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Abstract 

The fractional order theory explores over the field of mathematics and 

physical sciences as it provides the generalization of non-integer order 

for derivative and integration. Numerical methods are used to study 

temperature fields with heat transfer in homogeneous bodies whose 

thermophysical characteristics depend on the temperature. However, 

analytical solutions of such problems are needed for qualitative 

analysis to solve the corresponding problems of thermoelasticity.      

This study focuses on examining the thermoelastic behavior of a 

rectangular plate, incorporating time dependent fractional order 

derivative. Moving line heat source in x-direction is considered for 

heat conduction analysis. The nonlinearity of the heat conduction 

equation is dealt using Kirchhoff’s variable transformation. The 

solution of fractional heat conduction equation (FHCE) is obtained 

using finite Fourier cosine transform and Laplace transform methods. 

The obtained solution in transformed domain is expressed in terms of 

Mittag-Leffler function, trigonometric functions and hypergeometric 

functions. The effect of time fractional order parameter and velocity 

on temperature profile and thermal profile is analyzed graphically. 

During the analysis, it is observed that the inhomogeneous material 

properties cause the magnitude of profile of thermal characteristics        

to increase on comparison to that of homogeneous case. Smaller 

magnitudes of temperature, deflection and stresses are seen for larger 

values of velocity. 

1. Introduction 

In thermoelasticity, the heat diffusion process is heterogeneous and non-

regular in nature and does not obey laws of mechanics. Hence, it is essential 

to introduce fractional order derivative in diffusion equation. In this paper, 

the theory of fractional calculus is used to modify the existing model of 
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physical processes which includes the fields of heat conduction, diffusion, 

viscoelasticity and solids mechanics. 

Initially, the investigation of time fractional derivative was carried           

out by Caputo and Mainardi [1-3]. Noda [4] studied different cases of 

temperature dependent thermal conductivity. Luchko and Gorenflo [5] and 

Mainardi and Gorenflo [6] used Caputo derivatives and M-L functions         

and solved fractional differential equations. Povstenko [7, 8] solved 

thermoelastic problems involving fractional derivatives. Tarasov [9] proved 

chain rule for fractional derivatives. Manthena et al. [10] studied the thermal 

behaviour of a rectangular plate with thermally sensitive material properties. 

Considering moving heat source in fractional order context, Bassiouny and 

Youssef [11] discussed thermoelastic behaviour of a thin layered plate. 

Manthena et al. [12, 13] considered temperature dependent material 

properties and analyzed thermoelasticity of a plate. The effect of fractional 

parameter for thermoelastic half space subjected to a moving heat source is 

studied by Hussein [14]. 

Yi et al. [15] developed a comprehensive analytic thermal model taking 

moving heat source and the superposition principle of heat source. Sur et al. 

[16] investigated thermal effect on skin tissues due to the influence of the 

Caputo-Fabrizio moving heat source. Kumar and Kamdi [17] solved a two-

dimensional finite hollow cylinder problem using fractional thermoelasticity. 

Geetanjali and Sharma [18] discussed spherical cavity with generalized 

thermoviscoelastic diffusion. Chaurasiya and Singh [19] numerically 

investigated a non-linear moving boundary problem with temperature-

dependent conductivity. Singh and Mukhopadhyay [20] investigated the 

effect of strain rate and temperature rate factors on an elastic medium 

originating due to continuous line heat source. Rahimi et al. [21] analyzed 

the vibrational behaviour of the double-layered micro-nanosphere. Several 

authors [22-27] discussed the heat conduction, thermal stresses and 

fractional thermoelasticity in different solids. 

During the previous three decades, due to the utilization of basic 

materials at high temperatures, a pattern of examination of thermoelasticity 
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is made in which the impact of temperature and mechanical properties            

of the structure is mulled over, and subsequently the investigation of 

thermoelasticity in solids with material properties dependent on temperature 

received attention. Even though numerical methods are used to solve such 

problems, analytical solutions are still needed for qualitative analysis of 

thermoelastic problems. This paper investigates an uncoupled problem              

for a finite rectangular plate. Finite Fourier cosine-transform and Laplace 

transform are used for solving the heat conduction equation (HCE) and the 

solution is expressed using trigonometric and Mittag-Leffler (M-L) function. 

