−

+
λ+ 32  

with 21, λλ  and 3λ  as adjoint variables. 
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Suppose that the optimal control is singular, i.e., the optimal solution 

would not be in minm  or in .maxm  Then  

 .031 =βλ+λ−=∂
∂ δ−

pqxEqxEpqxEe
m

H t  (3) 

According to the Pontryagin maximum principle [20], we get 

,
2

321
1


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+
λ=λ
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dt

d
 (5) 

( ) ( ).31
3 cpmqxqmxcpmqe

dt

d t −βλ−λ+−−=λ δ−  (6) 

From the relation (3), we have 

 .31 λβ+=λ δ−
ppe

t  (7) 

By replacing the expression of ( )t1λ  in (6), we get 

t
cec

dt

d δ−+λβ=λ
3

3  

whose solution is 

 ( ) .3
t

e
c

c
t

δ−
β+δ

−=λ  (8) 

Using the relations (7) and (8), we obtain 

 ( ) .11 







β+δ
β−=λ δ−

c

c
pet

t  (9) 

The substitution of ( )t1λ  in equation (5) gives 

 ,221
2 λ+=λ δ−

AeA
dt

d t  (10) 
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with 

( )21 1
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The resolution of equation (10) gives us 

 ( ) .
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1
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t
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A
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δ−
+δ
−=λ  (11) 

Using the equilibrium equations in the relation (4), we obtain 

.321
1 c

Dy
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r
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dt

d t βλ−+λ−λ+−=λ δ−  (12) 

By replacing ( ),1 tλ  ( )t2λ  and 3λ  in (12) and by integration, we have 
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 (13) 

The relations (7) and (13) allow us to deduce the optimal control: 
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The adjoint variables ( ),tiλ  3,2,1=i  satisfy the transversality conditions, 

i.e., ( ) .3,2,1,0lim ==λ
+∞→

iti
t
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4. Conclusion 

In this paper, we studied a prey-predator model with harvesting on        

prey. We had taken into account the stock of prey available for harvesting         

and considered that the fishing effort is a function of time that satisfies           

a differential equation. The existence and uniqueness of the solution, the 

boundary conditions of the solution and the analysis of the points of 

equilibrium were studied. We finished by proposing an optimal harvesting 

strategy to maximize the resources of the fishery. 
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