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Abstract 

This paper considers the asymptotic behavior of solutions of equations 

of evolutions, and concentrates on the analysis of the critical blow-up 

solutions for a class of evolutions for nonlinear Schrödinger equations 

in a bounded domain. More precisely, the numerical approximation      

of the blow-up rate below the one of the known explicit explosive 

solutions is studied, which has strictly positive energy for the 

following initial-boundary value problem: 
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where ,1−=i  ,R∈α  ,R∈β  ,1≥d  u is a complex-valued 

function of the variable ,
d

x R∈  ∆  is the Laplace operator in d
R  

and the time .0≥t  

The paper proposes a general setting to study and understand the 

behavior of the blow-up solutions in a finite time as a function of the 

parameters ,α  ,β  with initial condition ( ) ,,0 0uxu =  in the energy 

space ,
1 d

H R∈  also in the case where d
R  is large enough and its 

size d is taken as parameter. Some assumptions are found under which 

the solution of the above problem blows-up in a finite time, study       

the dynamics of blow-up solutions and estimate its blow-up time.        

Finally, some numerical experiments to illustrate the analysis have 

been provided. 

1. Introduction 

In this paper, we are interested in the numerical approximation for           

the following initial-boundary value problem for the critical nonlinear 

Schrödinger equation of the form: 

( ) ( ) ( ) ,0,,, =β−∆α− xtfixtuixtut    ( ),,0; Ttx
d ∈∈ R  (1.1) 

( ) ( ),0, 0 xuxu =    ,d
x R∈  (1.2) 

which appears in a lot of models of nonlinear optics, energy transfer in 
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molecular systems, quantum mechanics, seismology and plasma physics. 

They are widely used in several domains of applied physics, see [1, 29] to 

cite only a few cases. This equation is locally well-posed in 1
H  the usual 

Sobolev space from [7]. The main objective of this paper is to present a 

relationship between the constants ,α  β  and a sharp criterion for the 

existence of global solutions to the nonlinear Schrödinger equation. We will 

begin our mathematical discussion of (1.1) with a comparison to the dD. 

The case, where ,1=d  describes in certain regimes of the propagation 

of electromagnetic, it arises as an equation in water wave theory, see              

[25, 26], and the initial-value problem (1.1)-(1.2) could model an electron 

propagating in a 1D, where .2=q  The problem is globally well-posed for 

smooth enough initial data that decay sufficiently fast at infinity. 

The case 2=d  arises in nonlinear optics: Blow-up of the solutions 

corresponds to a physical phenomenon and the solution u is then the 

envelope of an electromagnetic wave propagating. In the past, certain 

authors have used numerical methods to study the phenomenon of blow-up 

for nonlinear Schrödinger equations but they have considered the problem 

(1.1)-(1.2) in the case where the term ( ) ( ) ( ),,,,
1

xtuxtuxtf
q−=  see       

[2, 26]. In this case, one proves that the energy of the system is conserved 

and the method used to show blow-up solutions is based on the energy’s 

method. It is classical from the conservation of the energy.  

For 2=d  or ,3=d  it is also well known that there exists a singular 

solution which blows-up in ∞
L  in finite time, see [21, 22, 30-32]. 

In this paper, we propose a method based on a modification of the 

method of Kaplan (see [9]) using eigenvalues and eigenfunctions to show 

that numerical solution blows-up in a finite time. We integrate the semi-

discrete scheme and obtain some discrete schemes where the convergence 

and stability of the explicit schemes have been proved, see Dai [3]. 

This paper is organized as follows. In the next section, we give some 

results about the local solution. In the third section, we give some conditions 
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under which the solution of (1.1)-(1.2) blows-up in a finite time and estimate 

its blow-up time. In the last section, we propose some schemes and 

algorithms to compute the numerical blow-up time. Some numerical values 

are given. 

2. Local Solutions 

In this section, we consider the following nonlinear Schrödinger 

equation: 

( ) ( ) ( ),,,, xtfxtuixtut β−=∆α−    ( ),,0, Ttx
d ∈∈ R  (2.1) 

( ) ( ),0, 0 xuxu =    ,d
x R∈  (2.2) 

where ( )xtu ,  is a complex-valued function in space time .d
I R×  For the 

energy-critical local theory, it is convenient to introduce a number of scale 

invariant function spaces. We use ( )Rx
rL  to denote the Banach space of 

functions Cf →R:  whose norm 

 ( ) ,

1 r

R

r
r d

drrff 






=   (2.3) 

is finite, in the study of evolution equations, the terms “global” and “local” 

refer to the existence of the solution on some finite interval.  

In this work, global solutions were constructed for small energy data and 

local solutions were constructed for large energy data, though, as is to be 

expected for a critical equation, the time of existence depends on the profile 

of the initial data and not simply on the energy. Furthermore, these solutions 

were unique in a certain space where they depended continuously on the 

initial data in the energy space ( ).1 d
H R  

If ,1=α  0=β  or ( )( ) ,0, =txuf  then the critical nonlinear Schrödinger 

equation (2.1) becomes: 

( ) ( ) ,0,, =∆+ xtuxtiut    ( ),,0, Ttx
d ∈∈ R  (2.4) 
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( ) ( ),0, 0 xuxu =    ,d
x R∈  (2.5) 

for ( ),2
0 Ω∈ Lu  the solution of (2.4) is 

( )
( )

( )
−

−

π
=

R

.

