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Abstract 

This paper solves the SIR-epidemic model utilizing the homotopy 

perturbation method (HPM). The HPM is applied in a different way  

in contrast to the HPM in the literature. The current approach uses           

a new canonical form for the system of the SIR-epidemic. The  

analytic solution is obtained and compared with the published one,         

in addition, to the Runge-Kutta numerical method. The results show 

better accuracy than the corresponding ones. 

1. Introduction 

During the spread of COVID-19 in the beginning of 2020, a considerable 

attention was given to modeling the infectious diseases [1-3]. So, various 

classical and fractional mathematical models have been formulated [4-8] to 

study the dispersion of COVID-19. The susceptible-infected-recovered (SIR) 

model is a famous model which has been used to describe the mechanism of 

numerous diseases. This model becomes fundamental to describe a number 

of epidemics by means of linear/nonlinear ordinary differential equations 

(ODEs). The simplest SIR-model has been formulated in [5], given by the 

nonlinear system: 

( ),τ=τ I
d

dR
 (1) 

 ( ) ( )[ ] ( ) ( ),1 τ−ττ−τ−σ=τ IIIR
d

dI
 (2) 

where ,Tt=τ  t is the time in days and T is the time of transmission of the 

virus. The infected and the recovered individuals are represented by ( )tI  

and ( ),tR  respectively, where ( )tS  denotes the susceptible individuals: 

( ) ( ) ( )tItRtS −−= 1  while σ  is the transmission rate (physical contact 

number between susceptible and infected individuals). The model is 

subjected to the initial conditions (ICs) [6]: 

 ( ) ( ) .0,0 BIAR ==  (3) 
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Adomian’s approach [9-18] and the homotopy perturbation method 

(HPM) [19-22] are familiar methods to find approximate solutions of 

linear/nonlinear ODEs. The two series solutions obtained by these methods 

are identical when applied on the same canonical form of the given ODE. 

Although, the HPM has been implemented in [6] to solve the SIR-model, we 

use it a different way. The present approach is based on setting the problem 

(1)-(2) in a new canonical form. Such canonical form allows us to obtain 

different approximations for the present system. The accuracy of the            

new approximations is validated through comparison with the previous 

approximations using HPM in [6], and the also with the Runge-Kutta 

numerical method. It is concluded that the present approach is much accurate 

than the previous one [6] for a certain range of the transmission rate .σ  

2. Application of the HPM 

The system can be rewritten as 

( ) ( ),τ=τ′ IR  (4) 

 ( ) ( ) ( ) ( ) ( ) ( )[ ].1 τ+ττ−τ−σ=τ IRIII  (5) 

Implementing the canonical form: 

( ) ( ),τ=τ′ qIR  (6) 

 ( ) ( ) ( ) ( ) ( ) ( )[ ],1 τ+ττ−τ−σ=τ IRqIII  (7) 

where ( )10 ≤< qq  is the auxiliary parameter of the HPM and 

 ( ) ( ) ( ) ( ) 
∞

=

∞

=
τ=ττ=τ

0 0

.,

n n

n
n

n
n

IqIRqR  (8) 

Inserting equations (8) into (6-7) and using the ICs (3), we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ,0,0,01,0 00000 BIARIIR ===τ−σ−τ′=τ′  (9) 



Nada A. M. Alshomrani et al. 350 

and 

( ) ( ) ( ) ,00, 11 =τ=τ′ ++ nnn RIR  (10) 

( ) ( ) ( ) ( ) ( ) ( )[ ]
=

−++ τ+ττσ−=τ−σ−τ′
n

k

kkknnn RIIII

0

11 ,1  

( ) .001 =+nI  (11) 

Integrating (10) and (11), we have 

( ) ( )
τ

+ µµ=τ
0

1 ,dIR nn  (12) 

( ) ( ) ( ) ( ) ( ) ( )[ ] 
τ

=
−

µ−σ−−σ
+ ≥µµ+µµσ−=τ

0
0

11
1 .0,

n

k

kkkn
t

n ndRIIeeI  (13) 

From (9), we can obtain ( )τ0R  and ( )τ0I  as 

 ( ) ( ) ( ) ., 1
00

τ−σ=τ=τ BeIAR  (14) 

Employing (10) and (11) when ,0=n  we get 

( ) [ ( ) ],1
1

1
1 −−σ=τ τ−σ

e
B

R  (15) 

( ) [ ( ) ( ) ] ( )
.