The temperature distribution profile and thermal profile are analyzed 

graphically due to the effect of moving velocity. 

2. Heat Conduction Equation and its Solution 

A rectangular plate occupying the space defined as ,0 ax ≤≤  

,0 by ≤≤  cz ≤≤0  is considered. We considered an rth order FHCE in 

context with Caputo derivatives and prepared a mathematical model. 

Following Caputo and Mainardi [1-3], we have 
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FHCE of a rectangular plate with heat source is 
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The boundary and initial conditions are 
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0=T  at 0,20,0 =∂
∂≤<=

t

T
rt  at ,21,0 ≤<= rt  (5) 

where ( )Tk  and ( )TC  are heat conductivity and heat capacity, ( )tzyxH ,,,  

is the moving heat source along x-direction, and ρ  is the density. 

 

Figure 1. Geometry of the problem with moving heat source. 

We introduce the following dimensionless parameters: 
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Here 0T  is the ambient temperature, κ  is the thermal diffusivity, ,0ρ  ,0E  

,1E  ,0α  1α  are reference values of density, Young’s modulus, thermal-

expansion coefficient, and  21, ϖϖ  are the frequencies. 

We define ( ) ( ) ( )tzyxHTCTk ,,,,,  as 

( ) ( ) ( )[ ] ( )[ ] ,, 00
rr

TCCTCTkkTk ∗∗=∗∗=  
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( ) ( ).,,,,,, 0 ∗∗∗∗∗= tzyxHhtzyxH  (7) 

Using equations (6-7), equations (3-5) become (ignoring asterisks for 

convenience): 
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with boundary and initial conditions 
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where 
00

2
0

0 Tk

ah
P =  is the dimensionless Pomerantsev reference number. 

Using Kirchhoff’s transformation [26] from the following equation (11), 

equation (8) transforms to equation (12), 
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The boundary and initial conditions (9) and (10) become 

0=∂
Θ∂
x

 at 0,,0 =∂
Θ∂=
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t
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We consider ( )tzyxH ,,,  as a line heat source moving with 

dimensionless velocity V along positive x direction defined by [14, 16, 20]: 
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( ) ( ) ( ) ( ).,,, zyVtxtzyxH δδ−δ=  (15) 

Using equation (15) in equation (12) and applying Laplace transform 

(LT), we arrive at 
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Implementing finite Fourier cosine transform (FCT) on equation (16) 

over the variables x, y and z, we obtain 
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( )czlπcos  are the kernels of finite FCT and { ( ) ( )}zyeF
Vxs δδ−  represents 

the finite Fourier transform with respect to variables x, y and z. 

On simplification, the above equation (17) leads to 
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Taking inverse LT of the above equation (18), we obtain 
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and ( )( ),,11 Or +εφ  ( )( )Or ,12 +εφ  are the hypergeometric functions, qpG  

is the generalized hypergeometric series defined as 
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Applying inverse FCT on equation (19), we obtain 
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By employing the inverse Kirchhoff’s transform on equation (20), the 

solution of temperature is derived as 
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3. Thermoelastic Analysis 

In rectangular coordinates for a rectangular plate with support at its 

ends, the deflection equation is [25]: 
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where w is the deflection, TM  is the resultant moment, ( ),TD  ( ),TE  ( )Tν  

are flexural-rigidity, elastic-modulus and Poisson’s ratio, respectively. 

The net-forces are 
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The force-resultants are 
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( )( ) ( ) .1
2

yx

w
TDTM xy ∂∂

∂ν−=  (26) 

The stress elements are [25]: 
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Here ( )Tα  is the thermal-expansion coefficient. 