4

1
, 0

4

2

2

dyyue

it

xtu t

yx
i

d
 (2.6) 

Equation (2.4) induces a spatial regularity gain for almost all t compared to 

the initial data that can be written as 

 ( ) [ ]( ) .22 0;,0 LGTL
uCtu ≤ξ  (2.7) 

Here G is a strict subspace of 2
L  as a space of functions and ξ  is a function 

.∞
cC  This property is called regularizing effect. For ,d

R  the regularizing 

effect was shown with ( ).2

1
d

HG R=  

If ,1=α  0≠β  and for ( )( ) ( ) ( ),,,, xtuxtuxtuf x
q=  equation (2.1) 

becomes a fractional modified nonlinear Schrödinger equation, namely, 

( ) ( ) ( ) ( ) ,0,,,, =β−+ txutxutxutxiu x
q

xxt    ( )Ttx ,0, ∈∈ R  (2.8) 

which describes the propagation of rogue waves in deep water with a general 

nonlinearity by Mio et al. [17]. The study of DNLS (the derivative nonlinear 

Schrödinger equation) is more difficult than the corresponding cubic 

nonlinear Schrödinger equation (NLS), namely, 

( ) ( ) ( ) ( ) ,0,,,,
2 =β−+ txutxutxutxiu xxt    ( ).,0,2

Ttx ∈∈ R  (2.9) 

The DNLS equation in (2.8) with general power nonlinearity ( )0>q  and 

1=β  admits a family of solitary waves solutions [8] given explicitly by 

( ) ( )
( ) ( )

,,
,

1

2
,


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



 ϑ−−+λ

λ


−
∞− λ−ϑ=

atx q
a

dyy
q

atx
a

ti

a eatxtxu  (2.10) 
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where admissible values of ( )a,λ  satisfy the conditions ,,
4

2
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a ∈>λ  
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For the case, where ,2ρ=q  equation (2.8) is in the form 

( ) ( ) ( ) ,0,,,
2 =−+ ρ

xxxt utxutxutxiu    ( )Ttx
d ,0, ∈∈ R  (2.11) 

and the solitary waves solution is 
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is the positive solution to this hyperbolic partial differential equation: 
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(2.13) 

with the solution satisfying 

 ( ) ( ),, , atxetxu a
ti −φ= λ

λ  (2.14) 

where ( ) ( ) ( )yi
aa

aeyy ,
,,

λθ
λλ ϑ=φ  for  

( ) ( ) .
22

1

2
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,,  ∞−
ρ

λλ ννϑ+ρ−≡θ
y

aa dy
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The complex function ( )ya,λφ  satisfies 

.,0,
2

,,,,
2

R∈=φ∂|φ|−φ+λφ+φ∂ λ
ρ

λλλλ yiia ayaaaay  (2.15) 

For ,0=α  1−=β  and ( )( ) ( ) ( ),,,, xtuxtuxtuf x=  equation (2.1) becomes 

a fractional modified nonlinear Schrödinger equation: 

( ) ( ) ( ) ,0,,, =+ txutxutxu xt    ( ),,0, Ttx ∈∈ R  (2.16) 

( ) ( ),0, 0 xuxu =   .R∈x  (2.17) 

If ( ) ( ),0 xgxu =  then we obtain Burgers’ equation whose solution is given 

implicitly for 0>t  by 

 ( ) ( )( )( ),,, txutxgtxu −=    .R∈x  (2.18) 

If g is a bounded, continuously differentiable function, the (continuously 

differentiable) solution remains bounded as long as it exists. However, if 

( )xg′  is somewhere negative, then from an easy calculation using implicit 

differentiation, we see that tu  and u both become unbounded in finite time. 

Therefore, we shall take the phrase “finite time blow-up” to mean that either 

the solution or some derivative of the solution becomes unbounded in some 

norm in finite time. 

For ,1=α  0≠β  and ( )( ) ( ) ( ),,,, txutxutxuf
q||β−=  the critical 

nonlinear Schrödinger equation (2.1) takes the form: 

( ) ( ) ( ) ( ) ,0,,,, =||β−∆+ txutxutxutxiu
q

t    ( ),,0, Ttx
d ∈∈ R  (2.19) 

( ) ( ),0, 0 xuxu =    .d
x R∈  (2.20) 

In the case ,1=d  the problem (2.19) is globally well-posed for smooth 

enough initial data that decay sufficiently fast at infinity. It is straightforward 

for ,2=q  to check it in the 2
L  norm. In one-dimensional space, equation 

(2.19) exhibits solitary wave solutions, that can furthermore be solved 

exactly by the inverse scattering method, see [28]. Some results in this 
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direction have already been obtained by Strauss [23], in particular on low 

energy scattering. 

In the cases ,2≥d  the main result is the existence and uniqueness of 

global solutions of the Cauchy problem for equation (2.19) under suitable 

assumptions on f and for initial data in the Sobolev space ( ).11 d
HH R≡  

From this, it follows that the time interval of existence of a local solution 

with initial data in 1
H  depends only on the 1

H -norm of the initial data. 

