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Abstract

The article considers the problem of constructing a 27 -periodic

solution of a quasilinear second-order integro-differential equation.

Using the Green’s function of bounded solutions on the number line,
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the integro-differential equation is reduced to an integral equation.
A 2m-periodic solution to the integral equation is found using the
projection-iteration method. A 27 -periodic solution is sought as the
limit of successive 2Ti-periodic functions representable as a Fourier
series. An estimate of the error of the difference between the exact and

approximate solutions is obtained.
1. Introduction

In many problems of science and technology, there are phenomena
that describe oscillatory processes, the mathematical models of which are
differential and integro-differential equations and their systems. In this
regard, one of the important issues in the study of quasilinear, nonlinear
differential and integro-differential equations is the study of periodic
solutions and the construction of an algorithm for finding them. Various
methods are used to study periodic solutions. Among the existing methods,
there are methods along with the proof of theorems for the existence of
periodic solutions that make it possible to construct these solutions. Such
methods for studying periodic solutions include the Galerkin method, a
projection-iteration method combining the ideas of the Galerkin method and

the method of successive approximations.

Issues of constructing periodic solutions according to the Galerkin
method for non-autonomous systems of differential equations, systems of
differential equations with delay and various types of non-autonomous

integro-differential equations were studied in the works of [1, 2, 4, 5].

The works of differential research are devoted to the study of periodic
solutions by projection-iteration methods of a system of differential
equations, a system of differential equations with delay, and integro-

differential equations. See [3, 6-10].

This work is devoted to the study of periodic solutions of a quasilinear

second-order integro-differential equation.
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2. Statement of the Problem

Consider a second-order integro-differential equation of the form:

dzx(t)
dr?

= Ax(t) + f(t, x(t), Itt_T¢(t, s, x(s))dsj, (1)

where A is a positive real number, f, ¢ are continuously-differentiable 21 -

periodic functions of ¢, s and T is a constant.

Denote by C'(T xDx D) the space of r-times continuously
differentiable functions f(¢, x, u)with respect to (¢, x, u) O (T x D x D).
The function (¢, s, x) is periodic in ¢, s with period 2m, where T =

[0, 21], D O R = (-, +o).
We introduce norms as:

2

>

_ _ _| Ly g2
=m0 g 71y = s | )l |1y =| o [ Pt

where Df is the first-order partial derivative with respect to its variables, and
[ O is the Euclidean norm.

Consider a second-order differential equation:

2)C
"7‘” = ax(t) + £(0). @

where f(t) is a continuous 2T -periodic function, representable as a Fourier

series:

[oe]
ft) =ay + \/EZ (a, cosnt + b, sin nt). 3)
n=1
Denote by P,,f(t) the partial sum of Fourier series (3):

m
P, f(t) =ag+ \/EZ(an cos nt + b, sin nt).

n=l1
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Lemma. Let x = x(t) — 2Tt be a periodic solution of equation (2) and

let G(t, s) be a Green’s function

Le‘/Z(s_t) —0<t<s
o) =2 | @)
ke 1=5) << +oo,
satisfying the conditions
G(t,t +0)-G(t,t - 0) =0,
G,(t,t+0)=G,(t,t=0) =1. 5)
Then 2T periodic solution of equation (2) is represented as
0= [ 6l ) 7()ds ©

and for the difference x(t) = P,x(t), the estimate |x(t)— P,x(t) |0

< y(m)| f - at n® % A, for some integer n = ny,

e e e e ot I
(o 17 = (2 =’

Proof. We show that the function x(¢f) represented in the form (6)

satisfies equation (2).