 For calculating moments ,, TT NM  let 
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Applying equations (29) and (21) on equation (28), we get 
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4. Numerical Results and Discussion 

Using the thermally induced resultant moments, thermal deflection, 

stress resultants and the corresponding stress components are obtained        

with Mathematica software. In numerical analysis, we examined a model 

characterized by Copper material with thermo-elastic properties as given 

below: 

,K3200 =T    ,m4=a    ,m2=b    ,m1=c    ,mKW3860 =k  

,mKW3701 =k    ,mkg8954 3=ρ    ,mkg8952 3
0 =ρ  

,kgKJ3880 =C    sec,m101.11 25−×=κ    ,secmkg10133 29
0 ×=E  
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,secmkg10121 29
1 ×=E    ,K109.17 6

0
−×=α  

,K108.16 6
1

−×=α    .sec2=t  

The following Figures 2 to 6 are plotted by taking the fractional order 

parameter .2,5.1,1,5.0=r  Figures 2 to 6 represent temperature, deflection 

and stress distribution. Figures 3 to 6 on the left represent homogeneous 

case, while on the right represent nonhomogeneous case. 

 

Figure 2. Plot of temperature. 

 

Figure 3. Plot of deflection. 
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Figure 4. Plot of .xxσ  

 

Figure 5. Plot of .yyσ  

 

Figure 6. Plot of .xyσ  
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From Figure 2, it is seen that the temperature assumes a uniform pattern 

for different r. It takes nonzero value at both extremities except for ,5.0=r  

where it becomes zero at the outer end. Due to thermal insulation at all ends, 

thermal energy gets accumulated at the middle region for larger value of r. 

From Figure 3 it is seen that, deflection is positive in the middle portion, 

and negative at both the extremities. 

From Figures 4-6, it is seen that in the homogeneous case, the 

components ,xxσ  xyσ  are tensile in the regions ,7.00 << x  ,4.00 << x  

respectively, while compressive towards the other end. The stress component 

yyσ  is compressive throughout. In the inhomogeneous scenario, all stress 

components exhibit tensile characteristics. 

The following Figures 7 to 11 are plotted for different values of velocity 

3,2,1=V  depicting temperature distribution, deflection and stresses. 

Figures 8-11 on the left represent homogeneous case, whereas that on the 

right represent nonhomogeneous case. 

In Figures 7-11, as the velocity V increases, there is a decrease in the 

magnitude of temperature which consequently causes decrement in the 

magnitude of deflection and thermal stresses. 

 

Figure 7. Plot of temperature. 
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Figure 8. Plot of deflection. 

 

Figure 9. Plot of .xxσ  

 

Figure 10. Plot of .yyσ  
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Figure 11. Plot of .xyσ  

5. Conclusion 

In this paper, we have obtained the solution of fractional order heat 

conduction equation subjected to moving heat source for a thermally 

sensitive rectangular plate. The obtained solutions reduce to the solutions of 

classical HCE for .1=r  

From this study, it is concluded that 

(1) The velocity V has a notable impact on the variations in temperature, 

deflection and stress profiles. 

(2) For larger values of V, smaller magnitudes are obtained. It is 

physically reasonable that when the heat source accelerates, it lacks 

sufficient time for heat dissipation. 

(3) A reduced heat release corresponds to a diminished temperature rise 

and vice-versa causing a thermal deformation, which generates stress in the 

rectangular plate. Hence, for smaller values of V, comparatively larger peak 

is observed. 

(4) The presence of thermosensitive material properties leads to a 

noticeable impact. 
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(5) The stress component xyσ  takes a high negative value in the 

homogeneous case as compared to rest of the stresses. 

(6) In the inhomogeneous case, yyσ  takes highest magnitude as 

compared to .xxσ  

(7) This type of study may prove to be helpful for theoretical modelling 

of thermoelastic problems at micro/nanoscale and may be beneficial to the 

design of devices operated under high temperature environments. 
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