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Abstract

In this paper, we prove the existence in small of classical solution
of one-dimensional mixed problem for one class of fourth order
semilinear Sobolev type equations by combining the generalized
contracted mapping principle with Schauder’s fixed point principle.

1. Introduction

This work is dedicated to the study of the existence of classical solution

for the following one-dimensional mixed problem:
e (£, %) = O Dt (1 %) = F (2, 2, ut, ), w6 %), uge (6 %), s (1 x))
O0<t<T,0<sx<sm), (1)
u(0, x) = ¢(x) (0 < x < m), 2)
u(t, 0) =ult, M = u,(t,0) =u, (t, )=0(0 <t <T), 3)

where a > 0 is a fixed number, 0 <T < +o0; F and ¢ are given functions,

and u(z, x) is a sought function.

We call a function u(z, x) a classical solution of the problem (1)-(3) if

this function and all its derivatives involved in equation (1) are continuous in
[0, T] %[0, T] and the conditions (1)-(3) are satisfied in the usual sense.

There have been many works devoted to the study of initial boundary
value problem for nonlinear Sobolev equations (see [1, 6, 8, 10, 11, 13] and
references therein), where the problem of existence and uniqueness in
appropriate Sobolev spaces, the problem of blow up of solutions and the

problems of asymptotic behavior of solutions are studied.

In [2], by means of Schauder’s strong principle on a fixed point for any
dimension n, the existence in large theorem (i.e., for any finite value of T) of
generalized solution of the problem (1)-(3) has been proved. But in [3] using
the method of a priori estimates for any dimension #n, the existence in large

theorem of almost everywhere solution of problem (1)-(3) is proved.
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We also note works [4, 5, 12], of which some approaches are used in this

work.
2. Auxiliaries

In this section, we introduce a number of concepts, notations, and facts

to be used later.

(1) As the system {sin nx};f:l, n =1, 2, .. forms a basis in the space

L,(0, 1), it is obvious that every classical solution u(z, x) of the problem

(1)-(3) has the following form:

u(t, x) = Zun (t) sin nx, (@)
n=1
where
u,(t) = %Jonu(t, x)sin nxdx (n =1, 2, ...; t O]0, T]). (&)

By using the Fourier’s method, we can easily see that u,(t)(n =1, 2, ...)

satisfy the following system of countable many nonlinear integral equations:

) ) reT .
u,(t) = ¢, B~ -—= DIOJO E(u(t, x))sin nx
™

0 Dt (n = 1, 2, ..; 1 O[0, 7). ©

where
00 = 2] b(x)sinms (0 =1.2...) g
E(u(t, x)) = F(t, x, u(t, x), u(t, x), (£, x), i (7, X)). (8)

Proceeding from the definition of classical solution of the problem
(1)-(3), it is easy to prove the following:
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[oe]
Lemma. If u(t, x) = Zun(t) sinnx is any classical solution of the

n=1

problem (1)-(3), then functions u,, (1) (n =1, 2, ...) satisfy the system (6).

Besides, with the aim to study the existence of classical solution of the

problem (1)-(3) in this work, assuming that

E(u(r, X)), 5B (e, )} D €(0, 71x [0, 7).

g;MW@ﬂHDdMTL@me, ©

E(u(t, x))| =9 = E(u(t, x))| .=y =0, Or0O[0, T], (10)

and integrating by parts in x twice on the right side of (6), we transform

system (6) to the following form:
0=, o+ 2 "2 (B (e, )
u,(t) = +—IJ— u(T, x))} sin nx
" ! m* JoJo gy

™ D gedr (n = 1, 2, ;£ 00, T]). (ih

(2) We denote by BSOO’.:'."BOZ(ZT a totality of all the functions u(z, x) of

the form (4) considered in [0, T] x [0, 1] for which all the functions u,,(t) O

c® ([0, T]) and

1

[ 0 B
Jr(u) = Z{Z[nai Dorél;asxT| u,(j)(t) |jBl}Bl < +oo,

i=0 Ln=1

where [ >0 is an integer, o; =0 (i =m), 1<B<2(i =m) We
define the norm in this set as || u | = Jp(u). It is evident that all these spaces

are Banach spaces [9, p. 50].
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Throughout this paper, we use the following notations for functions:

u(t, x) Zun(t sinnx O BBO [31
n=1

/ 1
2 . Bi | B
[ u "Bgé)""’s% = Z{Z (nﬂi Omax | u}(j)(r) |j } (0<t<T).

