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Abstract

In this paper, we obtain the 3D compressible primitive equations
approximation without gravity by taking the small aspect ratio limit to
the Navier-Stokes equations in the isothermal case with gravity. The
aspect ratio (the ratio of the depth to horizontal width) is a geometrical
constraint in general large scale geophysical motions that the vertical
scale is significantly smaller than horizontal. We use the versatile
relative entropy inequality to prove rigorously the limit from the
compressible Navier-Stokes equations to the compressible primitive
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equations. In addition to the presence of gravity, we consider that the
viscosity of the fluid depends on its density and that it is submitted to

a quadratic friction force.
1. Introduction

Atmospheric flow in meteorology, water flow in oceanography, and
limnology are all described by the Navier-Stokes equations. Due to the fact

that the aspect ratio

_ characteristic depth
characteristic width

is very small in most geophysical domains, asymptotic models have been
used see, e.g., [10, 18, 27]. One such model is the primitive equations
model; see, e.g., [13, 14], wherein the unknown flow variables are velocity,
pressure, temperature, and salinity (in the case of an ocean). Besides, most
geophysical fluids are stratified (i.e., density is a known function of the
temperature (and salinity, if any)) and have a free surface. In this paper, we
shall focus on the assumption that the pressure is hydrostatic, i.e., increases
linearly with respect to the depth, as in the static case. This law agrees well
with experiment and is frequently taken as a hypothesis in geophysical fluid
dynamics. Therefore, many scientists suggest that the viscosity coefficients

must be anisotropic.

We consider the following compressible anisotropic Navier-Stokes
problem:
9,p +div(pU) =0,
9,(pU) + div(pU O U) + Op(p) = 2div, (D, (U)) = 0.(120.U) = pf,
p(p) = ¢p,
(1.1
in the thin domain (0, 7)*x Q. Here ¢t >0, x = (x|, xo) and z are time,

horizontal and vertical variables, respectively,

Qe ={(x, z);xDT2,0<z<S}
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with T? a bi-dimensional torus. The unknown functions P, U =(u,v)

and p represent the density, velocities and the pressure of the medium,

respectively. divU = divau +0,v  (with div, = 0y + dxz) and 0=

(0,, 0 z) are the three-dimensional spatial divergence operator and gradient,

Ueu + 0 qu
2

the horizontal directions. (W;, H,) are the turbulence viscosities in the

respectively. D,.(u) is the strain tensor with D, (u) = along

horizontal and vertical directions, respectively, which depend on the

variables ¢, x, z and the density p generally. The term f is the quadratic

friction source term and the gravity strength is given as follows:

f = —ku|u| - gK,
where k is a positive constant coefficient, g is the gravitational constant
and K = (0, 0, l)T (where X T stands for the transpose of tensor X). The
pressure p(p) = c2p is a usual expression used in the isothermal case with
c? a specific constant [12, 33].

We assume the density p = p(¢, x), thatis, p is independent of z.

As atmosphere and ocean are the thin layers, where the fluid layer depth
is small compared to radius of sphere, Pedlosky [36] pointed out that “the
pressure difference between any two points on the same vertical line depends

only on the weight of the fluid between these points”.

We suppose

W =u(p) and p, = v(p)e>.

As stressed by Azérad and Guillén [2], it is necessary to consider the above
anisotropic viscosities scaling, which is fundamental for the derivation of
Primitive Equations (PE). Under this assumption, the system is rewritten as

follow:



112 Jules Ouya and Arouna Ouedraogo

9,0 + div,(pu) +9.(pv) = 0,

9 (pu) + divy(pu O u) + 0, (puv) + O, p(p) + kpul u
= 2div, (W(P) Dy (u)) + €20 (v(p)0.u),

0,(pv) + div(puv) + 0 (pv*) + 0. p(p)

= 2div, (W(p) Dy (v)) — €20 (v(p)0v) = —gp.

p(p) = c%p.

(1.2)

We perform a vertical scaling to make the domain independent of €, that

is, t=¢, x=x and z =¢€7. The new fixed domain (without the «'»

symbol)is Q ={(x, z); x OT?, 0 < z <1}.
As in [26], the corresponding kinematic scaling is

Ueg = (“s’ Vs)’ us(t’ X, Z) = u(l‘, X, £z),

v(t, x, €2), Pelt, x) = p(t, x),

™| —

ve(t, x, z2) =

for any (x, z)0Q:=T?x(0,1). Then, the system (1.2) becomes the

following compressible scaled Navier-Stokes equations (CNS):

0,P¢ + div,(Pgug) + 0, (Peve) = 0,

0, (Peutg) + div,(peutg U ug) + 0 (Peugve) + 0, p(pe) + kpeue| ue |
= 2div (W(pe) D, (ug)) + 0, (v(pe )0 ue),

£2(0; (Peve) + divy (Peugve) + 0. (Peve) = 2div,.((Pe) Dy (ve))

=0, (V(Pe)0,ve)) + 9. p(pe) = ~€gpe.

p(pe) = ¢pe.