1
1112

2

1
τ−στ−στ−σ τσ−−−σ

σ=τ eABee
B

I  (16) 

For ,1=n  we have 

( ) ( )
( ) ( )

( ) τ−σ

−σ
σ−

−σ
+σ−=τ 12

2

2

22
1212

2
e

BBAB
R  

( )
( ) ( ) ,2222

12

12

2

τ−σστ+τ−−−
−σ
σ− eAABA

B
 (17) 
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( )
( )

( )
( )

( σ−σ−−
−σ
σ+

−σ
σ−=τ τ−σ 2

2

13

2

23

2 422
121

BABB
B

e
B

I  

( ) ) ( )
( )2

12

12
14

−σ
σ+τ−σσ+ τ−σ B

eAB  

( στ+στ+σ+σ+τ−× ABBBABBB 222222 2  

) ( ) .22 1232222222 τ−στσ+στ−τσ−στ+ eAAABA  (18) 

Similarly, we can obtain higher-order components. Hence, the 

approximate solution is given, as ,1→q  by 

( ) [ ( ) ] ( )
( ) ( )

( ) τ−στ−σ

−σ
σ−

−σ
+σ−−−σ+=τ 12

2

2

2

1

1212

2
1

1
e

BBAB
e

B
AR  

( )
( ) ( ) ,2222

12

12

2
⋯+στ+τ−−−

−σ
σ− τ−σ

eAABA
B

 (19) 

and 

( ) ( ) [ ( ) ( ) ]τ−στ−στ−σ −−σ
σ+=τ 112

2
1

1
ee

B
BeI  

( )
( )

( )
( )2

13

2

23
1

121 −σ
σ+

−σ
σ−τσ− τ−στ−σ B

e
B

eAB  

( ( ) ) ( ) τ−στ−σσ+σ−σ−−× 122 14422 eABBABB  

( )
( ) ( στ+σ+σ+τ−×

−σ
σ+ τ−σ

BBABBBe
B

22222
12

21

2
 

) .222 232222222
⋯+τσ+στ−τσ−στ+στ+ AAABAAB  (20) 



Nada A. M. Alshomrani et al. 352 

 

Figure 1. Comparison between the present HPM for ( )τR  (equation (19)), 

the Runge-Kutta numerical solution, and the HPM in [6] for ,0=A  

,01.0=B  and .6.0=σ  

3. Validations 

The objective of this section is to validate our results through 

comparison with the Runge-Kutta numerical method and the HPM in [6]. In 

[6], the authors used different canonical form of the HPM and accordingly 

they obtained the following approximations: 

( ) BBeAtR +−= τ−  

( )




 −τ−+−−τ−−σ+ τ−τ−τ−τ−τ−τ−

eeBeBeeeBB
2

2

1
 

,1
2

3






 −σ− BB  (21) 

( ) [ ( ) ]2
BBeBBeBetI σ−τ−−τσ−+= τ−τ−τ−  

( ) [ τ−τ−τ−τ− σ+τσσ−+σ−σσ− eBeBBeBBBBe
222 64

2

1
224

2

1
 

τσ+στσ−τσ−σ− τ−−τ−
BBeBBeB 222 222222  

].2242 22 στ−−τ+τσ−τσ+ τ−τ−
BeBeBB  (22) 

Figure 1 shows the comparison between the present HPM, the          

Runge-Kutta numerical solution, and the HPM [6] for ,0=A  ,01.0=B  and 
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4.0=σ  for ( ).τR  Also, Figure 2 displays the comparison between the 

present HPM, the Runge-Kutta numerical solution, and the HPM for the 

same values of parameters for ( ).τI  The results show that our approach 

enjoys better accuracy in contrast to the HPM [6]. 

 

Figure 2. Comparison between the present HPM for ( )τI  (equation (20)), 

the Runge-Kutta numerical solution, and the HPM in [6] for ,0=A  

,01.0=B  and .6.0=σ  

4. Conclusions 

In this paper, the SIR-epidemic model was solved utilizing the homotopy 

perturbation method (HPM). The HPM was applied in a different way 

compared with the HPM in the literature. The current HPM uses a new 

canonical form for the system of the SIR-epidemic. The analytic solution 

was obtained and compared with the corresponding ones in [6] and also with 

the Runge-Kutta numerical method. The present results show better accuracy 

than the corresponding ones.  
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