Therefore, such a solution can be continued into a global one if one succeeds 

in finding an a priori estimate for the 1
H -norm. The assumptions on f 

include continuous differentiability, the condition ( ) 00 =f  and suitable 

power bounds both at zero and at infinity. They cover the case of a single 

power ( )( ) ( ) ( ),,,,
1

txutxutxuf
q−=  where ( ) ( )221 −+<< ddq  if 

0>β  and ( ) ddq 41 +<<  if .0<β  For more refined estimates of the 

Strichartz inequalities where we no longer have punctual information, but         

a time average of the norm ( ),dm
L R  if we denote by ∆it

e  the linear 

semigroup associated with the Schrödinger operator, we have 

 ( ( )) ( ),20,0 ddmp
LLL

it
uCue

RRR
≤∆  (2.21) 

where ( )mp,  is a d-couple admissible, i.e., p, m satisfy .
2

2 d

m

d

p
=+  

Furthermore, ∞≤≤ p2  and ( ) ( ).2,,2,, ∞≠dmp  We can find the 

scaling d-admissibility condition with the invariance of the linear 

Schrödinger equation under the change of .,2
xxtt λ→λ→  

Definition 2.1. We say a critical exponent q for ( )dm
Hu R∈0  

exponent such as this equation 

( ) ( ) ( ) ( ) ,0,,,, =||β−∆+ txutxutxutxiu
q

t    ( )Ttx
d ,0, ∈∈ R  

remains invariant by ( ) ( ),,, 2
xtuxtu λλλ→ θ  also its norm in ( ),dm

H R  
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( ) .22 L

m

∆−  This involves 
2

d
m <  and .

2

4

md −=θ  The nonlinearity 

uu
qβ  is invariant by the change mentioned, but to have a regularity in 1

H  

with .1≥q  

Theorem 2.1. Assume that 
2

4
1,2 −<≤≥

d
qd  and ( ).1

0
d

Hu R∈  

Then there exists a unique solution ( ( )) ( ( )),,, ,11 dmp
loc

d
WRLHRCu RR ∩∈  

where ( )mp,  are d-admissible solutions of equation 

( ) ( ) ( ) ( ) ,0,,,, =−∆+ txutxutxutxiu
q

t    ( ).,0, Ttx
d ∈∈ R  

Proof. We prove a local existence and uniqueness theorem by a fixed 

point technique of this equation 

( ) ( ) ( ) ( ( ) ( )) τττ−=φ ∆τ−∆ t
qtiit

duueiuetu
0

0 .:  

The existence problem for 2=d  and 3 has also been studied in [8]. There is 

a large amount of flexibility in the choice of the spaces. The mathematical 

theory of the initial-value problem for (2.8) relies to a considerable extent on 

two invariance properties satisfied by the solution, see [5-33]. 

The cases 4,3 == dd  were treated in [5] and [15], respectively (see 

also [1, 3, 9, 21, 33] treating the radial case). The behavior of the solution, 

say u, or its derivatives near the blow-up time T has been observed. It is 

often conjectured that the growth of u near the singularity can be described 

by 

( ) ( ) .,max
σ−−∝ tTtxux  

Since the convergence properties of any numerical scheme depend on the 

good behavior of u and its derivatives, it is clear that the calculation of T and 

σ  poses some difficulty. 
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3. Time of Schrödinger Equation with Blow-up Rate 

In this section, we compute the blow-up rates in the case where 

( ) ( ) ( )xtuxtuxtf
q

,,, =  for an initial-value ( )ru0  and for several norms 

of the solution of the radial problem in a finite interval ,0 Rr ≤≤  with 

Dirichlet boundary condition, then the problem (1.1) becomes in the form: 

( ) ( ) ( ) ( ) ,0,,,, =β−∆α− txutxuitxuitxu
q

t    ( ),,0; Ttx
d ∈∈ R  

( ) ( ),0, 0 xuxu =    .d
x R∈  

The numerical approximation of radially symmetric solution ( )tru ,  for 

0>t  on finite interval in ( )1+d  dimensional space-time and equation 

(1.1) becomes 

( ) ,,
1

utxuiu
r

d
uiu

q
rrrt β+





 −+α=    ,10 ≤< r   ( ),,0 Tt ∈  (3.1) 

( ) ,0,0 =tur    ( ),,0 Tt ∈  (3.2) 

( ) ( ),0, 0 ruru =    .0>r  (3.3) 

For ,2=q  with ( )2

1
22

1 dxxr ++= ⋯  of the initial valued problem        

(1.1)-(1.2), the mathematical theory of the initial-value problem for (3.1) 

relies to a considerable extent on two invariance properties satisfied by         

the solution, see [5-33]. In the presence of radial symmetry solution of the 

initial-valued problem, these invariants are 

( )
∞ − =
0

12
,, Cdrrtru

d
 for ,0≥t  (3.4) 

( ) ( )
∞ − =






 −

0

142
,,

2

1
, Sdrrtrutru

d
r  for ,0≥t  (3.5) 

for .0 Tt <<  In what follows, we shall consider the p
L  norms, 

,1 ∞<≤ p  of the radial function defined on [ ]1,0  by 
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 ( ) .