(1.3)

We make the following boundary conditions:
us and P, are periodic in the directions xj, x,, respectively,
Ve |z:O = Vg |Z:1 =0,

az”e |z:0 = azus |z:1 = 0’ Ug |z20 = Ug |z:1 =0 (14)
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and the initial conditions:
Pe(0. x)Ug (0. x, 2) = mo(x. 2), P (0, x) = po(x). (1.5)

In this work, our goal is to prove that as € — 0, the system (1.3)

converges in a certain sense to the following compressible primitive
equations (CPEs):

9,p + divy(pu) + 0, (pv) = 0,
9, (pu) + div,(pu O u) + 9, (puv) + O, p(p) + kpu| u |
= 2div, (H(P) D, () + 0 (v(p)o u), (1.6)
0.p(p) =0,
p(p) = ¢°p.

Geophysical fluid dynamics is a crucial field for understanding the
behavior of the atmosphere and the ocean. However, when it comes to
analyzing and simulating the complex flows in these systems, using the
complete hydrodynamical and thermodynamical equations is mathematically
and numerically challenging. To overcome this, scientists have introduced
the Primitive Equation (PE) model in geophysical fluid dynamics. The PE
model was initially derived by Richardson in the 1920s for weather
prediction. However, due to stability issues in calculations, it did not achieve
much success. It was Bryan in [7] who improved the PE model in 1969 by
incorporating the hydrostatic approximation. Although the PE model showed
promising results in early simulations and applications, mathematical
research on the PE model started much later. In the 1990s, Lions et al.
[27, 28] were the first to study the PE model and made significant
contributions to this field. Since then, the PE model has progressed through
the precise analysis of simpler models. There is a vast amount of literature
dedicated to the PE model, with numerous studies and references exploring
its various aspects. Some notable research topics include the works by
Bresch et al. [4-6], Cao et al. [8-10], Guo et al. [22, 23], Ju [25], Lions et al.
[29, 30], Temam and Ziane [38] and Wang and Yang [40], among others.
These studies have contributed to the understanding and development of the
PE model in geophysical fluid dynamics.
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The research in geophysical fluid dynamics has traditionally focused on
the incompressible case of the Primitive Equation (PE) model, mainly due to
historical reasons. However, it is well known that the atmosphere and ocean
exhibit compressible properties. Therefore, it is natural and interesting
to consider the compressible version of the PE model, known as the
CPE model. In recent years, several researchers have made significant
contributions to the study of the CPE model. Gatapov and Kazhikhov [20],
as well as Ersoy and Ngom [13], investigated the CPE model with constant
viscosity coefficients and proved the global existence of weak solutions in
the two-dimensional case. Liu and Titi [31, 33] extended the analysis to the
three-dimensional case and established the local existence of strong
solutions for the CPE model. They considered the zero Mach number limit
of the CPE model. This limit corresponds to the situation where the fluid
flow becomes nearly incompressible. Ersoy et al. [12] introduced the
concept of dimensionless numbers and employed asymptotic analysis to
study the CPE model with viscosity coefficients that depend on the density.
They obtained interesting results in this setting. The stability of weak
solutions in the CPE model has also been investigated. Ersoy et al. [12] and
Tang and Gao [37] demonstrated the stability of weak solutions, which
means that under certain uniform bounds, a subsequence of weak solutions
will converge to another weak solution. In recent developments, Liu and Titi
[32] and independently Wang et al. [39], utilized the B-D entropy to prove
the global existence of weak solutions for the CPE model. This entropy-
based approach has provided valuable insights into the behavior of the
solutions. Overall, the research on the compressible version of the PE model,
the CPE model, has made significant progress in recent years, with studies
focusing on global existence, stability, and entropy-based analysis of weak

solutions.

According to the studies by Azérad and Guillén [2] and Li and Titi [26],
the hydrostatic approximation is a significant aspect of the PE model, as
emphasized by these authors. Establishing the rigorous justification for the
transition from the anisotropic Navier-Stokes equations to the hydrostatic

approximation through the small aspect limit is evidently of great practical



Rigorous Justification: Isothermal Case 115

importance. Numerous studies have been conducted on the convergence of
incompressible flows. For instance, Azérad and Guillén [2] demonstrated the
convergence of weak solutions from the anisotropic Navier-Stokes equations
to weak solutions of the PE model. Li and Titi [26] employed the method of
weak-strong uniqueness to prove the aspect ratio limit of the incompressible
anisotropic Navier-Stokes equations, showing the convergence from weak

solutions to strong solutions of the incompressible PE model.