s <1<
i=0 ln=1 Ostss

(3) It is obvious that if u(t, x) = ZMn (t)sinnx O Bé‘,T (k=11is a

n=l1

positive integer), then O¢ O[0, T]:

o<st<r

1
o 2
|u||Bk1_Z k 1Dmax|u()|${2%}

| —

® ‘ 212 T
2 (" G 1) = g, 2

n=1

Let u(t, x) = D u,(t)sinnx O BS,T. Then, using estimate (12), we have
n=1

for k =5, 0t 00, T] and x O[0, 1,

[o4]

6u(t x) S
O
‘ s 2 Bun(0] = 2 Gy [ (9)
n=1
Z Omax | u, (1)
=l O<t<t
= l | :_
=llulgp, < Zulps, (=0.4) (13)

From estimates (13) and structure of space BS,T, it follows that

u(l, x), ux(tv x), uxx(t’ x)’ uxxx(t’ x)’ uxxxx(t’ x) O C([O’ T] x [O’ T[]) (14)
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Besides, it is obvious that U [J [0, T],

8

n Lt
J | et ) = 5 0 Gy (1))

n

1
—

8

2
<IN (45O =P, .
(" Cma [, (1) 3l

S
ﬂ‘

n

From here, due to the structure of space Bg’ T, it follows that

Uy (8, X) O C([0, TT; L, (0, ). (15)

(4) For a positive integer k, let

o(x) 0 c® (o, m), $%)(x) O L, (0, 1),
$2)(0) = 62)(ry) = O(s -0, [%D

Then, integrating by parts, using Bessel’s inequality (for odd values of k)

and Parseval’s equality (for even values of k), it is easy to obtain that

00

k 2 .2 k 2
> * @, <=0 6WW) 1,0 - (16)
n=1
where the numbers ¢, (n =1, 2,..) are defined by (7). Note that it is
evident that the estimate (16) is also true for k = 0 if ¢(x) O L, (0, ).

3. Main Result

In this section, by combining the generalized contracted mapping
principle and Schauder’s fixed point principle, the following existence
in small (that is, true for sufficiently small values of 7T) theorem for the

classical solution of the problem (1)-(3) is proved:
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Theorem. Let

€})
o(x) 0 c® (o, ), 6©)(x) O L,(0, ™) and

(0) = () = ¢"(0) = ¢"(1) = 6™¥(0) = ¥ (m) = 0.
(2)

F(t, &0, & s &4), F, (1, &0, &) s E4) (0 = 0, 4),

Fee (1, €0, &, o &) (i j = 0,4) D C(0, T] %[0, 7 % (-0, 0)*).
3)
F(£,0,0,&,0,&4) = F(t, 00, &,,0, &) =0,
Or 4]0, T], &, & O (-0, ).
Then there exists in small a classical solution of the problem (1)-(3).

Proof. For each fixed u U Bﬁ 7, we define in BS,T, the operator P,
relative to V:

P,(V(t x)=V(, x) = i\?n () sin nx, (17)
n=l1

where

g2 2 tem )
V. (c) =0, " +W DIO -[0 ®, (V(t, x))sin nx

2
2O e (1 =1, 2,100, 7)), a8

the numbers ¢, (n =1, 2, ...) are defined by (7),

P, V(2. x)) = Glu(t, ) + g(ult, x)) Vypne (8, ), (19)

glult, x)) = Fg, (¢, x, ut, x), uy(t, x), up (2, x), up, (2, x)), (20)
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02
G(u(t, x)) = F{E(u(t’ )}t = gult, x)) Ot (8, %), 2D
X
the operator E is defined by (8), and &, is a variable of the function

F(l, Eo, El’ oo 24)

It is evident that
62
Uu U BS,T’ q)u (M(l, )C)) = a_Z{E(u(t’ )C))} (22)
X

From (18), we obtain for any fixed uDBffT, DVDBS,T and
tafo, 7],

00

2
Vv = Omax | V, (T
I "BS,; E (” Osérlétl (1) |)

n=1
2 tpTT
SR ts I I CH 4 (9) (23)
where
ag =2 (0 0,)%, (24)
n=1

when g follows from (16) for k = 5.