11

0

1
p

dp
L drrrff p 







=  −
 (3.6) 

If ,2≥q  we give a regular initial condition, the solution of equation (1.1) 

exists up to some time ,0>T  see [24] and satisfies the invariance 

properties 

( ) =
R

,,
2

Cdrtru  for ,0≥t  (3.7) 

( ) ( ) =







+− +
R

,,
2

2
,

22
Sdrtru

q
tru

q
r  for .0≥t  (3.8) 

If ,1=d  then the constancy of C and S ensures the boundedness of the 

solution. The solution u must cease to exist at some finite value of .Tt =  

More precisely, 

( ) .lim +∞=∞+
→ L

Tt
tu  

The case 2=d  is the critical dimension case for the cubic nonlinearity, and 

the blow-up slows down somewhat, making the numerical integration of the 

equation harder. We give a regular initial condition such that the solution of 

equation (3.1) exists up to some .0>T  Many authors have conjectured that 

the singular solutions of equation (3.1) exhibit a self-similar structure as t 

approaches T, see Rypdal and Rasmussen [21], for the behavior of the 

solution u near the singularity. We have 

 ( ) ( ) ( )( ),lim,lim rtBtBtru
TtTt

Ψ=
→→

 (3.9) 

where ( )tB  is singular at .Tt =  We need to determine which particular self 

similar structure acts as an attractor for a given class of initial conditions. 

However, disagreement has existed regarding the nature of the singularity 

( ).tB  In fact, 

 ( ) ( ) ρ−− tTtB ~  as .Tt ↑  (3.10) 
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For ,2=d  we computed the solution of the problem (3.1) at 0=r  and the 

nature of the singularity ( )tB  is in the form ( ) ( )2

1

tTtB −=  by Kelley, see 

[11], and the blow-up slows down somewhat, making the numerical 

integration of the equation harder. Thus, ( ) ( ) 3

2−
−= tTtB  law for the blow-

up of the amplitude was conjectured by Zakharov et al., see [29-31].          

This behavior was perturbed by a more slowly varying factor, using 

computational evidence and asymptotic techniques. LeMesurier et al. [15] 

suggested the form 

 ( )
2

1

1
ln

~

















−









−
tT

tT
tB  as .Tt ↑  (3.11) 

Using the behavior technique on the basis of asymptotic estimates, the rate 

becomes in the form 

( )

2

1

1
ln

~



































−









−

δ

tT

tT
tB  as ,Tt ↑  (3.12) 

where ,10 ≤δ≤  or  

 ( )
2

1

1
lnln

~

















−









−
tT

tT
tB  as .Tt ↑  (3.13) 

It is concluded that solutions emanating from several types of initial data 

blow-up in finite time as .Tt ↑  We illustrate the development of the 

singularity for an initial condition of the type 

 ( ) ( ) .0,

2

0







−

== l

r

beruru  (3.14) 
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For ,2=q  ,1=l  2=d  or ,3=d  we computed the solution of the 

problem (3.1) at .0=r  This equation is integrated numerically and the 

details of the blow-up are inferred from the long-time asymptotic of the 

numerical solution and the scale factors such that the scaling factors are 

chosen so that suitable functionals of solution are preserved. We assumed 

that the phase of the solution at 0=r  is of the form 

 ( ) ( ) ρ−−∝ tTtu ,0  as .Tt ↑  (3.15) 

For the case ,3=d  McLaughlin et al. in [16] have derived a semi-linear 

elliptic equation for .Ψ  They carried out calculations with initial conditions 

of the type (3.14) which support the conjecture (3.9) with ( ) ( ) 2

1−
−= tTtB  

as t approaches the blow-up time ,∞<T  and suggest another self-similar 

blow-up regime where ( ) ( ) 21
tTtB −=  weak collapses and ( ) =tB  

( ) 53
tT −  strong collapses, see [18, 30, 31]. 

4. Numerical Approximation for Nonlinear Schrödinger 

Equations with Finite Element Methods 

In this section, we report the results of numerical experiments performed 

with our adaptive code in the critical dimensional case. We computed blow-

up rates for the amplitude of the solution of (3.1) as well as for several of its 

norms and norms of its radial derivative. 

Let Rrrr nh =<<<=∆ +1210: ⋯  be a repartition of the interval 

[ ].,0 R  We introduce the finite-dimensional hS  consisting of all the 

functions defined on [ ]R,0  which are continuous and piecewise linear with 

respect to .h∆  We also introduce the discrete time levels 

.0 10 ⋯⋯ <<<<= mttt  To normalize matters, we scale the radial 

variable so that it takes values in [ ],1,0  and thus we have the fully discrete 

Galerkin approximation of the solutions. Therefore, we consider the radial 

problem in a finite interval with Dirichlet boundary condition. To that effect, 
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after scaling ,Rrr →  for 0>T  at ,∞→T  we have 

( ) ,,
1

utxuiu
r

d
uiu

q
rrrt β+





 −+α=    ,10 ≤< r   ( ),,0 Tt ∈  (4.1) 

( ) ,0,0 =tur    ( ),,0 Tt ∈  (4.2) 

( ) ,0,1 =tu    ( ),,0 Tt ∈  (4.3) 

( ) ( ),0, rvru =    ,10 ≤≤ r  (4.4) 

where ,
1

R
=α ( ) ( ),0 xRuxv = 10 ≤≤ x  and 2=d  or .3=d  The solution 

of (1.1)-(1.2) by fully discrete Galerkin finite element method uses 

continuous, piecewise linear polynomials in r and the implicit midpoint 

time-stepping rule in t. 