Our main objective is to provide a rigorous justification for the limit
passage in the context of weak solutions of the compressible Navier-Stokes
equations (CNS). Recent studies by Bella et al. [3] and Maltese and Novotny
[34] have proven the limit passage from the 3D compressible Navier-Stokes
equations to the 1D and 2D compressible Navier-Stokes equations in thin
domains. Drawing inspiration from their work, we have developed and
adapted the idea of the relative entropy inequality for the compressible
Navier-Stokes equations. However, there are significant mathematical
differences between the Navier-Stokes equations and the CPE model. The
hydrostatic approximation in the CPE model eliminates information about
the vertical velocity in the momentum equation, and the vertical velocity is
determined by the horizontal velocity through the continuity equation. As
a result, analyzing the CPE model becomes considerably challenging.
Consequently, the classical methods used in the Navier-Stokes system
cannot be straightforwardly applied to the CPE model.

Additionally, in [1], AndraSik et al. have proven the existence of
weak-strong solutions for the problem (1.6) with general external forces f.
However, in our work, we focus on the hydrostatic case and specifically

consider the case where f = —ru|u|— gK. Our study is among the first to
use the relative entropy inequality to establish the hydrostatic approximation
in the compressible case. A similar approach was taken in [19], where the
pressure is assumed to be of the form pY with y >4, viscosities are

constants, and there are no external forces. The introduction of the versatile
relative entropy inequality can be found in [19]. It is important to mention

that the cornerstone of our analysis is based on the relative energy
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inequality, which was originally introduced by Dafermos [11]. Subsequently,
Germain [21] applied it to the compressible Navier-Stokes equations.
Feireisl and his co-authors [16, 17] further generalized the relative energy

inequality to solve various problems related to compressible fluid models.

The rest of paper is organized as follows. In Section 2, we recall some
useful inequalities. We introduce the definition of weak solutions, strong
solution, relative energy and state the main theorem in Section 3. Section 4 is

devoted to proof of the convergence.
2. Preliminaries

In this section, we introduce some basic inequalities needed in the
later proof. The first inequality is the so-called generalized Poincaré

inequality.

Lemma 2.1 (See [15]). Let 2 < p £ 6 and p = 0 such that

0<I dx=M < o dj Vix < E
pr an pr 0

for some (y >1). Then
1
I/ lr@) = VDS lir (o) 1921 2(q):
where C depends on M and E.

The following is the famous Gagliardo-Nirenberg inequality (for the
proof, see [35]).

Lemma 2.2. For a function u : Q - R defined on a bounded Lipschitz
domain Q O R", 0l < g, r < ©, and a natural number m, suppose that a

real number © and a natural number j are such that

:l+(l—ﬂje+l_e and lSGSI.
n r n q m
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Then there exists a constant C independent of u such that

Dlul|l < | D™ 1-6
| D/uf, = C| ullLr(Q)llulqu(Q)

3. Main Results
Before showing our main result, we give the definition of a weak
solution for CNS and a strong solution for CPE.

3.1. Dissipative weak solutions of CNS

Providing the definition of weak solutions to (1.3), we give the energy

inequality.

Definition 3.1. We say that (pg, ug, vg) is a finite weak energy solution

to the system of (1.3), with boundary (1.4) and initial conditions (1.5) if

pe 0270, T: L(Q)). Joe D120, T: H'(Q)).

Jpeug O L2(0, 75 L2(Q)%), Jpeve O L°(0, T3 I2(Q)),

JpeDae D20, T: (2(@)*2).  Vpelve 020, 7: 2(@)),
1

0pe 02200, 7: 2(Q)). odu 0 (0. T} (Q)):

* the continuity equation

(=1 T
UQ ps¢'dXle:O = IOIQ (Pe0,0 + peue (T, + ps"sazq))dXdde (3.2)

holds for all ¢ O C.°([0, T) x Q);

* the momentum equations

1= 1 1
d dddz—J' I 3. @y dxdzdt
.[0.[9 Peutg0,Qy axaz 0 st“s"s Py axaz

=1
t=0

dxd;
UQ Peite@py dx Z}

T
¥ IOIQ (21(pe) Dy (ug) = pertg O ug) = O, Qg dxdzdr
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+] I (e)0.10:0 @y dxdzdr - | I p(pe ) div, @y drdzd

T
+ IO I o kette| s @y dxdzdr =0, (3.3)
and

U pgve%dxdz} - € J I Peve0, Q3 dxdzdt

1=

T
- 52I0 JQ Peteve [, @3 dxdzdt
e -[ -[ 21(pe) D U, @3 dxdzdt
27 5
+ £ IO IQ (V(pg)azvg — PeVve )az(p3dxdzdz
I .[ 0,@ydxdzdt

T
= —sjo JQ 8P W3 dxdzdt (3.9

hold for all @z, @; O C ([0, T) x Q) and fora.e T (0, T).

