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1. Introduction

Burgers equation is a partial differential equation which is important in
the study of modeling turbulence, mass transport, the modeling of shock-
wave formation and the gas dynamics. It was discovered in 1948 by physicist
Johannes Martinus Burgers.

In the mathematical literature, we find a set of nonlinear partial
differential equation problems. Among these equations, we have the
equation of Schrodinger [15, 17], KdV equation [14], Burgers equation
[8, 16], Burgers inhomogeneous equation, sine-Gordon [12], and others.
Some methods have been invented to solve. We quote the inverse scattering
method [3, 6], the decompositional method of Adomian [4, 5, 15], the SBA
method [1, 2, 17], Backland transformation [14], the variational iteration
method [9-11], and fractional differential equations [13]. In this article, we
use the Cole-Hopf transformation to simplify the equation and then use the
SBA method to solve it.

In the literature, we find the Burgers inhomogeneous equation that is

2
Ou % va—g =F(x, 1), v>0, (1)
X

— +y— -
ot Ox
where the inhomogeneous term or the source term is the given function

F(x, t), tis the time variable and x is the space variable.

We have again Burgers equation with evanescent viscosity

€ € 2 €
Ou” g0 07U _ o inRxRE,
ot x5 )

ut(x, 0) = ug(x), xOR,

where € > 0.

There is another equation which does not have source term. It is

Ou Ou 0%u _
E + Ma Eax—z =0, 3)
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where € > 0 is the viscosity term. When € = 0, we get the inviscid equation

(3) which will be the subject of our study.

2. Application of the SBA Method to the Viscosity
Problem of the Burgers Equation

Consider Burgers viscosity equation which is a nonlinear parabolic PDE

problem:
Uy *uny, = €y, 4)
where € > 0 is the viscosity constant.
Now consider Burgers viscosity problem with an initial value:
xOR,2>0,€>0,

U, +uu, = Euyy,

4)
u(x, 0) = uy(x) = —Ecotan(ﬁj, xOR.
L L
2.1. Operation with the Cole-Hopf transformation
The Cole-Hopf transformation is defined by
R
u=-2e-%, (6)
¢
By making a change in (6), we find that
u = 28(¢t [¢x _ q) [¢xt)
t )
¢2
Lo 203 -0 Dhy)
X 2 ’
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_ 470, (0 O, - 93)
uu, = ,
X ¢3
= 2 2¢§c _3¢x [ﬂ)xx Ed) + ¢2 Ed)xxx
Uy, = —2¢ o .
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By substituting these expressions into (4), we have

¢ = ¢t - Sq)xx' (8)

Therefore, if ¢ solves the heat equation ¢, —&d,,, x R, then u(x, t)

gives by transformation of (6) the solution of the Burgers viscosity equation
.

To completely transform the problem (4), we still have to work with the

initial condition of the function.
To do this, note that (6) can be written as
u = —28(10g (I))x,

(log (. 1), = =21,

[ 0z 0(x, 1) v = ~[ 05 g

log ¢(x, t) = —I% dx,

_J' u(;ét)dx

O(x, 1) =e )

It is clear from (6) that multiplying ¢ by a constant does not affect u, so

we can write the last equation as

_ xu(y,t) y
O(x,1)=e "0 2 7. (10)

The initial condition in (5) can therefore be transformed using (9) into

Iuo(y)dy

2¢e

O(x, 0) = do(x) = ¢



A Numerical Method to Solve the Viscosity Problem ...

We have uy(y) = —? cotan(ﬂ—g). Thus

up(y) _ m
2 L sin(%)
Ty
~rup(y) dy ZT_TJ'COS( L)dy
2¢ L sin L ’
L
up(y) , _m[L, | (Ty
% L[ In sm( LJH,
up(y) — Ty
e dy =In sm( Lj"

= sin[ 7Y
d(y, 0) = s1n( I j
In summary, we reduced the problem (4) to this one
o, —€dp,, =0, xOR,2>0,e>0,

o(x, 0) = do(x) = sin(%), xOR.

3. Solving the New Equations Using the SBA Method

3.1. The case when ¢ =0

Integrating the heat equation with respect to ¢, we obtain

o) =00, 0) e 2D
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Applying the SBA algorithm, we obtain
k — 4k
b (x, 1) = 6% (x, 0), Dk = 1,

Kie )= gf ! O 0mi(x s)
¢n(.x, l) = EJO naTdS, On =1,

oF (x, 1) = sin(%j, Ok > 1,

: A2ek
oK (x, 1) = sjo M”la‘—lz(x’”ds, On = 1.
X

For k =1, we have ¢%)(x, t) = sin[%).

For n =1, we have

/ A24l
ol(x ) = e S00L3) g

ox?

h(x, 1) _ m
o L cos(

GE

For n = 2, we have

o) =ef) S g,

0 X

oL (x, 1) = (—1)%2(34 | (: sin(%) Chds

= (_1)282(%j4 sin(%) Ef;
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For n = 3, we have

¢ a241
i 1) = S02kes) 4y

x>

2

oh(x. 1) =¢f ; (—1)352(%‘)6 sin(%j o ds

= (-1)’¢? [1—136 sin[%j

So step by step, we arrive at

ohte. = () o)
ngnL(T_g J — D;m(rlix)
]
( B;ln( T j

T

3!

= t~|:|

|

Therefore, the approximate solution is

8'(x. 1) = > 0h(x. 1)

n=0
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o )= o 15

n(x, 1) = —j% dx,

s je-S(%‘)zf e
J—cotan( je_s(%ftdx = j“(;’st) dr,
g );8(%)2f o)

T —8(—2)21‘
u(x, t) = ——cotan( )e )
3.2. The case when ¢ # 0

o, —€p,, =0, xOR, >0,€>0,
o(x, 0) = by (x) = sin(%), xOR,

Jl ¢S(x, s)ds = sjt (I)xx(x, s)ds + Jl d(x, s)ds
0 0 0

¢(x,t)=¢(x,0)+sj.oa¢( d+J d(x, s)d
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Applying the SBA algorithm, we obtain

of (x, 1) = 0% (x, 0), Ok = 1,

t 92pk t
(I)ﬁ(x, t) = 8.[0 a%la_—lz(x’s)ds + -[0 (I)ﬁ_l(x, s)ds, On > 1,
X

(I)]é(x, t) = sm( ) Ok =1,

t 320k _ (x, t
(I)ﬁ(x, t) = SIO (I)”—lz(xsds + JO ¢ﬁ_1(x, s)ds, On = 1.

0x
For k =1, we have ¢%)(x, t) = sin(%).

For n =1, we have

ol(e 1) = %

X

{5V o) s )

For n = 2, we have

J ¢ x, s)ds

¢12(x, t) = sjot %ds + L; (I)?(x, s)ds

X

[t o ) )]

For n = 3, we have

¢§(x,t)=sj-;%d +I (|)2x s)

x>

={1+<—1>le(%ﬂz{sm(%)+<-1>le(’—zf {2 %
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For n = 4, we have

ol (. 1) = jgaﬁ( Las+ [ ol 5)a

X

:{H(_ﬁ@w+(_1)18@2 o))

So step by step, we arrive at

cl)},(x, t) = [1 + (—l)ls(gjz}n_l{sin(%) + (—l)ls(gjz cos(%ﬂ nn! .

The solution ¢'(x, 1) is therefore written as

o 1) = 00 1) + 0 (x, 1)
n=1

- _COS(_ . —[cos(%) + (—1)25(%[ 2 Sin(%ﬂ [il (-1) [ ) } _IJ
S ey
et
¢
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