Another reason for introducing finite elements is to get a new result for a 

new code in two dimension which worked equally well with the resulting 

finite difference scheme. There is an evidence on the dynamics of blow-up 

of radially symmetric solution of NLS equations in two and three 

dimensions, see [19-21]. It has been concluded that solutions emanating 

from several types of initial data blow-up in finite time as .Tt ↑  

Let ( )iini rrh −= +≤< 11max  and use a time step  

( ),max 10 mmm ttt −=∆ +≤  

which is constant. 

Let hS  be the space of complex-valued continuous functions defined on 

[ ]1,0  that vanish at 1=r  and are the linear polynomials on each interval in 

( ),,1 ii rr −  where 
( )

h
m

h SU ∈  an approximation to ( )mtu  is defined as the 

solution of the problem, see [6]. We shall consider two different ways of 

constructing an approximation to u at the next time level. In the first method, 

due to Delfour et al. [4] (DFP for short), ,1
h

m
h SU ∈+  is defined as the 

solution of the problem (4.1)-(4.4): 
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+φ−φ−
−


−






 +

−

+

+ R
d

m

h

R
d

mm

m
h

m
h drr

dr

d
U

dr

d
drr

tt

UU
i

0

12

1

0

1

1

1

 (4.5) 

( ) ( )

 =φ||+|| −++R
dmmm

drrU
UU

0

12

1221

,0
2

 (4.6) 

for all ,hS∈φ  where 

( ) ( )
,

2

1
2

1 mmm UU
U

+=
++

 

then there exists a unique solution n
U  of the fully discrete scheme satisfying 

( ) ( ) ( ),22
2 htCUtu

L
nn +∆≤− Ω  (4.7) 

where the constant C depends on the solution u. The stability and 

convergence of fully discrete finite element methods have been analyzed in 

detail in [2] and [16] for the NLS equation. To derive an estimate for the 

error ( ) nn
Utu −  in ,2

L  we assume that the solution of (4.1) is sufficiently 

smooth on [ ] [ ].,01,0 T×  Then, arguing along the lines of [2], we may prove 

that there exists a unique solution n
U  of the fully discrete scheme of (4.1) 

satisfying 

( ) ( ) ( )22
0 2max htCUtu

L
nn

Jn +∆≤− Ω≤≤  (4.8) 

provided t∆  is sufficiently small and that ( )4d
hot =∆  as ,0→h  where                  

C is a constant independent of the discretization parameters. We may 

approximate second-order accuracy of the solution of (4.1). 

For ,3=d  and the initial value ( ) ,26
2

0
r

eru
−=  take 5=R  for the 

radius of the sphere .Ω  Assume that the behavior of u near T takes the      

form ( ) ( ) .,0
ρ−−∝ tTtu  The problem (4.8) has been considered by 

McLaughlin et al. [16] who computed 034302.0=T  and .
2

1=ρ  As far as 
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the implementation of the numerical method is concerned, we have used 

uniform grids in space and time and the fixed-point iteration procedure.      

For an example, starting with 500=M  subintervals and an initial mesh 

length ,002.05001 ==h  assume that the finest mesh region has 200=M  

subintervals with .005.02001 ==h  

Numerical experiments of the blow-up rate for ( ) ,26
2

0 r
eru

−=  

3=d  

t∆  h hT
 t∆  h hT

 

310−
 

0.002 0.0343041880 310−
 

0.001 0.034304430 

410−
 

0.002 0.0343062450 410−
 

0.001 0.034304450 

510−
 

0.002 0.0343042998 310−
 

0.001 0.0343042998 

1010−
 

0.005 0.0343041880 1010−
 

0.001 0.0343007519 

1010−
 

0.00125 0.0343005490 1010−
 

0.005 0.0343007539 

1210−
 

0.005 0.0343007519 1210−
 

0.001 0.0343041880 

1210−
 

0.00125 0.0343041885 1210−
 

0.005 0.0343041880 

For ,2=d  we computed approximations as in (3.12) of the previous 

section, 

( ) ,

1
ln

~

2

1



































−









−

δ

tT

tT
tB  

where .10 ≤δ≤  
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Numerical experiments of the blow-up rate ( )tB  for ( ) =ru
0  

,26
2

r
e

−  0=r  and 2=d  

i 45.0=δ  50.0=δ  6.0=δ  1=δ  0=δ  lnln 

20 0.48976 0.49580 0.49737 0.49888 0.50553 0.50060 

21 0.49004 0.49583 0.49788 0.49878 0.50514 0.50049 

22 0.49030 0.49587 0.49780 0.49871 0.50479 0.50039 

23 0.49057 0.49594 0.49729 0.49867 0.50448 0.50033 

24 0.49081 0.49603 0.49730 0.49852 0.50422 0.50026 

25 0.49103 0.49605 0.49730 0.49856 0.50398 0.50018 

26 0.49126 0.49604 0.49731 0.49854 0.50323 0.49999 

27 0.49138 0.49598 0.49712 0.48827 0.50292 0.49982 

For ,1=d  we computed approximations with ( )
2

220
r

eru
−=  and 

.3>q  The behavior of the solution u near T at 0=r  takes the value of 

087.0~−T  under some condition [15-31]. 