Combining (3.3) and (3.4), we obtain

=T

U o Peluc®r * Szvg(pg)dxdz}
t=0
! 2
- IO IQ Pe(ued, @y + €7v0,¢3) dxdzdt

! 2.2
- JO IQ pe(”gveaz(p]-] + & Vgaz(pj)ddedl

T
+{ [ 2 (Dulue) : Dy + €7D, (ve) 2 0,03) ddzds
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T

- Io IQ Peue O ug : O, @y + €2ugve (1, s dxdzdr)
! 2

¥ Jo IQ V(pg) (azuﬁaz(pH tE azvgaz%)dxdzdt
T .

= [ [ p0e) vy +0.05)dsdza

T T
. k dddt—sII dxdzdt. 35
JOJQ Pelte| ug | @y dxdz, o Qgps(% Xaz, (3.5)

In the following, we take U(p) = Hp, and V(p) = Vpg, where [, V > 0.

Formally, multiplying the momentum equation (1.3), by horizontal

velocity ug, then by integrating by parts on Q, we can deduce the following

energy inequality:

d 1 2 3
EIQ(E Pel ue |” + PeInpe - ps)dXdZ ¥ kIQ Pel ue |"dxdz

+ IQ 0e (271 D, (ug) |* + V| g |*)dxdz < 0. (3.6)
In the same way, multiplying the momentum equation (1.3); by vertical
velocity vg, then by integrating by parts on Q, we can deduce the following

energy inequality:

2
2 d v ) . , 5
€ E_[ng?sdxdz +€ jst(zm D, (ve)] +9]0 ,ve | )dixdz
= _nggvsdeXdZ = gIQVpszs| Ve |dxdz

€
< 2 gU.Q Pedxdz + JQ pgvgdxdzj, 3.7

where we used Cauchy’s inequality in second to third line.
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Combining (3.6) and (3.7), we obtain the energy inequality

d 1
EJ‘Q[E Pe(l g [* +€%8) + pg Inpg — pg}dxdz

+ [ pe(2l] D) P + V10,1 )z
+ &2 0e (20 D.(ve) [ + V10,3 ')

s—kj' u. P dxdz - sj vedxd
st| e| z—- 8 ste z

g€ J‘ J‘ 2 _ J‘ 3
< - dxdz + vedxdz | — k ug |~ dxdz.
2( st sts j st| el
We assume that the initial data satisfies

0<py(x) <M <+w, p,0L(Q),

polnpy —po O L(Q), Dyfpo O LA(Q),

2
Imo|” o 1),
Po

3.2. Strong solution of CPE

(3.8)

(3.9

The couple (r, @) (where @ = (@, @3)) is a strong solution to the CPE

system (1.6) in Q X (0, T), if it satisfies the equations in (1.6) with the

boundary condition (1.4). Also, the solution satisfies following regularities:

Vrore0,7; H3(Q)), 0,4+ 0L2(0, T; H(Q)), r >0 forall (1, x, z),

oy OI°(0, T; H3(Q)) N I2(0, T; H*(Q)).
0,9y O I2(0, T; H*(Q) N L2(0, T; H(Q)),

with initial data [, 0 H>(Q), r, > 0 and @, 0 H>(Q).
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As the density is independent of z, we can obtain the following
information of vertical velocity for the weak solution of CNS:

pv(t, x, z) = =div,(pit) + zdiv(pit), in the sense of H_l(Q), (3.10)
where

1
u(t, x, z) = .[()Z u(t, x, s)ds, u(t, x) = IO u(t, x, z)dz.

3.3. Relative entropy inequality

Motivated by [16, 17], for any finite energy weak solution (u, p), where
u = (4, v), to the CNS system (1.3), we introduce the relative energy

functional

&([p. U1ILr. o)

1 g2
:JQ[EMM_(I)H |2+7F>|v—<|>3|2+p1np—p—plnr+rdedz
_J‘ 1 ), € 2 2
=) §p|u| +7p|v| +plnp-p dXdZ‘IQ(PM¢H + £°pvy ) dxdz

1 2 82 2
+ JQ LE ol oy |* + 7p| @] -pln rjdxdz + IQ p(r)dxdz, (3.11)

where (r, @) = (r, @y, @) designs the local strong solution of the CPE

(1.6) showed recently in [1], and r is a strictly positive function defined on
Qx(0,T).

Lemma 3.1 (See [1, 19]). A general function G = G(p) can be
decomposed into the essential and residual parts as
G = GESS + Gres’
where
G onpl (%[, 2?),

0 otherwise.

G,y = (3.12)
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Let us define
p
H(p) = pL @dy =plnp.

