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Abstract

In this paper, we study continuous classical boundary optimal control
problem for the couple fourth order of linear elliptic system with
variable coefficients. The existence theorem of a unique couple vector
state solution of the weak form obtaining from the couple fourth
order of linear elliptic system with Neumann conditions (NCs) is
demonstrated for fixed continuous classical couple boundary control
vector (CCCPBCTV) utilizing Hermite finite element method. The
existence theorem of a couple continuous classical boundary optimal
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control vector dominated with the considered problem is proved. The
existence and uniqueness of the solution of the couple adjoint
equations (CPAEs) is discussed, when the classical couple optimal
boundary control is given. Finally, the Fréchet derivative (FrD) of the
Hamiltonian is obtained to establish the theorem of the necessary

condition for optimality.

1. Introduction

The use of optimal control problem (OCTPs) applications has become
involved with various diverse subject areas like medicine [1], economic

[2, 3], biology [4], electric power [5], aircraft [6] and other fields.

In the last century, many investigators interested to study the OCTPs
which are either governing by ordinary differential equations (ODEs) as [7]
or are involving by partial differential equations (PDEs) as [8]. In the recent
years, the importance of OCTPs pushed many investigators interest to
develop the continuous classical optimal boundary control problems
(CCOBCTPs) which are involving either by a second order PDEs of elliptic
type [9-11] or hyperbolic type [12] or parabolic type [13, 14]. These articles
encourage us to study the optimal boundary control problem associated with
a couple fourth order linear elliptic partial differential equations (LEPDE?s).
In this paper, the finite element method (FEM) with a piecewise cubic
Hermite (PCH) basis function is applied to prove the existence and
uniqueness of a couple state vector (CPSV) solution for a couple fourth
order Neumann boundary value problem (NBVP) of LEPDEs with variable
coefficients (VCs), when the CCCPBCTYV is considered. Under essential
assumptions, the existence theorem of a continuous classical couple optimal
boundary control vector (CCCPOBCTYV) associated with a couple fourth
order LEPDE: is developed and proved. The existence and uniqueness of the
solution of the CPAE:s is discussed, when the CCCPOBCTYV is given. The
FrD of the Hamiltonian is introduced. In the end, the theorem of necessary

condition (NEC) for optimality of the above considered problem is obtained.
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2. Problem Statement

Let A O R? be an open and bounded domain with Lipschitz boundary
. Consider the CCCPBCTYV consisting of couple fourth order LEBVPs

with VCs:
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is the CPSV corresponding to continuous classical couple control vector

(CCCPCTV) (g1 2) = (q1(x1. x2). g2 (1. x2)) O (L*(F))* with a given

vector function (Gy, G,) = (Gy(x1, x2), Ga(xy, x)) O (I*(A))? defined on
A x A, forall x = (x, xp) OA.
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The set of admissible CCCPBCTYV is
0, O I*(r)x ()
={G = (g1, 42) O(*(N)* (g1, 42) D Q@ 0, = 0 O R? ae.in T},

where Q 0 R? is convex.

The cost function (CF)
) I | 2 1 2. A 2, A 2
Min J(¢) = §|| Y= yia +§|| ¥2 = Y2 +71” @ lIF +72|| 2 I

(a1, 42) 0 Q. (7)

where A, Ay >0, (314, 24) = (g (31, x2)s y24(x15 x2)) is the desired

data and (y, y;) = ()’1(]1, Y2q2) is the solution of CPSV (1-6)
corresponding to the CCCPCTV ¢ = (g, ¢»)-

The continuous classical couple optimal boundary control problem is

to minimize (7) subject to G = (q;, ¢2) O Q;, where the notations (u, u)
and (i, ﬁ)( [2(n))2 denote the inner product in I*(A\) and in (L*(N))?,

respectively, (u, u)r and (d, ﬁ)( 12(r))2 denote the inner product in ()

2

and in (I2(M))%, respectively, |u|, and a2 (p)y2 = >y l2(n)
i=1

denote the norm in I*(A) and in (L*(A))?, respectively, | u | H2(n)> and

2
|| @ ||(H2(/\))2 = > |y "H2(/\) denote the norm in H>(A) (Sobolev space)
i=1

and in (H2(A))?, respectively. Notations — and — refer to the weak

convergence and strong convergence of a sequence, respectively.
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3. Solution of the CPSV Equations