Thus, for any fixed u 0 By 7 by virtue of (23), OV 0 B3 7, we have

2

[oe]

Z \7n (¢) sin nx

n=l1

IEWEs =IVIE; =
B By

5
B r
00

= Z(ns Omax |V, (1) |)2

- 0<1<T
n=l1

T
sa+ 2 [o0E e s
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Next, due to the structure of space Bft 7, we have for every u [ Bﬁ T

and T [0, T],

aiu(T, x)
ox’

<luly <lulg, <lulg, =08 @

c(fo.n)

Besides, forany V = V(t, x) = >V, (f)sinnx O BS,T and Or O[0, T],

n=l1

[ Vil x)ax = T (0 0,0

n=1

mz( Cmax | V, r)|j ‘g[“v”ig,‘ 27)

ost<r

Now, using condition (2) of this theorem and estimates (26), it is easy to

obtain that, for any u U Bff T

el gy < €. 166l ey < €. @8)
where g(u(t, x)) and G(u(t, x)) are defined by (20) and (21), Q7 = [0, T]
x [0, ], C(u) > 0 is a constant.

Thus, from (25) using estimates (28), (27) and relation (19), we obtain
for any fixed u [ BﬁT’ av O BS,T’

T
IPOV)R. sap+ 20 [ {0, (v x) vt
u Bg ; 0 Tt 0 Jo u >

2T
+- 2 () OV ||Z5 : (29)

<ap+ 4T [Cz(u)
a 2,t

It follows from (29) that for any fixed u [J Bff T, the operator P, acts in

B3 7, boundedly.
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Now, using relations (17)-(21) and estimates (28), (27) (for V =
V| =V,), similar to (23), we obtain that for any fixed u (] Bﬁ ., OV, Vo U

S .
BZ,T'

I17,(1) = P, (V2) ||22

<_mj j {®,V,(1, x)) - ®, (V, (T, x))}dxdr

< 2w {j Vs s (T ) = Va, e (@ x)]zdx}dr

2 2 (! 2
< C@WE [ [i-va s @t

2,1

1
s CWivi-vlls o (30)
2,T

| B (Vi) = B (V2) ||22

= BB ) - BB (V) IIZS

INEYNG 2 §
<{g TW) Avi-vly by

!

k!

s{%[(?z(u)}kqlvl v2|| EIT—k,

where k is a positive integer.

Thus, for any fixed u [ BftT, ovy, v, O BS,Ta we have

I BEOR) = PEV) g < ) TV, =Va Ly .
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where

g (u) = % D{% T2 (u) [T}%

It is obvious that for sufficiently large k, g (u) < 1. For such a k, the

operator Puk is a contraction in space Bg,T- Hence, by virtue of the
generalized contracted mapping principle, the unique fixed point V of the

operator Puk in BS,T is the unique fixed point of the operator P, in BS’T :
V=P((V), VOB

Matching to each u [ Bﬂ T, the unique fixed point V of the operator P,

in BS’ T, we generate the operator H:
H(w) =V = P,(V).
To show the continuity of the operator H, consider
4
BffT S u(t, x) O DBHD - uy(t, x) O BﬁT as k — oo,

Then, due to (26) for u = u; — ug, itis evident that

Mk—wﬂﬁj@%—»auo—(é’x)ask_»oo(i=0,_4)
ax' ox'

and there exists a number Ry >0 such that Uk (k =1,2,..) and
tafo, 7], x0OJo, m,
Ry = uy (t’ x)’ uk,x(t’ x)’ ”k,xx(t’ x)’ ”k,xxx(t’ x)’ ”k,xxxx(t’ x) < Rp.
Consequently,

1G g (#. %)) = Glup(t, ) o) =& — 0 as k - e, @31
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| & (uy (2, x)) = g(up (2, x)) ”C(QT) O, - 0as k - oo, (32)

-

| 8 (g (2. x)) oo,y < Co (k = 0.1, (33)

where Cy > 0 is a constant.
We use the notations:
H(uk) = Vk (Vk = P”k (Vk))’ k = O, 1,

Then, using relations (19)-(21), (31), (32), estimate (33) and estimate
(27) for V.=V, -V, and V =YV, similar to (30), we obtain that Uk