We would like to point out that the function
p H(p)-H(r)=(p-r)H'(r) =plnp-p-plnr+r, p.r>0 (3.13)

is strictly convex with minimum O attained at p = r. Therefore, for every

0 <r <r <¥r <o, there is a positive constant ¢ such that
H(p) = H(r) = (p = r)H'(r) > clp - r)’, (3.14)

wherever p U (% r, 217) and

H(p) - H(r)=(p~r)H'(r) > cp-rl, (3.15)
(1 _
wherever p R \(EL 2rj.
Let us specify that r = inf r and r = sup r.
(0,1)xQ 0,7)xQ

Due to the convexity of H and (3.12), we can deduce the following

coercivity properties (see (3.14) and (3.15)):

&([pe. Uellr, al)

2 CIQ (p| U= Qg |2 + 82p| v-@ |2 +| p-r |§ss 1+ pres)dXdZ' (3.16)
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Thus, we deduce to (3.16) that

IQ| p—r |gss dxdz = IQX - (p- r)zdxdz

§<p<2?
< CE([pe. Ue]l[r, @) (1),
IQ Lyesdxdz < CE([pg, Ue]I[r, l) (1),

(3.17)
[, Prestivdz < C&(lpe. Uelllr. ) ).
[P =n P+ el v - s )dsd:
< CE([pe. UelIlr. @) (0)-
Moreover, from [16], we have
&(lpe. Uelllr. @) (1) O L7(0. 7).,
195 gpsary) < CEloe. Uil @),
1092 |2pmry) < CElRe. Uelllr @2, o >1. (3.18)

The symbol C denotes a generic positive constant, which may vary from
time to time.

Our main result is the following theorem:
Theorem 3.1. Let T, > 0 be the life time of strong solution to CPE
system (1.6) corresponding to initial data [ry, Q). Let (Pg, ug, ve) be a

sequence of dissipative weak solutions to the CNS system (1.3) from the

initial data (pg, ug, vy) depending on € which satisfies (3.9). Suppose that

&([po- Uoll[r, ®]) - 0.

Then

ess  sup  &([pe. Uglllr. @) - 0, (3.19)
tD(O’Tmax)

when € — 0, and where the couple (r, Q) satisfies the CPE system (1.6) on

the time interval [0, Ty ).
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Remark 3.1. In order to see more clearly the sense of the limit above,

we notice that (3.19) implies, for example,

pe — r stronglyin L*(0, T; Ll(Q)),
\/EUS - x/;(p strongly in L”(0, T; LZ(Q)),
peUe — r@ strongly in L*(0, T; LZ(Q)).
To establish the relative entropy inequality, we first take ¢ = %| Oy |2,

then ¢ :%|(p3 |2 as a test function independently in weak formulation
of the continuity equation (3.2). We obtain, by using identity 9 ;(@@;) =

20,0 ;;,

3] o@Dl @y P(C0)da:
1
=3)g Po (D) @y |*(010) dxdz

T
+| OJ o (Pe®r0: @y + Peute@y L1, @y + Peve®py 0 @y )dxdzdr  (3.20)

and

82 2
5] pe@0)] 0 (@)

2
=5 | pol@s P(0)dvae

T
+ £2I0 JQ (pg(pjat(% + Pets @3 D]x(pj + psvg(pf,az%)dXdZdl. (321)
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Second, with test function ¢ = Inr, we have

j L Pe(T)In r(01T)ddz

= j . Po(0in r(110)dxds

0, 9,r
J J (pg "+ patg =2 + peve )dxdzdt (3.22)
In the third step, we rewrite (3.5) as

I oPe (s @y +€2vs03) (LIT) dxdz - IQ Po(uoPrr,0 + 82V()Cpa,o) (Qdxdz

T
- Jo IQ Pe (0,0 + szveat%)dxdzdt

T
- IO IQ ps(“svsaz(PH tE Vgaz%)dxdzdt
# 21 [ pelDylie) : D0y + €7D, () : 0,03

0JQ

T
- J.O J‘Q ps(us D us : Dx(pH + SZMSVS D]x(psddedt)
+ VJOJQ Pe(0,ug0, @y + €70 ,ve0 ,(3) dxdzdt

I I kps“sl Ug |(PH dxdzdt - I I p8 lex(PH +0 Z(P;)dxdzdt

T
= ¢ I ) JQ PPy dxdzdt. (3.23)