First, we find the weak forms (WFs) of the CPSV equations (1-6). Let
S = H*(N)x H*(A)

={7 17 = (v, vp) = (g, ), vy, x2)) O (H2 ()2,

. avl _ 6v2 _
D(xl, XZ) O /\, with a— - W =0 on r}

When 5 O (H?(A))? is obtained by multiplying both sides of equations
(1) and (2) by v; O H2(A) and v, O H?(A), respectively, integrating both

sides of the obtained equations over A\, and then utilizing the generalized

Green’s theorem, we introduce the WFs

Al(y vi) + (a1, v1) = (a2, vi) = (Gy(x), wp) + (g1. vi)p» Oy O H*(N)
()

and

Ay (2. v2) *+ (By2, v2) + (a1, v2) = (Go(x), v2) + (g2, v2)p» Ovy O H?(A),

9
where
P 2
0°y; 0%
Ar(y. i) = ” ;l ( ijkt 0x;.0x; axkaledx
l] -
6 y2 6 V2
Ay (y2. v2) = ” ;l ( UK 9y, 0x; axkax,de
l Js -
A ) 2By |2 H2(A) >0, 1=12
and

| A (s v L= Cll v llg2aylvi g2 (p)» where € > 0,1 =1, 2.
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By adding (8) and (9), we find Oy O (H?(A))?,
B(3, ¥) =1(%),  O(v, v) O, (10)

where the symmetric bilinear form (BLF) B(¥, V) and the continuous linear

form {(7) are explained in the following, when g O (I("))? is fixed:
B(Y. V) = A1(y1. v1) + (ary1, 1) = (@22, 1) + Ap (3. v2)

+(b1ya, v2) + (a2y1, v2), an
1(%) = (G (x), v) + (g1, vi)r + (Ga(x). v2) + (g2, v2)p» O(vy, v2) O S. (12)

Assumptions (A)
(1) The BLF B(LJ0) satisfies the following properties:

(@) B(y, v) is coercive, ie., Oy OS, by >0 such that B(y, ¥) =

- 112
C()" y ”(HZ(/\))Z
(b) B(¥, ¥) is continuous, i.e.,

[k; > 0 such that |B(5}, \7)| < Cl" y ||(H2(/\))2” v ||(H2(/\))2’ Oy, v O S.
(2) I(¥) is a bounded functional on S, where G is bounded, i.e.,
(e, > 0 such that | /(V)] < oo ¥ ||(H2(/\))2’ v OS.

To obtain the solution of the general classical problem (10), the FEM is

utilized by choosing a finite approximation subspace §n 0S and the

problem (10) reduces to the discrete Galerkin WF: find y, U §n such that
B(y,,¥) =), OvOS,. (13)

Theorem 3.1. For any fixed CCCPCTV G = (q;, q>) O (I*())?, there

is a unique approximation solution v, = (y1,, ¥2,,) O 5,, for problem (13).
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Proof. For each n, let §n be the set of continuous and PCH type

polynomials functions in A. We define two Hermite basis functions namely

¢; and fj, ie., {6, §,, ... §,,, ﬁl’ $2’ vy ﬁn} is a finite Hermite basis.

We now express ¥y, = ¥,(x|, x,) as a finite linear combination

n = Z(ijpj(xla )+ qu_):j(xl’ X))

J=1

n n
= chq’lj +¢i%1js ch‘sz +¢;0y; |, (14)
jzl ]:1

where ¢ > Ej are unknown constant vectors, [Jj =1, 2, ..., n.

By substituting the solution y, in equation (13) and v = §; +$i,

equation (13), we have

Kc = b, (15)

where K = (kij),x,, ki =B@; +9 .6, +9,), b=(b), b=

l(f]il- +$i) and ¢ = (cl, vees Cpys Cps oo cn)T.

n
To obtain the uniqueness of the solution, set Zc jkij =0,
j=1

0i=12, .. n

Now, by utilizing assumption (A(1-a)), the system (15) has a unique
solution which gives the existence of a uniqueness solution of (13).

