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Abstract

We study a prey-predator model with harvesting where the fishing
effort is considered as a function of time. The analysis focuses on the
equilibrium points and the optimal harvesting strategy.

1. Introduction

For a long time, fishing has been considered as a main activity for large
parts of the human population. But the excessive exploitation of fish stocks
is a global problem that current management policies are struggling to solve
[21]. The implementation of this management requires mostly scientific
studies. The authors in [9, 15, 10, 16] conducted studies to better knowledge
and understanding the functioning of the fisheries system on the one hand,
and on the other hand, to try to improve the fisheries situation. The study of
prey-predator models plays an important role in ensuring the survival of
species [2, 3, 7, 14, 13]. We are interested in a prey-predator model of
aquatic species (fish) with harvesting on prey. We consider that the harvest
function per unit effort is proportional to the stock of prey available for
harvesting and that the fishing effort is a function of time. The model is

presented as follows:

d’;_(t’) - rx(t)(l - %) - min(y(”g—(i)l), vj y(e) = k(e),

B = e B0y )50) - w0 0

1) = B(pmax() - ) £(0)

with x(0) = x5 = 0, y(0) = yp = 0 and E(0) = E, = 0.

x(t) and y(t) represent prey and predator densities, respectively, at
time ¢, E(r) is fishing effort at time 7, k(r) = mqgE(t)x(¢) is the harvest
function at time ¢t and r, K, |, e, a, D, Y, p, m, g, B are positive constants:

r is the growth rate of prey, K is the limiting capacity of the environment, [
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is the mortality rate of predators, e is the conversion rate of prey to
predators, a is the predation rate, D measures other causes of prey mortality
outside of predation, y is the maximum amount of food predator needs per
unit of time, p is the constant price per unit of biomass, m is the fraction of
the prey stock available for harvesting such that 0 < m <1, g is the capture

coefficient, ¢ is the cost of fishing constant per unit effort and 3 describes

the dynamics of fishing effort. In system (1), y(ctl;c—(-lt-)D is the amount of food
. ( ax(t) .
a predator has access to and min| ——~—+—, Y| is the amount of food a
y(t)+D

predator receives per unit time. In this model, the constant predation rate a is
obtained by integration of a continuous and 1-periodic function [12]. Several
mathematicians have conducted studies on the model to explain the effects
of the water level fluctuations on the life of fish [4-6, 18]. Sarkar et al., in
[1], also studied the effects of water level fluctuation taking into account
the interactions with invertebrates. The model was recently studied in [17]

where harvesting was non-selective.

Remark 1. Without the third equation of system (1) and for m = 1, the
model (1) is well studied in [12].

The rest of the paper is organized as follows: Section 2 is devoted to the
mathematical analysis of the model. We prove the existence and uniqueness
of the solution, determine the boundary conditions of the solutions, and
study the equilibrium points. In Section 3, we propose an optimal harvesting

strategy. Finally, Section 4 provides the conclusion.
2. Mathematical Analysis

We find that if the fishing effort is greater than qu, then d)fT(tt) <0,

and therefore, both the species will disappear. Thus we consider the

following hypothesis: (H;): E(t) < qu, O¢ > 0.
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2.1. Existence and uniqueness of the solution

Lemma 2.1. Let G be a Banach space, f : G - R be a function and
yOR. Set h: G > R, x = min(f(x), Y). If fis locally Lipschitzian, then

the function h is locally Lipschitzian.

Proof. Since fis locally Lipschitzian, there exists a positive constant k
such that

| f(n) = f)| < klx —x g Ox, x OG.