 

Figure 1. Evolution of the solution ( ) ( ) ,,0
21−−= tTtu  ,0=r  

,001.0=∆t  .3=d  
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Figure 2. Evolution of the initial solution, ( ) ( ) ,,0
21−−= tTtu  ,0=r  

,0001.0=∆t  .3=d  

 

Figure 3. Evolution of the singular solution ( ) ( ) ,,0
53

tTtu −=  ,0=r  

,001.0=∆t  .3=d  

 

Figure 4. Evolution of the singular solution, ( ) ( ) ,,0
53

tTtu −=  ,0=r  

,0001.0=∆t  .3=d  
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Figure 5. Evolution of the singular solution ( ) ( ) ,,0
32

tTtu −=  ,0=r  

,001.0=∆t  .2=d  

 

Figure 6. Evolution of the singular solution, ( ) ( ) ,,0
32

tTtu −=  ,0=r  

,0001.0=∆t  .2=d  

 

Figure 7. Evolution of the singular solution ( ) ( ) ,,0
21

tTtu −=  ,0=r  

,001.0=∆t  .2=d  
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Figure 8. Evolution of the singular solution, ( ) ( ) ,,0
21

tTtu −=  ,0=r  

,0001.0=∆t  .2=d  

5. Numerical Approximation for Nonlinear Schrödinger Equations 

with Finite Difference Methods 

In this section, we are interesting in the numerical study for the 

following initial-boundary value problem (1.1) for ( ) ( ) ,,,
q

txutxf β= . 

The semi-linear Schrödinger equation is of the form: 

( ) ( ) ( ) ,0,,, =β−∆α− q
t txuitxuitxu   ( ),,0; Ttx

d ∈∈ R  (5.1) 

( ) ( ),0, 0 xuxu =   .d
x R∈  (5.2) 

Suppose that ,1=β  ,1=d  and assume the Dirichlet boundary 

condition. To that effect, for 0>T  at ,∞→T  we have also 

( ) ( ) ( ) ,,,,
q

xxt txuitxuitxu β−α=   ( ),1,0∈x  ( ),,0 Tt ∈  (5.3) 

( ) ,0,0 =tu  ( ) ,0,1 =tu   ( ),,0 Tt ∈  (5.4) 

( ) ( ),0, 0 xuxu =   ( ).1,0∈x  (5.5) 

Here ,1>q  ,R∈α  ,0≠a  ,0>β  [ ]( ),1,00 Cu ∈  ( ) ,000 =u  ( ) ,010 =u  

( )T,0  is the maximal time interval of existence for the solution u. The time 

T may be finite or infinite. When T is infinite, we say that the solution u 
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exists globally. When T is finite, the solution u develops a singularity in a 

finite time, namely, 

( ) ,,lim ∞=∞→
txu

Tt
 

where ( ) ( ) ( ) .,sup, 1,0 txutxu x∈∞ =  In this case, we say that the 

solution u of (5.1)-(5.2) blows-up in a finite time and the time T is called the 

blow-up time of the solution u. Let I be a positive integer and let .1 Ih =  

Define the grid ,jhx j =  Ij ≤≤0  and approximate the solution u of 

(5.1)-(5.2) by the solution ( ) ( ) ( ) ( )( )TIh tUtUtUtU ...,,, 10=  of the 

following semidiscrete equations: 

( ) ( ) ( ) ( ),2
tUtUitUitU

dt

d
j

q
jjj ||β−αδ=   ,10 −≤≤ Ij  ( ),,0 hTt ∈  (5.6) 

( ) ( ) ,0,00 == tUtU I   ( ),,0 hTt ∈  (5.7) 

( ) ,0 jjU ϕ=   ,0 Ij ≤≤  (5.8) 

where 

( )
( ) ( ) ( )

.
2

2

112

h

tUtUtU
tU

jjj
j

−+ +−
=δ  

Here ( )T,0  is the maximal time interval on which ( ) ∞<∞tUh  with 

( ) ( ) .max
0

||=
≤≤∞ tUtU j

Ij
h  

When the time T is finite, we say that the solution ( )tUh  of (5.6)-(5.8) 

blows-up in a finite time and the time T is called the semidiscrete blow-up 

time of the solution ( ).tUh  Under some conditions, we show that the 

solution ( )tUh  of (5.6)-(5.8) blows-up in a finite time and estimates its 

semidiscrete blow-up time. We also show that the solution ( )tUh  of (5.6)-

(5.8) blows-up in a finite time. We need the following lemma: 
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Lemma 5.1. ( )
−
= 






 π=π1

1
.

