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SOLVABILITY FOR CONTINUOUS CLASSICAL 

BOUNDARY OPTIMAL CONTROL OF COUPLE 

FOURTH ORDER LINEAR ELLIPTIC EQUATIONS 

 

Abstract 

In this paper, we study continuous classical boundary optimal control 

problem for the couple fourth order of linear elliptic system with 

variable coefficients. The existence theorem of a unique couple vector 

state solution of the weak form obtaining from the couple fourth  

order of linear elliptic system with Neumann conditions (NCs) is 

demonstrated for fixed continuous classical couple boundary control 

vector (CCCPBCTV) utilizing Hermite finite element method. The 

existence theorem of a couple continuous classical boundary optimal 



Eman Hussain Mukhalf Al-Rawdhanee 240 

control vector dominated with the considered problem is proved. The 

existence and uniqueness of the solution of the couple adjoint 

equations (CPAEs) is discussed, when the classical couple optimal 

boundary control is given. Finally, the Fréchet derivative (FrD) of the 

Hamiltonian is obtained to establish the theorem of the necessary 

condition for optimality. 

1. Introduction 

The use of optimal control problem (OCTPs) applications has become 

involved with various diverse subject areas like medicine [1], economic      

[2, 3], biology [4], electric power [5], aircraft [6] and other fields. 

In the last century, many investigators interested to study the OCTPs 

which are either governing by ordinary differential equations (ODEs) as [7] 

or are involving by partial differential equations (PDEs) as [8]. In the recent 

years, the importance of OCTPs pushed many investigators interest to 

develop the continuous classical optimal boundary control problems 

(CCOBCTPs) which are involving either by a second order PDEs of elliptic 

type [9-11] or hyperbolic type [12] or parabolic type [13, 14]. These articles 

encourage us to study the optimal boundary control problem associated with 

a couple fourth order linear elliptic partial differential equations (LEPDEs). 

In this paper, the finite element method (FEM) with a piecewise cubic 

Hermite (PCH) basis function is applied to prove the existence and 

uniqueness of a couple state vector (CPSV) solution for a couple fourth 

order Neumann boundary value problem (NBVP) of LEPDEs with variable 

coefficients (VCs), when the CCCPBCTV is considered. Under essential 

assumptions, the existence theorem of a continuous classical couple optimal 

boundary control vector (CCCPOBCTV) associated with a couple fourth 

order LEPDEs is developed and proved. The existence and uniqueness of the 

solution of the CPAEs is discussed, when the CCCPOBCTV is given. The 

FrD of the Hamiltonian is introduced. In the end, the theorem of necessary 

condition (NEC) for optimality of the above considered problem is obtained. 
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2. Problem Statement 

Let 2
R⊂Λ  be an open and bounded domain with Lipschitz boundary 

.Γ  Consider the CCCPBCTV consisting of couple fourth order LEBVPs 

with VCs: 
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where ( ),,,,, 121 Λ∈ ∞
Lbbaaa ijklijkl  and 

( ) ( ) ( )( ) ( ( ))24
21221121 ,,,, Λ∈== Hxxyxxyyyy

�
 

is the CPSV corresponding to continuous classical couple control vector 

(CCCPCTV) ( ) ( ) ( )( ) ( ( ))22
21221121 ,,,, Γ∈= Lxxqxxqqq  with a given 

vector function ( ) ( ) ( )( ) ( ( ))22
21221121 ,,,, Λ∈= LxxGxxGGG  defined on 

,Λ×Λ  for all ( ) ., 21 Λ∈= xxx  
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The set of admissible CCCPBCTV is 

( ) ( )Γ×Γ⊂ 22
LLQa  

{ ( ) ( ( )) ( ) },in.a.e,, 2
2121

22
21 Γ⊂=×∈|Γ∈== RQQQqqLqqq

��
 

where 2
R⊂Q

�
 is convex. 