Since & can be rewritten as

hx) = 3 (F() +y =1 £() - y)),
) = he2) [ = 3] £(n) = Fl0) =] () = v]+] () -y
< 20 £Ca) = )+ 11 £ () = vI =] £(x2) = ]

< S FGa) = F0) [+ () = F(x2) ]
<[ F(n) - £(x)]
< k| x = g
Hence,  is locally Lipschitzian. O

Theorem 2.1. Let x5 =20, yy =0 and Ey =2 0. Then the system (1)
admits a unique positive solution (x(t), y(¢), E(t)) such that x(0) = xg,
¥(0) = yo and E(0) = E.
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Proof. Let
X . ax
filx. y. E) rx(l fj mm(yJ,—D, vjy mqEx
= = . ax _
F(x, y, E) =| fa(x, y, E) | = em1n(y+D,y)y Ly
f3(x, y, E)
B(pmgx — ¢)E

From Lemma 2.1 we can say that functions f; and f, are locally
Lipschitzian. The function f3 is also locally Lipschitzian. According to the
Cauchy-Lipschitz’s theorem [11], the system (1) admits a unique solution
(x(#), (1), E(z)) such that x(0) = xg, y(0) = yo and E(0) = E,.

For the positivity of the solution, we use the property of isoclines [19].

The axes x, y and E are zero isoclines of the system, so no trajectory can
intersect one of these three axes. Thus any trajectory resulting from an initial
condition taken in the positive frame remains inside this frame for all ¢ = 0.

So any solution of the system (1) remains in the quadrant Ri. This

completes the proof. U

Lemma 2.2 [8]. Let a and b be two strictly positive real numbers.

SR

. If% < x(¢) (a = bx(t)) with x(0) >0, then lim sup x(t) <

t - +oo

I B> x(e) (a = bx(e)) with x(0) >0, then Tim inf (1) > .

t — +oo

Theorem 2.2. Assume that the hypotheses (H) and

(H,): %—D>O

hold. Let the set A be defined by

A={(x,y,E)DRi/OSxSK,OSyS@,OsE<qu}.

Then the solution of the system (1) is bounded and belongs to the region A.
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Proof. Since the solution of system (1) is positive, we have x(t) =0,

y(t) =0, and E(t) = 0 forall t = 0.

Using the first equation of the system (1), we have

dx_(t) < r(l —ij.

dt K

According to Lemma 2.2, we obtain

lim sup x(¢) < K.

t - 400
So for an arbitrary € > 0, thereisa 7} > 0 such as
x(t) < K+¢g, Ot>T,.
Using the second equation of the system (1), we have

dy(r) . (ae(K +g) _
dt ~ y+D

u. o>

<S5l +&)-wp-w). Or>T,

< > (ae(K +&)-uD -w), Or>T,.
According to Lemma 2.2, we obtain

lim sup y(t) < ac(K +&) - HD, Ot > Ty.
t — too u

As g is arbitrary, lim sup y(f) <

t — +oo

aek =WD o, 5 7
T
Under the hypothesis (H,), we have w > 0.

So for an arbitrary €, > 0, there exists a 7, > T} such that

y(r) < —aeKu_ 2N &, Ot>T.
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According to the hypothesis (H;), we have E(t) < qu, Or = 0.

Therefore, E is bounded for all ¢+ = 0.

The proof is complete. (]

Proposition 2.1. Assuming

e min[v(yo +D) _4ryuD ]
X0 K(r+p)?

forall t 20,

ax(r) < y(y(r) + D).
Proof. Let u(t) = ax(¢) — y(y(¢) + D).
Now, we show that if the hypothesis (H3) is satisfied, then u(z) is
strictly negative for all ¢ = 0.

For ¢ = 0, we have

(0) = @x(0) = Y((0) + D) = o a - M0 2L,

+
with xy > 0. According to the hypothesis (H3), a < M Thus
0

u(0) < 0. Suppose there is a positive £, such that u(ty) =0 and % > 0.

Using the system (1), we obtain

ducgo) - a[rx(to)(l - xg?)j _ y(?;C;tg)D y(to) - qu(IO)x(IO)}

- e ) - )|
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By using the fact that y(zy) = @ - D, we have
Aitlo) = 9 (1 (1g))2 + alr + ) xltg) - agmEig) x(ty)
dt K
_ ¥(to) _
a(a + ey) y(t()) +D x(t()) WD

IN

- (x(t))® + a(r + 1) x(t) = .

So under the hypothesis (Hj3), % <0, and this constitutes a
contradiction.

Thus, for all ¢ > 0, we have u(fy) # 0 or % <0.