Represent (6) in the form
t+0
(1) = j Gt 5) £ )ds—j G(t, 5) f(s)ds

Taking into account the property (5) of the Green’s function (4), we

obtain
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dfz(f) =G, 1 - 0) f(t - 0) = G(t, t + 0) f (¢ +0) + j G ) £(s)ds

—00

= (Gt 1-0) = G(r, 1+ 0) () + [ +: G(t, 5) £(s)ds

-0 +oo
=], Gl f6)ds =] G 5)f(s)as

% =Gy(t,1-0)f(t = 0) = G,(r, 1 +0) f(r + 0) + " G, (t, s) f(s)ds
1 -0

=(G,(t, t = 0) = G,(t, t +0)) () + j: G, (t, s) f(s)ds

= 10+ [ Gyt 5) 5. )

Putting (6) and (7) into equation (2), we obtain

10+ 1Gule, 5) = AG( $) £ (s)ds = £(). ®)
Given that
geﬂ(s 1) —0<ft<s§
Gy (1, 5) = Ji
TAe‘/Z(I_‘) § <t <+

Taking into account (4), we obtain

2 2
VA JA(-s) _VA JVA(-

2 2

VA JA(s-1) _ VA JVa(s-
G,(t, s) = AG(t, s) =

Hence, G,(t, s) = AG(t, s) = 0. It follows from (8) that equality (2) is

satisfied.
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Further, since

dszx(t)

) = AB(0) + Bf (),

2 -P x
d (X(t)dtsz 1) - A(x(t) _ pmx(;)) + f(t) - me(l‘),

we obtain

x(t) = Byx(r)

= [ 60 N2 Y (F9) - Pas )

—00
n=m+l

=2 Z I G(t, s)(a, cos ns + b, sin ns)ds

n=m+1
VAl t
m Z ( I fs cosnsds + b I sin nsds}
=m+1

e had +o00 —\/KA +o00 —\/ZA .
+ oY ZH (an L e ¥ cosnsds + b, L e ¥ sin nsds}. )
n=m

The calculation shows that

VAt
ot J
ne . A
e‘/zs cos nsds = sinnt + —cosnt |,
J —00 n2 - A n
VAt
ot
. ne A .
e‘/zs sin nsds = — —cosnt + ——sinnt |,
J -0 nc+ A n
~ +00 _\/Xl
- ne . VA
e JAs cos nsds = —sin nt + —cos nt |,
Js nZ - A n
o +00 _\/Zf
- . ne VA .
e JAs sin nsds = — cosnt + —sin nt |.
o1 n“+A n
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Taking these calculations into account, from (9), we obtain

x(t) = P,x(t)

1 - na, . an\/z nb, anZ .
= — Z sin nt + cosnt — cosnt + sin nt

24~ (n? -4 n?-A n?+ A n?+ A
noo. an«/z nb, anZ .
- sin nt + > cosnt + 2 cosnt + > sin nt
n—-A n—-A n+A n+A
0
= L Z (2;/_% cosnt + 2;/2[)" sin ntj
2A & \n" - A n~+A
¢ b
=2 Z ( za” cosnt + — n sinnt]. (10)
n=mii\n” — A n~+A

Estimating the difference x(¢) — P,,x(t) from (10), we obtain

| x(¢) = Bx(e) ]|y = Z (fa” cosnt + V2t sin nt}

nem+i\n” — A n® + A 0
Hence, by the Bunyakovsky-Schwartz inequality, we have
|x0) = B2 s | Y 2 (a, cosnt + b, sinnr)
-A
n=m+l1 0
00 00

V2 2 2

<D 5= 2 lanl?+12. %)
n=m+l1 (n - A) n=m+l1

<lfls > _ 2 henn?za

2 2’
n=m+1 (n - A)

Thus

| x() = Bux(®) ly < Yim)I| £ [,
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where
1
2 2 2

[ I e e e

When m — o, y(m) — 0. Hence | x(r) = P,x(z) [, - 0. m - .
The lemma is thus proved.
3. The Main Result

Consider the integro-differential equation (1).

27 periodic solution of the integro-differential equation (1) is found by

the method of successive approximations:

d*x(t) _

- Axi(t)+f(t, x4 (1), J':_Tcp(r, s, xi_l(s))jds, i=1,2,3,... (11

We take the 27 periodic function xo(t) 0 D O R as the initial

approximation.