(k=1,2,..) and ¢t O]0, T],

| H (1) = H (up) ||;5
2.t

— 2 — 2
=[Vi =Vol's =1 By Vi) = By (0) I 5
B2,t B2,t

< (@ Vilr. 2) = 0, (ol W) e

<ot 2t A

r + 2} al -V lBe dn G
a vr) @ 0 B3

2,1

From (34), on applying Bellman’s inequality [7, pp. 188-189], we obtain
that

2 _ 2 37,2, 52 2
[ H () = Huo) 25 =1V =V s s;@%+@qwu5J
2,T 2, T 2, T

[éxp{% 3 ET}, k=12, ...
From here, due to (31) and (32), it follows that

e
H(u) OO0 & H(up) as k — oo,
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Thus, the operator H acts continuously from Bﬁ T to BS’T and, moreover, it

acts continuously on Bﬁ T-

Now, we show the compactness of the operator H in Bft 7. Let K = Kp

be any closed ball of the space Bﬁ r with the center at zero having the radius

R. Then it evident that for any u (0 Kg, due to (26), 0t [0, T] and
x O], 1,

“R < ut, x), u(t, x), (8 %), s (8 ), i (8 %) < R
Besides, it is evident that Uu U Kp,
I e(ult, Nlciop) < Crr 16t )lc(o,) < Cr- (35)
where Cp > 0 is a constant.

Using estimates (35), (27) and relations (17)-(21), similar to (23), we
obtain that Ou 0 K and Ot O[0, T],

[H@ s =1V =120
Bg,t Bg,t th

Sag+on al ; [ O"{qau(v(n X)) dxd

<a0+%TECR+—[CRDj ||v||2 @ (36)

From (36), on applying Bellman’s inequality, we obtain that Uu U Kp,

AT 2
IH@E, =1V, < (ao + 4T [C,%j [éxp{a 3 zr} =ad. (37)
2,T 2,T

Further, since Ou O BﬁT’ H(u) =V = >V, (t)sinnx, where V,(t)

n=l1

(n =1, 2,...) is equal to the right side of (18), it follows that
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20

VY 2 —an?
Va(t) = —an” 0, ™" ' ==
™

e . —an?(t-1)
D-[O IO @, (V(1, x))sin nx [k dxdt

2 n .
= DI ) @ulV (e x)sinmde (n=1.2....00[0.7)).

From here, it is evident that On (n =1, 2, ...) and ¢ 0|0, T],

1

ol o ol \/Tl'lzl_(; E{I; Uonq)u(V(r, x))sin nxdedT}E

1
e I (38)

On the other hand, using relations (19)-(21) and estimates (35), (27),
(37), we have Uu U Kp and ¢ [ [O, T],

[ @, )Pas

2 " 2 2" 2
s CR DJO [1 +|Vxxxxx(t’ x) |] dx < 2CR DIO [1 + Vxxxxx(t’ x)]dx
11
<21} c{mgnvn% jsnzc,% RHVE, )
B By 7
< 2 2
< mlCx 02 + ag). (39)

Then, using estimate (39), from (38), we obtain that [n (n =1, 2, )
and ¢ 00, T],
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1
|Va(2)] < an? o, |+ JTDZQ_? D|I0T UOHGDM(V(T, x)) sinnxdedT}2

2 D/ 2 2
+ T[CR E(2+CZR).
Jrm?

Tt
Consequently,
® 2
Z(n3 Omax |V, (¢) |)
= 0<t<T

00

<30? Y (n° ,)" +12C% 02 + a3) Dziz +
n=1"

Dg I()T i {Jondbu (V(z, x)) [K/% sin nxdx}zdt

= 30> DD (n° T,)” +12(2 + a) Tk

DI J’ (@, (V(t, x)}dxd.

Hence, using estimate (39), we have

@), P,

2,T
2 c 3 2
=V, 12, = (o Omax [v;(0)
2.T =l 0<t<T

< 3a DZ(n 2 +212(2 +a3) C3 +3a 02 + az) [C3

= b3.

179

(40)
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Thus, from the estimates (37) and (40), it follows that Uu U Kp,

IH@ g, =1H@s I HE) I3, < ag +bg = cp @D
2,2, T > >

Consequently, the set H(Kg) is bounded in BSST It follows the
validity of the following two facts:

(1) for each fixed n (n =1, 2, ), the set of nth components of all
elements from H(Kpy) is bounded in C (1)([0, T]) and, therefore, compact in
c(fo. 7))

(ii) by virtue of estimates

(o)

Z n* Omax |V, (1)|
= 0<t<T

n=N

1 1 1

s 1 2 ® 5 212 ® 1 2

{Z—J X[ Dof;zlvn“)')} saf) 2,05
n_

n=N n=N n

for any € > 0, there exists a number s, the same for all

H(u) =V = ) V,()sinnx O H(Kg),

n=1
such that
[e¢]

n* Omax |V, (1) <e, OV OH(Kg),

- 0<t<T
n=ng

where N is a positive integer and ag is defined by (37).