This means that for all 7 > 0, u(t) < 0. O

Remark 2. Under the hypothesis of the previous proposition, the system

(1) can be rewritten in a simplified form as follows:

dx _ _X\_ axy _

i rx(l Kj —y D mqEx,

dy _ eaxy _

i =5eD W @)
dE _ B

E - (pqu C)E

2.2. Equilibrium points

Proposition 2.2. The system (2) admits five (05) points of equilibrium
such that

() Py(0; 0; 0),

(ii) A(K; 0;0),
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o. "(Kpmgq = c)

; 0; 3 exists under the
pmq Kp(mq)

(iii) the equilibrium point Pz[

assumption

(Hy): pmgK > c,

(iv) the equilibrium point Py(x; y; 0) exists if and only if

4r

uD > g+ 2rp\D
Ke

r+\/(r—a)2+ Kae ’

=%(r—a+\/(r—a)2 +_4;{L16D] and

_ Kae( _ 2D \/ _ y2 , 4ruD
_Zp.r(r a Kae+ (r=a)”+ Ke j’

with

=I

<

(V) the positive equilibrium point PD(xD, y[E ED) exists under the

assumptions

ace c S
: > 0<1 - -—<
(Hs) pmg D and (Hg):0<1 Kpmg _ er 2
where
=L yDZ 9 _p and E"=-L (1— ¢ —E).
pmq Hpmq pmq Kpmg  er

Proof. By solving the following system:

- ey =
rx(l Kj v+ D mgEx =0,

eaxy
y+D

B(pmgx —c)E =0,

—Wy =0,

we obtain the equilibrium points F,), B, P, and Pt O

Proposition 2.3. (i) The point Fy is an unstable equilibrium.



426 Daniel ZAMBELONGO et al.
(i1) The equilibrium points P| and P; are also unstable.
(iii) The equilibrium point Py is stable under the assumption (HS) and

unstable under the assumption (Hs).

@iv) The positive equilibrium point P is locally asymptotically stable

under the assumptions of its existence.

Proof. The Jacobian matrix of the system (2) is

r— % S gmE —_an —gmx
K y+D (y + D)?
_ eay eaDx
J(x, y, E) = ) m 0
BpmgE 0 B(pmgx - c)

The Jacobian matrix associated with the point F, gives:

r 0 0
J(B)=|0 -p 0
0 0 —Pc

The matrix J(R)) has three distinct real eigenvalues A\; =r >0, Ay =

—H <0 and A3 = —c < 0. So the point Fy is an unstable point.
The Jacobian matrix associated with the point A is

—akK
D
J(R)=10 - 0

0 0  PB(pmgK -c)

-r —gmK

The eigenvalues of the matrix J(B) are: A =-r >0, Ay = - <0
and A3 = B(pmgK - c). Under the assumption (H4), A3 >0, so P is an

unstable equilibrium.
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Concerning the point P, we have

—Cr —ac __C
Kpmgq pmgD P
eac
J(P) = 0 oD H o0
Br(Kpmq B C) 0 0
Kpmg

The calculation of the characteristic polynomial P gives

PO\ =(— 4 _cac_ —Aj N+ n P (pmg - o) |
A)=|-u omgD Kpmg szmq( pmq = c)

Assuming that S = " and T[=£(Kpmq—c), we have
Kpmq Kp*mg

§ <0 and M >0 under the hypothesis (H4). Thus under the hypothesis

(Hs), that is, €aC 5 D, the point P is unstable and stable if €ac < p
WUpmg m
(Hs).

For P(x, ¥, 0), the associated matrix is

-rx —aDXx —qm
K (3+py
_| eay eaxy
R e ’
0 0 B(pmgx —¢)

The characteristic polynomial of J(P;) is

P(\) = [B(pmgx = c) = A]

_ __ __ R
x| A2 +|IX & eaxy2 A+ __T€axXy - ea ny3 .
K G+py) KG+D) K(F+D)
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_— 2 - _ o
: D
Assuming that = ——2Y 4 @YY g § = _(ﬂ §_caxy }

K(y+D)* K(y+D) K (+py
we have: >0 and S <O0.
Moreover, under the hypothesis (H4), B(pmgK —c) > 0. Therefore,

P; is an unstable equilibrium.