Equation (1) for each fixed value i =k represents a differential

equation of the form (2) with a continuous 2T -periodic function
t
i@ = £t 00 [ 005506 s

represented in Fourier series of the form
fk_l(l) =app-—1 t «/EZ(ank_l cosnt + bnk —1sin l’ll). (12)
n=1

Then according to the lemma, the differential equation

2
%iz(f) = A1) + fi(0)
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has a 2M -periodic solution represented as
+o00
5= [ Gl ) fm(s)ds (13)

and for the difference x; (¢) = P, x;(¢), the following estimate is valid:

() = B () g < YOm)I f -

Substituting (12) into (13), we obtain

x (1) = a()k -1 +J_Z( Gnk=1_ o5 nt + Duke -1 sinntj. (14)

n“+A

Note that

i = 5o A a0 [ 80 s sei(oas o

App—y = Zx/_nj " ( s X1 (1), I;t—T¢(t’ s, xk_l(s))dsjcos ntdt,

2m t .
=[] s s O)as s,
=123, ...

We prove the convergence of the sequence {x;(¢)} to the exact solution

x(t) of the integro-differential equation (1).

Consider a sequence of 27 -periodic functions of the form

x;(t) = IHO G(t, s)f(s, xi—1(s), IS o(s, v, x;; (v))dvjds. (15)

—0 s—T
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We estimate the difference x;4(¢) = x;(¢):

xi+1(t) = (1)
= [ 76t )] a{sn0 [ ot vox0)ar)
RO N O]

= [ 76t T D + &L S w0) =i O s

Hence, we obtain

5ot =50 < [ 160 IS+ LD 55) = 5 ()],

= 2«}2 J‘—:e\/zs_tl FLA+[O[ 0] x(s) = xi-1(s) [y ds
=ﬁ|f|l(l+|¢|lr)|xi(t) —xl-_l(t) |0, (16)
Let

Then from (16), we obtain
| xi41(0) = x5 () g < N x;(2) = x4(1) ] < 7\2| x-1(1) = x22(0) |

< < Ny (r) = xo(t) |-
Now, we estimate the difference x;(¢) = xo(t):

x(t) = x(r) = x (1) = By () + By (1) = xo(0)-
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By the lemma, we obtain

|2 () = x0 (1) |y

<[ x(e) = B () [ +] By (1) = (1) |

SV Sl | o [ 600 ) 5500 06 vl s |
+ [ x0(7) |()
<Y o+ [ Gl )] £ lpds +| (),
=)l £ 1y + 0+ 30001
= (L 2ay(m)] 7]y +] 500
Thus
| X1 (1) = %,(2) | < 7\i| x(r) = x0(1) |,
< 21+ 2ay(m)) + 24] 5(0) (18)
Further,

| i p () = % () |y
<| xl+p(t) - xi+p—l(t) + xi+p—1(t) - xi+p—2(t) (1) = x;(0) lo
<| X,+p(f) - xi+p—1(t) lo *1 xi+p—1(t) - xi+p—2(f) o+ +| 41 () = % (2) lo-
Therefore, by (18), we obtain

|xl+p(t) (t) |0

S o (7T NP ) 1+ 2(n) + 24] 50
;_A(l FAN 4 NPT ) [(1 4 24y(m) + 24] x0(1) ).
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Hence, by the compression condition (17), we obtain the estimate as

follows:
10 =50y = a0+ oD Sy #l0@lg). =123

Thus, the theorem is proved.

Theorem. Suppose that the integro-differential equation (1) satisfies:

(a) There exists a Green’s function (4) boundedly solvable G(t, s) on
the numerical axis satisfying (5).

(b) The compression condition (17) is fulfilled for T > 1(-const, and
n? - A#0.

Then the 2T -periodic solution x(t) of the integro-differential equation (1) is

defined as the limit of the function sequence obtained according to algorithm
(19).

Note that for a 27 -periodic function x = x(t), the case of resonance

is possible, i.e., the difference n? - A is small enough, so to avoid

the phenomenon of resonance, we should choose the number A so that

n-A#0.

This option is always possible if the constant A is not a positive integer.
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