2
cotansin

I

j

h
hj  

Proof. A routine calculation yields 

( ) ( )













=














=π 

−

=

π
−

=

π
−

=

1

1

1

1

1

1

ImImsin

I

j

jhi
I

j

hij
I

j

eehj  

( )











−
−=










−
−= π

ππ

π

−π
π

hi

ihi

hi

Ihi
hi

e

ee

e

e
e

1
Im

1

1
Im

1

 

because .1=hI  Since ,1−=πi
e  we arrive at 

( )
















−

+−=









−
+=π π−π

π−π

π

π−

=


22

221

1

Im
1

1
Imsin

h
i

h
i

h
i

h
i

hi

hiI

j
ee

ee

e

e
hj  







 π=














 π=

2
cotan

2
cotanIm

hh
i  

and the proof is complete. □ 

Lemma 5.2. Let ( )tUh  and ( )tVh  be two vectors such that 

( ) ,00 =tU    ( ) ,0=tU I    ( ) ,00 =tV    ( ) .0=tVI  

Then 

 
−

=

−

=
δ=δ

1

1

2
1

1

2 .

I

j

jj

I

j

jj UhVVhU  (5.9) 

Proof. A straightforward computation reveals that 

h

VUUVVUUV
UhVVhU IIII

I

j

jj

I

j

jj
101011

1

1

2
1

1

2 −+−+δ=δ −−
−

=

−

=
  (5.10) 

and the result follows using the assumptions of the lemma. □ 
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Now let us state our first result on blow-up. 

Theorem 5.1. Assume that ( ) ,0
1

1
1

>−β
αλ−

−

q

A
q

h
 where 

( )
2

cos22

h

h
h

π−=λ  

and 

( ) ( )
−

=
ϕπ






 π=

1

1

.Resin
2

tan

I

j

jhjhA  

Then the solution hU  of (5.1)-(5.2) blows-up in a finite time T estimated by 

 ( ) .
1

1arccos
1

1












−β
αλ−αλ≤

−

q

A
T

q
h

h
 (5.11) 

Proof. Since ( )T,0  is the maximal time interval on which 

( ) ,∞<∞tUh  our aim is to show that hT  is finite and satisfies the above 

inequality. Introduce the functions ( )tv  and ( )tw  defined by 

( ) ( ) ( )
−

=
π






 π=

1

1

sin
2

tan

I

j

j tUhjhtv   and  ( ) ( ) ( )
−

=
π






 π=

1

1

.sin
2

tan

I

j

j tUhjhtw  

Taking the derivative of v in t and using (5.6), we get 

( ) ( ) ( )
−

=
δπ






 πα=′

1

1

2sin
2

tan

I

j

j tUhjhitv  

( ) ( ) ( )
−

=
||π






 πβ−

1

1

.sin
2

tan

I

j

j
q

j tUtUhjhi  

We observe that ( ) ( ).sinsin2
hjhj h πλ−=πδ  Due to Lemma 5.2, we arrive 

at 

( ) ( ) ( ) ( ) ( )
−

=
||π






 πβ−αλ−=′

1

1

,sin
2

tan

I

j

j
q

jh tUtUhjhitvitv  
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which implies that 

( ( )) ( ) ( ) ( )
−

=

αλαλ ||π





 πβ−=

1

1

.sin
2

tan

I

j

j
q

j
titi

tUtUhjheitve
dt

d hh  

We also observe that taking the derivative of w in t and using (5.6), we 

discover that 

( ) ( ) ( )
−

=
δπ






 πα−=′

1

1

2sin
2

tan

I

j

j tUhjhitw  

( ) ( ) ( )
−

=
||π






 πβ+

1

1

.sin
2

tan

I

j

j
q

j tUtUhjhi  

Reasoning as above, we find that 

( ( )) ( ) ( ) ( )
−

=

αλ−αλ− ||π





 πβ=

1

1

.sin
2

tan

I

j

j
q

j
titi

tUtUhjheitwe
dt

d hh  

We deduce that 

( ) ( ) ( ) ( ) ( )
−

=
||π






 παλβ=′

1

1

,sin
2

tansin

I

j

j
q

jh tUtUhjhttZ  

where 

( ) ( ) ( )
.

2

twetve
tZ

titi hh αλ−αλ +=  

From Lemma 5.1, we see that ( )
−
= π






 π1

1
sin

2
tan

I

j
hjh  equals one. Thus 

applying Jensen’s inequality, we find that 

( ) ( ) ( )
−

=
||π






 π1

1

sin
2

tan

I

j

j
q

j tUtUhjh  
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is bounded from below by 

( ) ( ) ( ).sin
2

tan

1

1

tUtUhjh j

q
I

j

j 












||π






 π

−

=
 

Applying the triangle inequality, we discover that ( )tZ  is bounded from 

above by ( ) ( )
−
= ||π






 π1

1
.sin

2
tan

I

j j tUhjh  Since ( )thαλsin  is nonnegative 

when t is between 0 and ,
hαλ

π
 we deduce that 

( ) ( ) ( ) q
h tZttZ λβ≥′ sin  for .,0 








λ
π∈

ha
t  

This inequality implies that the function ( )tZ  is increasing. Since ( )0Z  is 

positive, we find that 

( ) ( ) ( )( )q
h tZtabtZ λ≥′ sin  for ,,0 








λ
π∈

ha
t  

which implies that 

( )dtt
Z

dZ
hq

αλβ≥ sin  for .,0 







λ
π∈

ha
t  

Let .,min 







λ
π=∗

T
a

T
h

h  Integrating this inequality over ( ),,0 ∗
T  we 

conclude that 

( )( ) ( ( )).cos1
1

0
1

∗
−

αλ−αλ
β≥− T

q

Z
h

h

q

 

Therefore, we have 

( ) ( )( )
.