Consequently, by Theorem 1.1 [9, p. 51], the set H (K R), considered as

a subset of the space Bff 7, 1s compact in Bff 7. Thus, the operator H acts
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compactly in Bft 7. Since the operator H acts (as proved above) in Bft r and

1S continuous, it acts in Bﬂ r completely continuously. Next, due to

estimates (12) for k =5 and (37), we have Uu U Kp,

n n
| H (u) "ijT ST6E"H(M)”B§,T ST6D1R

= Tifag + 4T [C,%)Z Dbxp{é 2 Er}, 42)

where the numbers ay and Cp are defined by relations (24) and (35).

From (42), it follows that, if the fixed number

R>--Ofay = 1= > (1 ,)°, (43)
NG NG Zl

then for sufficiently small values of 7, we have

Ou O Kpg || H(u) ”Bﬁr <R, ie., H(Kg) O Kp.

Thus, for any fixed R satisfying condition (43), for sufficiently small

values of T, the operator H transforms the ball K into itself completely

continuously. Consequently, by the Schauder’s principle about fixed point,

for sufficiently small values of T, the operator H has at least one fixed point

win Kg O B 7
w = Hu). (44)
Asu=H(u)=V =P,(V), u =V, and consequently,
u=H(u) = B, (u),

while due to (44) and (41), we have u(t, x) O B;’S,T.
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Next, by virtue of (22),

32
®,(u) = ax—z{E(u(t, x))

and consequently, for the found fixed point

u=u(t,x) =Y u,(t)sinnx O BS:;,T’ (45)

M

1

n
the functions u,(¢) (n =1, 2, ...) satisfy the system (11).

Now, we show that the obtained function (45) is a classical solution of
the problem (1)-(3).

From u(t, x) O B§’T, due to estimates (26) and the structure of space

Bff 7, it follows that
u(t, x), (1, %), (8, %), e (1, %), e (1, ) 0 C(0, T < [0, 7). (46)

Next, from u,(z, x) O BS,T’ due to estimate (12) for k = 3, it follows

that u, (¢, x) O BIZ’T. From here, by virtue of the structure of space BI%T, we

have
(1, x), (2, x), wy (2, x) D C([0, T] % [0, 7). (47)

Thus, as follows from (46) and (47), the function u(t, x) is continuous
in the closed domain [0, T] x [0, T together with all its derivatives entering

into equation (1).
Further, the fulfillment of conditions (3) for the function

00

u(t, x) = Z u,, (t) sin nx

s=1
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is obvious, because, as follows from the relation u(¢f, x) O Bft T

00
Zn4 Omax | u,(r)] < +e
0<t<T

n=1
and, moreover

(o]
an Omax | u,(r)] < +oo.
= osisT

Then, it is obvious that for a function u(t, x) O Bf': T, by virtue of conditions

(2) and (3) of this theorem and properties (14), (15), (3), conditions (9) and

(10) are satisfied. Therefore, functions u,(¢)(n =1, 2, ...) satisfying system

(11) also satisfy system (6).

Further, from system (6), it follows that

u(0, x) = iun(O)sin nx = id)n Binnx = §(x) (0 < x < ™),
n=1 n=1

because, by virtue of condition (1) of this theorem and estimate (16) for
k =5,

[ee]

D ,)° < +oo

n=1

and, moreover

(o]
Z| b, | < +oo.
n=1

Thus, the function u(z, x) satisfies conditions (2) and (3) in the usual sense.

Now, using the fact that the function u(t, x) has properties (46) and
(47), it is easy to obtain from system (6) that for each fixed ¢ I [0, 7] and
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x O], 1,

SIP . .
U (£, X) = O Dty (2, ) = Z{?{ IO E(u(z, x))sin nxdx} 0$in nx

n=l1

(o]

ZEn(u; t)sin nx = E(u(z, x)).

n=1

Consequently, the function u(z, x) satisfies equation (1) everywhere in

[0, 7] [0, d.

Thus, the function u(t, x)DBg’gT is a classical solution of the

problem (1)-(3).
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