We multiply (3.22) and (3.23) by —1 and sum it up with (3.20) and the
energy inequality (3.8) to deduce
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1 g2
J‘Q(Epd ug — Qg |2 +7p€| Ve — @ |2 +pe Inpg —Pg —Pg In rj(DT)dxdz
1 2 82 2
_.[Q 5Pelue =@ |7 +=-Pelve = 3] +pg Inpg —pg —pg Inr |(L10)dxdz
T 3 T 3 . )
# [ [ koelue Pz + [ [ pe(@I Dolue) P + 0.1 [Pzt
T _ y )
+ €2I0 IQ P (20 D, (ve) |~ + V] 0, v |7) dxdzdt
T
+ IOIQ Pe (ugd @y + Szvgat(p:;)ddedt
T
+ JOJQ Pe (ugved @y + 82vgach3)dxdzdt
T
- 2HI I Pe(Dy(ue) : Oy + SZDX(Vg) (1, @) dxdzdt
0JQ
T
v 2
- VIO .[Q pS(azusaZ(pH tE angaz%)dxdzdt
T
T
¥ IOIQ Pe (e O ug : Oy + E2ueve (,@3) dxdzdr
T
< .[0 IQ (PePr0,Qy + Peue®y (L Py + Peve@y 0, @y ) dxdzdt

1
+ SZIOIQ (Pe®30,03 + Peuc@:;, @3 + psvs%az%)dxcizdt

T d,r O,.r 0.r
- IO _[Q (ps % * Peug ;C + Pegve %) dxdzdt
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T T
+e dddt—s_[_[ dxdzdr
IOIQgps(pS xXaz 0 Qgpsvs Xaz

T
- jo I , P(0e) (div, @y +0.0s) ddzar (3.24)
We have

IQ (P 0,0y + Szps(p36,(p3 — Pg(ugd, @y + Szvsat% ))dxdz

- IQ Pe(@r — ug)0, @y dxdz + SZIQ Pe (@3 — ve)0,@; dxdz. (3.25)
By a direct computation, we have
J Q div, (Peug O ug) @y = _J o Pette (0 @pr ).
So
—IQ Pelg Oug : 0,@y + F_zugvE (0, @) dxdz
- J TJ Pe (ugved O + e2vg0 @) dxdzdt
090 ¢ g7z
+I o (Peitc®ry 0.0y + Peveyy 0@y + €7Peite@s1 @3 + €7pgves0.93) ddz
= JQ Pe (e Py +ve0 @y ) Py dxdzdt
- .[Q Pe (”8 @y +ved Oy )”8 dxdzdt
2
+g IQ Pe (0 @3 + v60 @3 ) dxdz
-¢’ o Pe (g (O @3 + ved @) vedxdz
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= IQ Pe(ue0, Py +ve0, @y ) (O — ug)dxdzdt

+ sZIQ Pe (10, @3 + v, @3) (@3 — v ) ddz. (3.26)
The sum of (3.25) and (3.26) gives

IQ Pe(0,@ +usD @y +ved 0y ) (@ — ug)dxdzdt

2
te IQ Pe (0,3 + ugl @3 +ve0 . 3) (93 — ve) dxdz.
Moreover, we add the following equality to (3.24):

IQ r(C1T)dxdz - IQ r((10)dxdz = I(:IQ 0, rdxdzdt

= JOTJQ 3, p(r) dxdzdr. (3.27)

Thus, the right-hand of (3.24) is given by

9 o, 9 9 0
0 =(pe 2 + pate =+ peve | = (r = pe) 2 —p . 328)

Furthermore, considering that @ satisfies no-slop boundary conditions,

we have
IQ (o [r + rdive)dxdz = IQ div(r@) dxdz

= IaQ rThds = 0. (3.29)

Thus, we can add the term @ Wr + rdiv@)dxdz to the right-hand side of
Q g

(3.24) to obtain

—pedive+ @ [r + rdive = (r — pg)divep + r(p%. (3.30)
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Hence, the sum of (3.28) and (3.30) gives

=Lt (r = pe)dive+ rp="

(r- Ps)% ~PelUe—
= (r—pg)a—;r+(r —pg)div(p+gE(r(p—p€U€). (3.31)
Furthermore, we have
21p; (| Dy (ug) * + €% D, (ve) )
= 21pg (Dy (ug) : D@y + €D, (ve) T0,03)
= 20pe (Dy(ug) : Oue + €7Dy (ve) [ ve)
= 21 (Dy (ug) : Dy + €7D, (ve) : 0,03)

= 2Hpg(Dy(ug) : Oyug — @) + SZDx(VS) D (ve =~ 3)
and

Ve (| 0 ug |2 + 52| 0. ve |2) - vp:’:(az”:’:("z(PH + Szaz"saz(ps)

- 2
= Vps(azusaz(”s —Qy)+e azvsaz(vs - ®)).
Putting these together, we get the relative entropy inequality defined by

&([pe. Uelllr. @) (K1)

+ JOTJQ 21Pg (Dt = O (g — @) + €20, v = O, (v — @;)) dxdzdt

+ I;IQ vps(az”saz(us -@y)+ 826Zv86z(v8 - @) dxdzdt
< &([pe. Uelllr, @) (20)