Remark 3.1. Oy O(H3(A))?, there exists a sequence {v,} with
v, U 5,,, Un, and v, — V in 5, problem (13) has a unique solution Yy,
hence corresponding to the sequence {gn}:f:l, we have a sequence of (13),

foreach n =1, 2, .., ie, y, U 5,1 such that
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B(3,. ¥,) = 1(¥,), 0w, 0S,, On (16)
which has a sequence of {}n}:’:l.

Theorem 3.2 (Existence solution of the CPSV equations). The sequence
of solution {yn};":l (of the sequence of WF (16)) converges to y (solution of
(12)).

Proof. Since Yy, is a solution of (16), using assumptions (A(1l-a)) and

(A(2)), we verify that || y,, "(H&(/\))Z < ¢y, where ¢, >0, Un.

From Alaoglu theorem [9], there exists a subsequence of {y,} (say

{3,}) such that ¥, — ¥ in S. We want to show that the sequence { R

of the solutions of (16) converges to the solution y of (12).

First, we prove that the left hand side of (16) — the left hand side of
(12).

Since y, — y in S from above and v, — v in S, we obtain
| B(Vn: V) = B(3. 9)| = | B(3y. ¥, = V) + B3, = 3. V)|
< all u a2 a2l Ve =V a2 (a2
+ai 3 = V2 ()21 lig2ayz = 0
= B(J,. ) — B(F. 7).

Next, we show that the right hand side of (16) — the right hand side of
(12).

Since ¥, — v in §, we get v, — v in S.
Now, for fixed v [ §, we have

1(v,) - (V). A7)
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This gives B(y, v) = {(¥), Ov O S.
Therefore, y is a solution of (12).
To demonstrate y, — y in S.

From assumption (A(1-a)) and (17), it follows that

2
(HF(N)?

col ¥ = u |
< ‘B(S’ - yn’ 5; - yn) = B(S’ - S’n’ 5;) _‘B(j’ - yn’ yn)
= 3(55 - yn’ 5;) —3(5;, yn) +‘B(5;n’ yn)

=B = Jp. §) +1() - 1(7,) - 0.

Therefore, {y,} converges to y strongly with respect to | E]]( H2(A))?-

Now, let y;, y, be two solutions of (12). Then
B(y, v) = F(¥), OvOS,
B(y,, v) = F(¥), OvOS.
The above two equations give

B(y, - ¥,,¥) =0, OvOS.

247

(18)

Now, by inserting v = y; — y, in (18) and using assumption (A(1-a)),

we find that y; = ¥,, i.e., the solution is unique.

4. Existence of a Couple Boundary Optimal Classical Control

In this part, the following lemmas are important in the proof of the

existence of a couple boundary optimal classical control.

Lemma 4.1. The operator g > y; from Q; to (Lz(/\))2 is Lipschitz

continuous, i.e.,
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” 6y ||(L2(/\))2 < k" 6q ||(L2(r))2, fOV k> 0.

Proof. Let g = (g, o) 0Q, be a given couple boundary control
vector of the WF (10) and ? = (3}, y,) be the corresponding vector of state

solution. Subtracting the obtained WF from (10), and substituting gy =

y -

<]

, 0 = ¢ —q in the obtained equation, and inserting v; = dy; and

vy = Oy,, we get

B(dy, &) = (8qy, By1) + (3q2, By2)- (19)

Taking the absolute value of (19) with using assumption (A(1-a)) and the
Cauchy-Schwarz inequality (C-SI), we deduce that

& 2 e <180 12011+ 180 L2l B @0
Since

18y 1 <18 l2gay? <18l a2

and
13g; 120y <1139 2 (rye> D0 =12,
(20) becomes
18 2y < 8 2y with k =2 @

Lemma 4.2 [15]. The CF (7) is weakly lower semicontinuous (WLSC).

Lemma 4.3 [15]. The norm || 0 and (| []]iz(r)) is strictly convex.

Theorem 4.1. If Jy(g) is coercive, then there exists a couple classical

optimal boundary control for the problem.

Proof. Since Q;, for each i =1, 2, is convex, hence Q, is convex.
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Since Jo(§) =0, and Jy(gG) is coercive, there exists a minimizing
sequence {G,} = {(q1,» 42,)} 0 Q,. On such that

lim Jo(d,) = inf_Jo().

n- o wiQ,

Therefore, there exists a constant C >0 such that | g, [ ;2(r)2 < C. On,
1.e.,
lain 2y < G and g2, [2r) < Co (Cro G >0), On (22)
From Alaoglu theorem, there exists a subsequence of {g,} (say again
{G,}) suchthat g, — g in (I*(T))%.
Since from (22), the state equation has a unique y, = y; ((On) by
Theorem 3.1).