For PD, the associated matrix is

-rx —anD _quu
kK ("+py
eayD —eanyD
J(PY = 0

arp arp a3
any %) arz with

Consider J (PD)
dz1 4z 433

— —_.n0
_ Trxo _ aDx~ _ O
an T o a2 —W’ a3 = —gmx,
a _ eayD i _ —eanyD . =0
21 = s 4 =T 5 @3 = U
y +D (y~+D)
a3 = BpmgE" a3y = 0; azz = 0.

By calculating the determinant of the matrix J (PD), we have

det(J (PY) = asy(ay1a00 — appas1)
0 0.0 0 0
= BpmgEq - x egx Y 5+ ng 5 X eDay
K (y7+D)* (+D)* y'+D
0
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The characteristic polynomial of J (PD) is of the form:

where

Al:

A2=

A3:

P(\) = N+ AN + A\ + A,

~(ay; +ap) = L + ey
K (P+p)y

—(ajpay1 + ajzaz; — ayjay;)

We have A} >0 and Az > 0.

AAy — A3 =

2. 0.0 0,0
eDa”x 2 arex
= S+ Bp(mg) BT+
(y~+D) 2KD(yD + D)
_ 2 (x E
aj3axaz; = Beap(mq) %-
y
Now, we determine the sign of AjA, — Ajz:
o eDDGZXDyZD + Bp(mq)* xED + arngyD .
K67+ ) K(y~+D)

+

eanyD (eDaszyD_i_ arenyD ]

M+ D) (OP+ D)y K(7+D)

ThUS, A1A2 - A3 > 0.

429

According to the Routh-Hurwitz criterion [19], the eigenvalues of the

matrix J (PD) have negative real parts. Therefore, the point PYis locally

asymptotically stable.

Remark 3. According to the hypothesis (Hs), if m < u;cqe

O

, then the

trajectories converge towards equilibrium p" (Figures 1 and 2). However,
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if m>

ace . . e
D’ then the trajectories converge towards the equilibrium P

(Figure 3). In this case, the predator disappears.

For figures below, the constants are as: r =12, K =40, a =11,
D=5 g¢g=6, =120, u=045 =125 p=13 c¢=1.15
(x(0). ¥(0), E(0)) = (7. 15, 5).

18

=
(o]

=<
S
e ——

E

—
N

=
o

in

| \"HH
|

\ ‘H}‘HWH“

©

[=)]

predator,prey and fishing effort

I

N

time

Figure 1. Convergence of the solution towards the equilibrium point P" for
m = 04.
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Figure 2. Phase portrait for m = 0.4.

18 T

E
14| ]

12 g

10 1

predator,prey and fishing effort
©

0 50 100 150
time

Figure 3. Convergence of the solution towards the equilibrium point P, for

m = 0.88.

Theorem 2.3. If the existence conditions (Hs) and (Hg) hold, then p-
is globally asymptotically stable.
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Proof. Let V be a function defined by

V(x, y, E) = O(1[(36 - - xmln(igﬂ + O‘2{@ -y - yDln(lDﬂ
. y
+ 0(3[(E -EY) - EDln(%ﬂ,
E
where Qj, 0, and O3 are positive constants to be determined.

« We have V(x® y2 EN =0 and V(x, y, E)>0, O(x, y, E) #

(xD, yD, ED)

* Note that
Vg o)l ) by (EZED) dE
dt X dt y dt E dt
co(ee Ao ay T - [ eax
ay (x x%[r K y+D ”WE} as(y y%[y+l) HJ

+ o3(E = ED) [B(pmax - c)].

Using the following system

0 0
P o ély - mgE =0,
K J04p
O
eax
O =0,
y +D
B(pmgx=—c) =0,

we have

av x - x| =L(x -9 - aD(y—yE5 -m -
ar =l %{K( Ve " Eﬂ

+ay(y - yE5 eany + eaDx — eany - eaDx"
’ (5+D)(y + D)
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+ a3Bpmg(x - x7) (E - E)

- afo =) F o) PO e - )

(y7+D)(y + D)

[b eany + eaDx — eany — eaDx" + eanyD - eanyD
+a(y -y g
(y=+D)(y + D)

+ asBpmg(x - x7) (E - EV)

o oo gy -y
K ) (y"+D)(y + D)