The cost function (CF) 
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                 ( ) ,, 21 aQqq ∈  (7) 

where ,0, 21 >λλ  ( ) ( ) ( )( )21221121 ,,,, xxyxxyyy dddd =  is the desired 

data and ( ) ( )
21 2121 ,, qq yyyy =  is the solution of CPSV (1-6) 

corresponding to the CCCPCTV ( )., 21 qqq =�  

The continuous classical couple optimal boundary control problem is     

to minimize (7) subject to ( ) ,, 21 aQqqq ∈=�  where the notations ( )uu,  

and ( )( ( ))22, ΛLuu
��

 denote the inner product in ( )Λ2
L  and in ( ( )) ,

22 ΛL  

respectively, ( )Γuu,  and ( )( ( ))22, ΓLuu
��
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and in ( ( )) ,
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denote the norm in ( )Λ2
L  and in ( ( )) ,

22 ΛL  respectively, ( ),2 ΛHu  and 

( ( )) ( )
=

ΛΛ =
2

1

222

i
HiH uu

�
 denote the norm in ( )Λ2

H  (Sobolev space) 

and in ( ( )) ,
22 ΛH  respectively. Notations ⇀  and →  refer to the weak 

convergence and strong convergence of a sequence, respectively. 
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3. Solution of the CPSV Equations 

First, we find the weak forms (WFs) of the CPSV equations (1-6). Let 

( ) ( )Λ×Λ= 22
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�

 is obtained by multiplying both sides of equations 

(1) and (2) by ( )Λ∈ 2
1 Hv  and ( ),2

2 Λ∈ Hv  respectively, integrating both 

sides of the obtained equations over ,Λ  and then utilizing the generalized 

Green’s theorem, we introduce the WFs 
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By adding (8) and (9), we find ( ( )) ,
22 Λ∈∀ Hy

�
 

 ( ) ( ) ( ) ,,,, 21 Svvvlvy
���� ∈∀=B  (10) 

where the symmetric bilinear form (BLF) ( )vy
��

,B  and the continuous linear 

form ( )vl
�

 are explained in the following, when ( ( ))22 Γ∈ Lq
�

 is fixed: 

( ) ( ) ( ) ( ) ( )222122111111 ,,,,, vyAvyavyavyAvy +−+=��B  

( ) ( ),,, 212221 vyavyb ++  (11) 

( ) ( )( ) ( ) ( )( ) ( ) ( ) .,,,,,, 2122221111 SvvvqvxGvqvxGvl
�� ∈∀+++= ΓΓ  (12)  

Assumptions (A) 

(1) The BLF ( )⋅⋅,B  satisfies the following properties: 

(a) ( )vy
��
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�� ∈∀  00 >∃c  such that ( ) ≥vy
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.
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(b) ( )vy
��

,B  is continuous, i.e., 

01 >∃c  such that ( ) ( ( )) ( ( )) .,,, 22221 Svyvycvy
HH

������� ∈∀≤ ΛΛB  

(2) ( )vl
�

 is a bounded functional on ,S
�

 where q
�

 is bounded, i.e., 

02 >∃c  such that ( ) ( ( )) .,222 Svvcvl
H

���� ∈∀≤ Λ  

To obtain the solution of the general classical problem (10), the FEM is 

utilized by choosing a finite approximation subspace SSn

��
⊂  and the 

problem (10) reduces to the discrete Galerkin WF: find nn Sy
�� ∈  such that 

 ( ) ( ) .,, nn Svvlvy
����� ∈∀=B  (13) 

Theorem 3.1. For any fixed CCCPCTV ( ) ( ( )) ,, 22
21 Γ∈= Lqqq

�
 there 

is a unique approximation solution ( ) nnnn Syyy
�� ∈= 21 ,  for problem (13). 
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Proof. For each n, let nS
�

 be the set of continuous and PCH type 

polynomials functions in .Λ  We define two Hermite basis functions namely 

jϕ�  and ,jϕ  i.e., { }nn ϕϕϕϕϕϕ ...,,,,...,,, 2121
���

 is a finite Hermite basis. 

We now express ( )21, xxyy nn
�� =  as a finite linear combination 
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where jj cc ,  are unknown constant vectors, ....,,2,1 nj =∀  

By substituting the solution ny
�
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equation (13), we have 
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Now, by utilizing assumption (A(1-a)), the system (15) has a unique 

solution which gives the existence of a uniqueness solution of (13). 