By utilizing assumptions (A(1-a)) and (A(2)), the C-SI, the trace theorem

and using (22), we have
col 3 lF 5, 1o
(Hg (A)
< B(¥» V) = 1(50)
<IGIT i 1+ 1 g 2yl v T+ 1 G2 M yan |+ 1 g2 12yl y2n |

< Ol i [+ Gl ya 1+ 2] yan [+ Coll y2n |

< ()l 3 lzay2 = 3 Iz ay2-

where C =1 +ry, then || y, "(H&(/\))Z < K, On, where K = %, K = 0.

Then there exists a subsequence of {y,} (say again {y,}) such that

v, — ? in S (by Alaoglu theorem).
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Since for each n, ¥, = (y1,,, ¥o,,) satisfies the WF (13), we have
B(Fu» ¥) = (Gp, ) + (@1 1) + (G, v2) + (g205 v2), Oy, v2) O S, On.
(23)
To show that (23) converges to
B(y. V) = (Gp, ) + (@1, v) + (Ga. v2) + (2. v2). Ovy, v2) OS. (24)
Note that

0i=1,2 . Y.
{Ym Yi in LZ(/\).

_ . 2
. — y. in H*(\) =
Yin Yi ( ) Dy, — B,

By using the C-SI,
| A (3105 v1) * (@110 v1) = (@2y20, V1) + A2 (V2, v2)
+ (Bryan, va) + (@2y1ns v2) = A (51 v1) = (@31, v1)
+(a2y2, v1) = A (32, v2) = (B2, v2) = (@231, v2) |
< kil G = YO Mvi 1+ &all i = S0l v |+ 3l v = F2 1w |
kgl v2n = ) M2 1+ ksl y2n = 32 [l va | + &6l y10 = 31l v2 || = 0.

Since ¢y, — q; in I*(F) and gy, — g» in L*(T), the R.H.S. of (23)
converges to the R.H.S. of (24).

Since Jo(7) is WLSC from Lemma 4.2, and §, — g in (I*(T))%, we

observe that

Jo(g) < lim inf Jo(g,) = lim Jo(q,) = inf Jo(W),

n— oo Zjn DQ{I n — o WDQa

Jo(g) = inf Jo(i).

wllQ,

Therefore, g is a couple classical boundary optimal control.
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To prove g is unique, from strict convexity of Jy(g), we conclude the

uniqueness of g.

5. The NECs for Optimality

In order to formulate the NECs for a couple classical optimal boundary

control, we drive the FrD of the Hamiltonian to establish the theorem of the

NEC:s for optimality.

Theorem 5.1. Consider the CF which is defined by (7), and the couple
adjoint (z;, z5) = (Zlql’ Z2q2) equations of the couple state equations (1-6)

are obtained by

+ayz) +axzy = (yp — yig)s on A,

i 62 a 02z1

e 0x;0x ikl 9, 0
2

Z 62 a 6222
e 0x;0x ; Ukl 9x,.0x;
0Z1 _
W 0, on F,
9z =0,onl

on
0zp _
W - 0, on
wﬂ = ()’ on T

on

Then the FrD of J is given by

(76(3), 3q) = (21 + My, dq1)r + (22 + Maga, Oga)r

Proof. Rewriting the CPAEs (25-30) by their WFs, we get

_ 2
A(z1, vi) * (@12, v1) + (@222, v1) = (1 = Y1g» v1), Ovy DH(A)

+bizy —axzy = (y2 = yaq)s on A,

(25)

(26)

27)

(28)

(29)

(30)

(€29)
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and

A (22, v2) + (122, v2) = (@221, v2) = (2 = ¥aq» va)s Ovy D HA(A). (32)

By adding (31) and (32), for fixed couple classical control vector
G = (q1. o) O (I?(1))?, we obtain that the WF of the CPAEs has a unique

solution (zy, 22) = (214, 224,) U S (this can be proved in the same way as

the proof of Theorem 3.1), and

(Bzy, Avy) + (21, vp) + (22, v1) + (D2, Bvy) + (23, v2) = (21, v2)