T
¥ J ()J o Pe(@:r + sl @y +ve0.0y ) (@ — ug)drdzds
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T
¥ 82.[0 .[Q Pe(0,@3 + uell @3 + ve0.03) (@3 — ve ) dxdzdt
! T
+ sjo jQ 9Pe (@3 ~ v )dxdzdr + | . | kPt (@ = e dczd

! 9 0
¥ IOIQ ((r = pe) =+ (r = pe)dive + =" [rg - psUg)jdxdzdt. (3.32)

With 2L =V =1, we rewrite (3.32) as

— T
&llpe. VeIl a)t=b +.[o .[Q Pe (Dug : Oug = @) + €| Ove |*) dxdzdt
T
< Jo IQ Pe(0,0y +uO Qg +ved @y + k@y| @y |)(Py — ug)dxdzdt

2 T

TE IOIQ Pe(0,@; + uell, @3 + ve0.03) (@3 — ve ) dxdzdt
T T

¥ Ezjojg Hve L@y dxdzd + EIO IQ 2Pe (@03 — v ) dxdzdt

T
" IOIQ kpg (ug| ug | = Q| @y ) (@ — ug)dxdzdr

! 0,r . Ur
+ I . I o ((r = Pg) =+ (r = pe)divg+ — L(rg - pSUS))dxdzdt, (3.33)
where Du = (Du, d,u) and we add

Pe (ko | @ [ (O — ug) — kOp| Oy | (@ — ue))
in right-hand of (3.32).

4. Convergence

In this section, we prove our main result. The proof of Theorem 3.1 is

strongly based on the relative energy inequality (3.33) by considering the
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strong solution (r, @), where @ = (@, @;) as a test function in the relative

entropy (3.11).

As in [1], we have the following remark:

Remark 4.1. We assume that the strong solution satisfies (1.6)

pointwise and all the terms in this formulation are well defined. In particular,
roci@x(0,7), e0c(@Qx(0, 7)) with DU Ocl(Qx (0, 7)) 1t

is worth to mention that the proof presented below works also for weak

solutions with sufficient regularity.
Next, in three steps, we prove our main result.
Step 1. Estimate on the relative energy inequality (3.33).

We begin by

| o Pete (@ = ue) [0 @y dxdz = | o Pelue = @) (@~ ue) L0, @y dxdz

+ [ Peu (0 = ue) (0,0 dvdz. (4.1)

As [r, Oy, (p3] is a strong solution, concerning the first term of (4.1), we

have (recall that U @y is a bounded function)

| o Pelite = @) @y = ue) L, @y dxdz < | o Peliie = @) (@~ ug) (L, @y |dxdz

< CJQ 0| Oy — ug [>dxdz

< C&([pe. Ue]Ilr. @), (4.2)
where we used (3.17).

Again, since [r, Py, (p3] is a strong solution of (1.6), we can rearrange

the momentum equation (1.6), as follows:
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r0,Qy + Q0 + @y divi(r@py ) + ry D@y + re:0 .0y
+ Q0 (r3) + krgy| @ | + Oyr
= div (rDy@y ) + 0(0 .9y )
= 1[0,y + o D0y + 00,0y + k| @y ||
+ @y[0,r + div (rgy) + 0. (rg3)]
= div (rDy@y ) + 0, (r0 @y ) — Oy,
which by means of the continuity equation reduces into

0,0y + @y 0,0y + 0,0y + koy| oy |

~ =

(div, (rD @y ) + 0 (rd @ ) = O,7).
So we rewrite
Pe(0,9y + uel @y +ve0 @y + k@p| @y |)
= Pe(0,0n + @y P + @300y + kop| @y |
+ (e = 0 )00y + (ve — ®3)0.9y)

= P2 (aiv, (rD,04) + 9.,(r0. 01 ) - O,7)

+ Pe(ue = @y )00y + Pe(ve — 93)0 0y
Hence,

T

JOJQ Pe (0,0 + usO, @y +ve0 Oy + k| Oy |) (@ — ug)dxdzdt
(' Pey,.
= IO IQT(dzvx(er¢H) +0,(rog ) = O,r) (g — ug)dxdzdt

T T
2
+ [ [ o Pelve = @) @y — )0 @yvazar = [ [ pe(@y = ue ) ddca



Rigorous Justification: Isothermal Case 133

T
< [ [ BE taiv (D.@) + 0.(r0.91) = 0,r) (@ ) dxdzds

T
+ JOJQ Pe(ve = @) (@ — ug)0 Qydxdzdr + C&([pe. Uelllr. @l).  (4.3)

where we have used (4.2).

Moreover, we have
0,@3 + ugll @3 +ve0 @3 = 0,03 + QL1 @3 + P30,
+ (g = @y ) 0,03 + (ve — 93)0.¢s.