1

0
1cos

1

−β
αλ−≥αλ

−
∗

q

Z
T

q
h

h  

Since the quantity on the right hand side of the above inequality is positive, 

we see that the time ∗
T  is estimated as follows: 
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( )( )
.

1

0
1arccos

1
1












−β
αλ−αλ≤

−
∗

q

Z
T

q
h

h
 

Since 

( )( )
1

0
1

1

−β
αλ−

−

q

Z
q

h  

is positive, we deduce that .
2 h

T αλ
π≤∗  Consequently, TT =∗  is finite. 

Use the fact that ( ) AZ =0  to complete the rest of the proof. □ 

Numerical results for ( ),sin200 hiu π=  ,2=q  ,
25

1=α   ,1=β  1=d  

Table 1. Numerical blow-up times, numbers of iterations, CPU times 

(seconds) and orders of the approximations obtained with explicit scheme 

I nT  n CPU time s 

16 0.08894760719774 216 0.015 - 

32 0.08789556888927 924 0.031 - 

64 0.08894741304892 4152 0.156 1.994 

128 0.08894778127283 12037 5.296 1.998 

256 0.08894762835822 103254 112.062 1.999 

512 0.08894760778907 174408 6115.546 2.000 

Table 2. Numerical blow-up times, numbers of iterations, CPU times 

(seconds) and orders of the approximations obtained with implicit scheme 

I nT  n CPU time s 

16 0.08894760719774 216 0.016 - 

32 0.08789556888923 824 0.032 - 

64 0.08894741330489 3152 0.126 1.994 

128 0.08894778127283 14146 3.286 1.998 

256 0.08894768358222 103255 113.062 1.999 

512 0.08894761788917 141406 62015.512 2.000 
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Numerical results for ,26
2

0
r

eu
−=  ,2=q  ,1=α   ,1=β  1=d  

Table 3. Numerical blow-up times, numbers of iterations, CPU times 

(seconds) and orders of the approximations obtained with explicit scheme 

I nT  n CPU time s 

16 0.493839215838980 3152 0.015 - 

32 0.493839108911286 115351 0.031 - 

64 0.493832286048925 3152 0.156 1.994 

128 0.490087978127283 12037 5.296 1.998 

256 0.492861272835822 156602 112.062 1.999 

512 0.490028683478907 1850408 6115.546 2.000 

Numerical results for ,22
2

0
r

eu
−=  ,4=q  ,251=α  ,1=β  1=d  

Table 4. Numerical blow-up times, numbers of iterations, CPU times 

(seconds) and orders of the approximations obtained with implicit scheme 

I nT  n CPU time s 

16 0.031938360418998 3223 0.015 - 

32 0.036137438898042 3094 0.031 - 

64 0.031000081591358 33356 0.156 1.994 

128 0.020786010349181 124852 5.296 1.998 

256 0.020786010349181 45874 112.062 1.999 

512 0.034127283478907 184408 6115.546 2.000 
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Numerical results for ,2
2

0
r

eu
−=  ,4=q  ,251=α  ,1=β  1=d  

Table 5. Numerical blow-up times, numbers of iterations, CPU times 

(seconds) and orders of the approximations obtained with implicit scheme 

I nT  n CPU time s 

16 0.081832555854175 7470 0.016 - 

32 0.082325558898042 13094 0.031 - 

64 0.085834218578467 23017 0.146 1.994 

128 0.080981859466907 86050 5.296 1.998 

256 0.089001131888300 529161 113.062 1.999 

512 0.080127283478907 1884408 6225.546 2.000 

Remark 5.1. It is not hard to see that for ,1=d  the initial-value 

problem 0u  in (1.2) is globally well-posed for smooth enough initial data 

that decay sufficiently fast at infinity. For ,2≥d  there exists a singular 

solution blowing-up in ∞
L  in finite time, see [21, 22]. 

 

Figure 9. Evolution of the discrete solution, ,251=α  ,4=q  ,1=β  

,1=d  16=I  (explicit scheme). 
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Figure 10. Evolution of the discrete solution, ,251=α  ,4=q  ,1=β  

,1=d  16=I  (implicit scheme). 

 

Figure 11. Evolution of the discrete solution, ,251=α  ,4=q  ,1=β  

,1=d  32=I  (explicit scheme). 

 

Figure 12. Evolution of the discrete solution, ,251=α  ,4=q  ,1=β  

,1=d  32=I  (implicit scheme). 
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