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PERIODIC SOLUTIONS OF A 

SECOND-ORDER NONLINEAR VOLTERRA 

INTEGRO-DIFFERENTIAL EQUATION 

 

 

 

Abstract 

The article considers the problem of constructing a π2 -periodic 

solution of a quasilinear second-order integro-differential equation. 

Using the Green’s function of bounded solutions on the number line, 
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the integro-differential equation is reduced to an integral equation.           

A π2 -periodic solution to the integral equation is found using the 

projection-iteration method. A π2 -periodic solution is sought as the 

limit of successive π2 -periodic functions representable as a Fourier 

series. An estimate of the error of the difference between the exact and 

approximate solutions is obtained. 

1. Introduction 

In many problems of science and technology, there are phenomena        

that describe oscillatory processes, the mathematical models of which are 

differential and integro-differential equations and their systems. In this 

regard, one of the important issues in the study of quasilinear, nonlinear 

differential and integro-differential equations is the study of periodic 

solutions and the construction of an algorithm for finding them. Various 

methods are used to study periodic solutions. Among the existing methods, 

there are methods along with the proof of theorems for the existence of 

periodic solutions that make it possible to construct these solutions. Such 

methods for studying periodic solutions include the Galerkin method, a 

projection-iteration method combining the ideas of the Galerkin method and 

the method of successive approximations. 

Issues of constructing periodic solutions according to the Galerkin 

method for non-autonomous systems of differential equations, systems of 

differential equations with delay and various types of non-autonomous 

integro-differential equations were studied in the works of [1, 2, 4, 5]. 

The works of differential research are devoted to the study of periodic 

solutions by projection-iteration methods of a system of differential 

equations, a system of differential equations with delay, and integro-

differential equations. See [3, 6-10]. 

This work is devoted to the study of periodic solutions of a quasilinear 

second-order integro-differential equation. 
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2. Statement of the Problem 

Consider a second-order integro-differential equation of the form: 

 
( ) ( ) ( ) ( ( )) ,,,,,
2
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t

t
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 (1) 

where A is a positive real number, f, ϕ are continuously-differentiable π2 -

periodic functions of st,  and τ  is a constant.  

Denote by ( )DDTC ××′  the space of r-times continuously 

differentiable functions ( )uxtf ,, with respect to ( ) ( ).,, DDTuxt ××∈  

The function ( )xst ,,ϕ  is periodic in t, s with period ,2π  where =T  
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where Df is the first-order partial derivative with respect to its variables,  and      

⋅  is the Euclidean norm. 

Consider a second-order differential equation: 
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2
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dt
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where ( )tf  is a continuous π2 -periodic function, representable as a Fourier 

series: 
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Denote by ( )tfPm  the partial sum of Fourier series (3): 
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Lemma. Let ( ) π−= 2txx  be a periodic solution of equation (2) and 

let ( )stG ,  be a Green’s function 
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satisfying the conditions 

( ) ( ) ,00,0, =−−+ ttGttG  

 ( ) ( ) .10,0, =−−+ ttGttG tt  (5) 

Then π2  periodic solution of equation (2) is represented as 
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Proof. We show that the function ( )tx  represented in the form (6) 

satisfies equation (2). 

Represent (6) in the form 

( ) ( ) ( ) ( ) ( )
+

∞+

−

∞−
−=

00
.,,

tt
dssfstGdssfstGtx  

Taking into account the property (5) of the Green’s function (4), we 

obtain 
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Putting (6) and (7) into equation (2), we obtain 
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Hence, ( ) ( ) .0,, =− stAGstGtt  It follows from (8) that equality (2) is 

satisfied. 
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Further, since 
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The calculation shows that 
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Taking these calculations into account, from (9), we obtain 
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Estimating the difference ( ) ( )txPtx m−  from (10), we obtain 
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Hence, by the Bunyakovsky-Schwartz inequality, we have 
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where 
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The lemma is thus proved. 

3. The Main Result 

Consider the integro-differential equation (1). 

π2  periodic solution of the integro-differential equation (1) is found by 

the method of successive approximations: 
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We take the π2  periodic function ( ) RDtx ⊂∈0  as the initial 

approximation. 

Equation (1) for each fixed value ki =  represents a differential 

equation of the form (2) with a continuous π2 -periodic function 
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has a π2 -periodic solution represented as 
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and for the difference ( ) ( ),txPtx kmk −  the following estimate is valid: 
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We prove the convergence of the sequence ( ){ }txi  to the exact solution 

( )tx  of the integro-differential equation (1). 

Consider a sequence of π2 -periodic functions of the form 
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We estimate the difference ( ) ( ):1 txtx ii −+  

( ) ( )txtx ii −+1  
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By the lemma, we obtain 
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Hence, by the compression condition (17), we obtain the estimate as 

follows: 

( ) ( ) ( ) [ ( )( ) ( ) ] ....,3,2,1,1
12 0000

=+γ+λ−λ
λ≤− itxfm

A
txtx

i
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Thus, the theorem is proved. 

Theorem. Suppose that the integro-differential equation (1) satisfies: 

(a) There exists a Green’s function (4) boundedly solvable ( )stG ,  on 

the numerical axis satisfying (5). 

(b) The compression condition (17) is fulfilled for 0τ>τ -const, and 

.02 ≠− An   

Then the π2 -periodic solution ( )tx  of the integro-differential equation (1) is 

defined as the limit of the function sequence obtained according to algorithm 

(15). 

Note that for a π2 -periodic function ( ),txx =  the case of resonance           

is possible, i.e., the difference An −2  is small enough, so to avoid               

the phenomenon of resonance, we should choose the number A so that 

.02 ≠− An  

This option is always possible if the constant A is not a positive integer. 
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