+(x - x[5 (y - y[»{—alaD + 0yea(D + ytﬁ}

(y"+D)(y + D)
+ pmg(x = x7) (E - E9) (asfp — ay).

and a3 = L, we deduce that

By setting 0y =1, 0p = ————
e(y"+ D) Br

_ Or.. _ 2
AV ol @Dy o g ey e (8,0 gD
e K (y7+ D)*(y + D)

So according to Lyapunov’s theorem [19], the positive equilibrium PYis

globally asymptotically stable. (]

3. Optimum Harvesting Strategy

Determining an optimal fishing strategy is always a problem for policy
makers. The goal is to find a compromise between current and future
harvests while ensuring economic and political interests. In our work, using
the Pontryagin maximum principle, we determine an optimal harvesting
strategy by considering a function that presents the continuous time flow of

income.
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Let U,,; be a non-empty set defined by
Uy ={m:[0, T] - [myin» Mmax )» Lebesgue measurable}.

Consider J a cost function defined by

+o00
J(m) = IO e_&(pqu - c)Edt,

where 9 is the instantaneous annual discount rate, m U, is the control

function, and x represents prey density associated to m.

Our objective is to maximize the functional J, that is, to find the optimal

control m U, such that
J(m) = max{J(m), m OU ,}.

Since J is convex and U,; is compact, we can show that an optimal control

exists [22].

Let M (X, 7, E) be the optimal equilibrium point associated with the

optimal control m. Set
T
J(m) = [ o L (0. m(0)dr + 9, (1)), Dm0 U

with L(t, x,,(1), m(t)) = " (pmgx - ¢)E and ¢(x,,(T)) = 0.
Thus the Hamiltonian function is defined by
H (1, x(r), Mt), m(r))
= L(t, x(¢), A1), m(1)) +(p, f (2, x(¢), m(z)))

— —ot _ _r 2__axy _
= ¢ Y (pmgx c)E+)\1[rx z X y+D quE}

eax
+ Az[w—é - uy} + A3B(pmgx = ¢)E

with A, A, and A5 as adjoint variables.
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Suppose that the optimal control is singular, i.e., the optimal solution

would not be in my;, orin my,,,. Then

OH

Sy = PaxEe™™ = \igxE + AsfipgxE = 0. 3)

According to the Pontryagin maximum principle [20], we get

d\y _ [ -& _2r _ ay eay

d\, =\ aDx . “A, ean2 —ul, ®)
dt (y + D) (y + D)

D23 = 7% (pmg - ) + Aygmx - \B(pmgx - c). ©)

From the relation (3), we have
A = pe”® +Bphs. (7

By replacing the expression of A(¢) in (6), we get

dA -5
_dt3 =Bchy +ce”
whose solution is
_ ¢ -0t
M0 = 55500 ®)
Using the relations (7) and (8), we obtain
_ =&, _ Bc
Am%me(15+&} ©)

The substitution of A(z) in equation (5) gives

),

dtz&[&+@h, (10)



436 Daniel ZAMBELONGUO et al.

with

_ __Be \,_aDx
Al_p(l 5+Bcj (y + D)

and

— Dx _ eaxy
A = (—“J S
(y+ D) (y + D)’

The resolution of equation (10) gives us

-A _
() =55 22 e (11)

Using the equilibrium equations in the relation (4), we obtain

N
dt

- r ea
= —¢ Y pmgE +)\1? -\ . +yD - A3Bc. (12)

By replacing A;(#), A,(#) and A5 in (12) and by integration, we have

-5t 2
_ e _ _ Be T A eay Be
M) =5 {p’"qEJ'p[l 6+Bcijx+6+A2xy+D+5+Bc'

13)

The relations (7) and (13) allow us to deduce the optimal control:

= ﬁ{%(l B 5ECB(;) " p(l B 5ECBCJ

~ 2
x x4 Al x_€ay Be ‘
K 0+4A y+D 0O+fc

The adjoint variables A;(¢), i =1, 2, 3 satisfy the transversality conditions,

ie., lim A(1)=0,i=1,2, 3.

t — +oo
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4. Conclusion

In this paper, we studied a prey-predator model with harvesting on

prey. We had taken into account the stock of prey available for harvesting

and considered that the fishing effort is a function of time that satisfies

a differential equation. The existence and uniqueness of the solution, the

boundary conditions of the solution and the analysis of the points of

equilibrium were studied. We finished by proposing an optimal harvesting

strategy to maximize the resources of the fishery.