= (v = y1g> v1) + (v2 = y24. v2), O(v, o) OS. (33)

By substituting y; once and y; + dy; once again in (8), subtracting the

two resulted equations one from the other, and inserting v; = z;, we obtain

A (Oyy, z1) + (@101, 21) — (@207, z1) = (Oqy, z1)p> Oz O H*(A).  (34)

Also, substituting v; = dy; in (31), then subtracting the resulted

equation with (34), we get
(a20y,, z1) + (a222, dyy) = —(Bq1. z)r + (v1 = Yia» 1) (35)

By substituting y, once and y, + &y, once again in (9), subtracting the

resulted equations one from the other, with substituting v, = z,, we obtain

Ay (Bya, 22) + B0y, 20) + (adyy, 22) = (8qy, 2p)p» Ozp O H*(A). (36)

Also, v, = dy, in (32), then subtracting the obtained equation with (36),

we get
=(adyy, 22) — (azz1, 8y7) = =(8g2, 22)r + (¥2 = ¥2a. O2). (37)
Adding (35) and (37), we get

(g1, z)r + (82, z2)r = (y1 = Y1a> 1) + (y2 = 24 O¥2). (38)
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Then from the CF, we observe that
Jo(g +8q) = Jo(q)

= (y1 = y1a- O1) + Mg, 0a1)r + (v2 = y2a- Oy2) + Aa(g2. O92)r

)\1 & 2
EL 18y s )+ R 00 2

S 2"

From the CF and using (38), we have
Jo(@ +3q) = Jo(d)
= (8g1. z1)r *+ M1 Oqp)r + (g2, z2)r + A2(q2. B2)r

2 M Y 2
IS R 18 s+ R 80 s

@enye (r)

= (21 + Mg, Oy + (22 + AN gn. Og)r

152 7\1 Y 2
From Lemma 4.1,
| i) =\ =
5” Oy ||(L2( < 2| & ||(L2(F) = £1(89)| g [l 2(ry)>2- (39a)

where El(gq) - 0, as ” gq ||(L2(r))2 — 0, where Sl(gq) = 2” gq ||(L2(|-))2

Since | 3¢; ||i2 <| 3 || e Ve have
)\1 )\_2 2
5 113y ||L2(F) > 842 ||L2(F)
Cll g (2P = (| 3 l2(ry2 | 8 l2(ry)2

= 82(571) I 3 ||(L2(r))2a (39b)
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_ )\ )\2 . = =
where C = max{T, 7} with €,(8g) - 0, as || 3¢q ||(L2(r))2 - 0, where

£,(39) = C| & l2(ry2-
Hence the FrD of Jj, is
Jo(d + 8q) = Jo(4)
= (2 + My, Oap) + (22 + Maga. 8gy) + €(3q)| Oq ler2(ry2- (40)

where £(8g) = £,(39) + £2(3q) ~ 0, as || & [ 2y ~ O
Finally, from (39) and (40), we get

(76(@), 3q) = (21 + My, dq1)r + (22 + Magn, Ogo)r

Theorem 5.2. The continuous classical couple optimal control of the
considered problem is Jo(qG) = (z1 + Mgy, Ogy) + (22 + Naga. Oga) =0
with y =y and 7 = Zj.

Proof. If g is an optimal control vector of the considered problem, then

Jo(g) = min Jo(q),
qo

Og O(L2(N))?, ie.,
Jo(q) =0 = (z1 + Mgy, Oy ) + (22 +A2q5. 8gp)r =0

= Mg1 =71 and A\ygr = —25.

gq 5 — g = the NEC of the optimality is

(J0(a). 8g) 20, g O LA ()= L*(T).
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6. Conclusion

In this work, the FEM with a PCH basis function is suitable to study the
existence of a unique couple state vector solution for a couple fourth NBVP
of LEPDEs with VCs, when the CCCPBCTYV is considered. Under essential
conditions, the existence theorem of a couple continuous classical optimal
boundary control vector associated with a couple fourth order linear elliptic
boundary value problem is introduced. In the end, the FrD of the
Hamiltonian is obtained to establish the theorem of the NEC for optimality

of the above considered problem.
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