Remark 3.1. ( ( )) ,22
0 Λ∈∀ Hv

�
 there exists a sequence { }nv

�
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,, nSv nn ∀∈
��

 and vvn
�� →  in ,S

�
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�
 

hence corresponding to the sequence { } ,1
∞

=nnS
�

 we have a sequence of (13), 

for each ...,,2,1=n  i.e., nn Sy
�� ∈  such that 
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( ) ( ) nSvvlvy nnnnn ∀∈∀= ,,,
�����

B  (16) 

which has a sequence of { } .1
∞

=nny
�

 

Theorem 3.2 (Existence solution of the CPSV equations). The sequence 
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�
 (of the sequence of WF (16)) converges to y

�
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(12)). 
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�
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�

 of (12). 
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This gives ( ) ( ) .,, Svvlvy
����� ∈∀=B  

Therefore, y
�

 is a solution of (12). 
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Now, let 21, yy
��

 be two solutions of (12). Then 
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( ) ( ) .,,2 SvvFvy
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The above two equations give 

 ( ) .,0,21 Svvyy
����� ∈∀=−B  (18) 

Now, by inserting 21 yyv
��� −=  in (18) and using assumption (A(1-a)), 

we find that ,21 yy
�� =  i.e., the solution is unique. 

4. Existence of a Couple Boundary Optimal Classical Control 

In this part, the following lemmas are important in the proof of the 

existence of a couple boundary optimal classical control. 

Lemma 4.1. The operator qyq �
�

֏
�

 from aQ  to ( ( ))22 ΛL  is Lipschitz 

continuous, i.e., 
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( ( )) ( ( )) ,2222 ΓΛ δ≤δ
LL

qky  for .0>k  

Proof. Let ( ) aQqqq ∈= 21,  be a given couple boundary control 

vector of the WF (10) and ( )21, yyy =  be the corresponding vector of state 

solution. Subtracting the obtained WF from (10), and substituting =δy  

,yy −�  qqq −=δ �
 in the obtained equation, and inserting 11 yv δ=  and 

,22 yv δ=  we get 

 ( ) ( ) ( ).,,, 2211 yqyqyy δδ+δδ=δδB  (19) 

Taking the absolute value of (19) with using assumption (A(1-a)) and the 

Cauchy-Schwarz inequality (C-SI), we deduce that 
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2
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Lemma 4.2 [15]. The CF (7) is weakly lower semicontinuous (WLSC). 

Lemma 4.3 [15]. The norm 2⋅  and (
( )

)2
2 Γ

⋅
L

 is strictly convex. 

Theorem 4.1. If ( )qJ
�

0  is coercive, then there exists a couple classical 

optimal boundary control for the problem. 

Proof. Since ,iQ  for each ,2,1=i  is convex, hence aQ  is convex. 
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Since ( ) ,00 ≥qJ
�

 and ( )qJ
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sequence { } ( ){ } nQqqq annn ∀∈= ,, 21
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Since for each n, ( )nnn yyy 21 ,=�  satisfies the WF (13), we have 
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To prove q
�

 is unique, from strict convexity of ( ),0 qJ
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 we conclude the 

uniqueness of .q
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5. The NECs for Optimality 

In order to formulate the NECs for a couple classical optimal boundary 

control, we drive the FrD of the Hamiltonian to establish the theorem of the 

NECs for optimality. 
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Proof. Rewriting the CPAEs (25-30) by their WFs, we get 
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Eman Hussain Mukhalf Al-Rawdhanee 252 

and 

 ( ) ( ) ( ) ( ) ( ).,,,,, 2
2222212221222 Λ∈∀−=−+ HvvyyvzavzbvzA d  (32) 

By adding (31) and (32), for fixed couple classical control vector  

( ) ( ( )) ,,
22

21 Γ∈= Lqqq
�

 we obtain that the WF of the CPAEs has a unique 

solution ( ) ( ) Szzzz qq

�
∈=

21 2121 ,,  (this can be proved in the same way as 

the proof of Theorem 3.1), and 
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By substituting 1y  once and 11 yy δ+  once again in (8), subtracting the 

two resulted equations one from the other, and inserting ,11 zv =  we obtain 
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( ) ( ) ( ) ( ).,,,, 2221112211 yyyyyyzqzq dd δ−+δ−=δ+δ ΓΓ  (38) 
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Then from the CF, we observe that 

( ) ( )qJqqJ
��

00 −δ+  

( ) ( ) ( ) ( )ΓΓ δλ+δ−+δλ+δ−= 222222111111 ,,,, qqyyyqqyyy dd  

( ( )) ( ) ( )
.