(1]

(2]

(3]

(4]

(51

(6]

[71

(8]

References

Abhijit Sarkar et al., Chaos in a nonautonomous mode for the interactions of prey
and predator with effect of water level fluctuation, Journal of Biological Systems
28 (2020), 865-900. doi:10.1142/S0218339020500205.

A. F. Nindjin and M. A. Aziz-Alaoui, Persistence and global stability in a delayed
Leslie-Gower type three species food chain, J. Math. Anal. Appl. 340 (2008),
340-357.

A. F. Nindjin, M. A. Aziz-Alaoui and M. Cadevel, Analysis of a predator-prey
with modified Leslie-Gower and Holling-type II schemes with time delay,
Nonlinear Anal. Real World Appl. 7 (2006), 1104-1118.

A. Moussaoui and S. M. Bouguima, A prey predator interaction under fluctuating
level water, Math. Methods Appl. Sci. 38 (2014), 123-137.

A. Moussaoui, S. Bassaid and EL Hadi Ait Dads, The impact of water level
fluctuations on a delayed prey-predator model, Nonlinear Anal. Real World Appl.
21 (2015), 170-184.

Ali Moussaoui, A reaction-diffusion equations modelling the effect of fluctuating
water levels on prey-predator interactions, Appl. Math. Comput. 268 (2015),
1110-1121.

Baba Issa Camara and M. A. Aziz-Alaoui, Dynamics of a predator-prey model
with diffusion, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 15 (2008),
897-906.

Bassaid SIHAM, Modélisation mathématique de quelques problémes de
dynamique des populations, These, 2017.



438
(91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(191

[20]

[21]
[22]

Daniel ZAMBELONGUO et al.

Colin W. Clark, Mathematical Bioeconomics: The Optimal Management of
Renewable Resources, 2nd ed., John Wiley and Sons, New York, 1990.

J. C. Seijo, O. Defeo and S. Salas, Fisheries Bioeconomics: Theory, Modelling
and Management, FAO, 1997.

Jean-Pierre Demailly, Analyse numérique et équations différentielles, Grenoble
Science, 2006.

K. Belkhodja, A. Moussaoui and M. A. Aziz Alaoui, Optimal harvesting and
stability for a prey predator model, Nonlinear Anal. Real World Appl. 39 (2017),
321-336.

K. Chakraborty, K. Das and T. K. Kar, Combined harvesting of a stage structured
prey-predator model incorporating cannibalism in competitive environment,
C. R. Biologies 336 (2013), 34-45.

K. Chakraborty, S. Jana and T. K. Kar, Global dynamics and bifurcation in a

stage structured prey-predator fishery model with harvesting, Appl. Math.
Comput. 218 (2012), 9271-9290.

Leed G. Anderson and Juan Carlos Seijo, Bioeconomics of Fisheries
Management, Wiley, 2010.

M. Kot, Elements of Mathematical Ecology, Cambridge University Press, 2001.
Na Zhang, Y. Kao, F. Chen, B. Xie and S. Li, On a predator-prey system

interaction under fluctuation water level with nonselective harvesting, Open
Mathematics 18 (2020), 458-475.

N. Chilboud Fellah, S. M. Bouguima and A. Moussaoui, The effect of water level
in a prey-predator interactions: a nonlinear analysis study, Chaos Solutions
Fractals 45 (2012), 205-212.

Pierre Auger, Etude mathématique en écologie, Dunod, Paris, 2010.

Suzanne Lenhart and John T. Workman, Optimal Control Applied to Biological
Models, Chapman and Hall/CRC, New York, 2007.

Suzanne Touzeau, Modeles de contrdle en gestion des péches, 1997.

Wendell H. Fleming and Raymond W. Rishel, Deterministic and Stochastic
Optimal Control, Springer-Verlag, New York, 1975.