222

1 2
2

22
1

12
2222 ΓΓΛ

δλ+δλ+δ+
LLL

qqy  

From the CF and using (38), we have 

( ) ( )qJqqJ
��

00 −δ+  

( ) ( ) ( ) ( )ΓΓΓΓ δλ+δ+δλ+δ= 2222211111 ,,,, qqzqqqzq  

( ( )) ( ) ( )
2

2
22

1
12

2222 222

1

ΓΓΛ
δλ+δλ+δ+

LLL
qqy  

( ) ( )ΓΓ δλ++δλ+= 22221111 ,, qqzqqz  

( ( )) ( ) ( )
.

222

1 2
2

22
1

12
2222 ΓΓΛ

δλ+δλ+δ+
LLL

qqy  (39) 

From Lemma 4.1,  

( ( )) ( ( ))
( ) ( ( )) ,2

2

1
22

2222 1
22

ΓΓΛ
δδε=δ≤δ

LLL
qqqy  (39a) 

where ( ) ,01 →δε q  as ( ( )) ,022 →δ ΓL
q  where ( ) ( ( )) .2 221 Γδ=δε

L
qq  

Since 
( ) ( ( ))

,
22

222 ΓΓ
δ≤δ

LL
i qq  we have 

( ) ( )
2

2
22

1
1

22 22 ΓΓ
δλ+δλ

LL
qq  

( ( )) ( ( )) ( ( ))2222
22

2
ΓΓΓ

δδ=δ≤
LLL

qqCqC  

( ) ( ( )) ,222 Γδδε=
L

qq  (39b) 
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where 






 λλ=

2
,

2
max 21C  with ( ) ,02 →δε q  as ( ( )) ,022 →δ ΓL

q  where 

( ) ( ( )) .222 Γδ=δε
L

qCq  

Hence the FrD of 0J  is 

( ) ( )qJqqJ
��

00 −δ+  

( ) ( ) ( ) ( ( )) ,,, 2222221111 ΓΓ δδε+δλ++δλ+=
L

qqqqzqqz  (40) 

where ( ) ( ) ( ) ,021 →δε+δε=δε qqq  as ( ( )) .022 →δ ΓL
q  

Finally, from (39) and (40), we get 

( ( ) ) ( ) ( ) .,,, 222211110 ΓΓ δλ++δλ+=δ′ qqzqqzqqJ
�

 

Theorem 5.2. The continuous classical couple optimal control of the 

considered problem is ( ) ( ) ( ) 0,, 222211110 =δλ++δλ+=′ ΓΓ qqzqqzqJ
�

 

with qyy �
�� =  and .qzz �

�� =  

Proof. If q
�

 is an optimal control vector of the considered problem, then 

( ) ( ),min 00 qJqJ
Qq ∈

=�  

( ( )) ,
22 Γ∈∀ Lq  i.e., 

( ) ( ) ( ) 0,,0 222211110 =δλ++δλ+=′ ΓΓ qqzqqzqJ
�

 

111 zq −=λ  and .222 zq −=λ  

−=δ qqq
�

 the NEC of the optimality is 

( ( ) ) ( ) ( ).,0, 22
0 Γ×Γ∈∀≥δ′ LLqqqJ
�
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6. Conclusion 

In this work, the FEM with a PCH basis function is suitable to study the 

existence of a unique couple state vector solution for a couple fourth NBVP 

of LEPDEs with VCs, when the CCCPBCTV is considered. Under essential 

conditions, the existence theorem of a couple continuous classical optimal 

boundary control vector associated with a couple fourth order linear elliptic 

boundary value problem is introduced. In the end, the FrD of the 

Hamiltonian is obtained to establish the theorem of the NEC for optimality 

of the above considered problem. 
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