Thus, using Cauchy’s inequality and (3.17), we get

T
szjo IQ Pe(0:s + ugll @5 + ve0  @3) (@5 — ve ) dxdzdt
I I Pe (3 dxdzdt+£ I I Pe (0,03 + ug0, @3 + vg Z(p3) dxdzdt
4t 2
< &(lpe. Uelllr @) + €' [ 00(0,05 + el 3 +ve0 05 dxdzds
T
< &(pe. Uelllr. @) +£*[ [ pe(0:0s + 040,03 + @30.0s)’ ddzas

TE I I Pe(( )0, @3 + (v — @3)0,93) dxdzd. (4.4)

We decompose _[ 0 Pe (0,03 + @y 0, 3 + 30 z(p3)2dxdz into three parts as

follows:

| o Pe(0,05 + 00,5 + @:0,03) dxdz

_ 2
= IQ X{§<ps<2f} Pe (0,93 + @0, @3 + 30,(3) dxdz
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J X{ }ps 0,03 + P U, 3 + 30.93)  dxdz

+ JQ X{pg 227} Pe(0,93 + o0, @5 + (pSaz(pS)dedZ

— 2
<cf_ e <p£<2r}(ps )05 + G0 + 030.0;) dvdz
. K pesg) 0105 + 00+ 9003’ dxdz
Pes3 }

+ [ Xipe22Pe(0,05 + 00,5 + 03005 vz

< CI X{ <p5<2r} (Pe — l’)dedz + CE([pe’ Us]'[r’ (P])

+ CIQ X{pg 227} Pedxdz + C

< CE([pe. Uellr, al) + C. (4.5)

Putting (4.5) into (4.4), we have
sZITI Pe (0,05 + u0, @3 + ve0.93) (@3 — v ) dxdzdt
0do X EYz €

< CE([pe, Uelllr. @) + o(€?). (4.6)

Moreover, we apply again the inequality of Cauchy as

T T 2 T 2
g2 j j Ove [0y dxdzd < €2 j j dedzdt+j j 991" iar
0JQ 0J0Q 2 0J0Q 2

<£J.TJ‘ | Ove |*dxdzdt + o(g?). 4.7)
T 2Jolo TF
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Thus, the entropy relative inequality (3.33) becomes

&(lpe, Uelllr @)tz I _[ Pe(Due = Oue — @) + _| DVS' )dxdzdt
U Pey e
< CE([pg, Ug]|[r, (p]) + jQJQT(dle(er(pH) + az(raz% N @y — ug)dxdzdr
J I Pe (o — ug)O, rdxdzdt
T
+ IOIQ Pe(ve — @3) (0 — Ms)aZ(PdedZdt
+ €J J 2P (@3 — v ) dxdzdt
T
+ [ [ kol e | = 0ul 0 ) (@ = e dxazas

T 0,r . Or 2
# (= pe) 55 (= pe)dive = o= peUe) Jdsdzdr +ofe?). (4.8)
Step 2. We estimate the non-linear term

[ ] pelve = 03) (@ ~uc) . ddzat

of (4.8). This estimate is the major difficulty in our analysis. We have

T
J‘OJ‘QPS(V‘C’ — 03)(Qy — ug)0 @y dxdzdt
T
- J.0 IQ pSVS((pH - ug)achH dxdzdt

T
- JO IQ Pe@s(Qy — ug)0, @y dxdzdr. 4.9)
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In a similar way to [16, 19, 24], we decompose

I a Pe@3(Py — ug)0 @y dxdz into three parts. We have
JQ Pe®3 (P — ug)0 @y dxdzdt

- J.Q X{%<p8<27} pﬁ(pS((pH - ”s)aZ(Pdedz
* J.Q X{ps <£} pe(P3((PH - ”s)aZ(Pdedz
"2

+ IQ X{pe 227} Pe@3 (P — 1t )0 Qpdxdz

S<pg<2r

= (| X{r }(Ps =) 2 ()l 930 9m 130yl @1 = e [ 15(q)
2

+Ix; _, 1||L2(Q)|| r"L°°(Q)” ©30 . Pp ||L3(Q)|| Py~ Ue ||L6(Q)
{pes3]

+ JQ X{pe 227} Pe®3(Pr — ue)0 Py dxdz

< CJ.QX{,, }(pe —r)zdde+CIQX{ L}ldxdz

§<p8 <2r pS < 2

2

+ C[  Xpy27) Pededz + | 0 = e [

< CE(pe. Ul o)+ MO0y = O Py

+N|0,@y — 0,ug "iZ(Q)‘ (4.10)

Note that in the last inequality, we have used Lemma 2.1.

The crucial and difficult part of our proof is the analysis of the first term
of the right-hand of (4.9). Using (3.10), we have
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JQ Peve(Py — ”s)az(PHdXdZ
= | (=div (peitg) + zdiv,(peite ) (9r — ug)0 @y dxdz
Q
= IQ (Peile — zPgils ) (O — ”s)asz iy dxdz

+ [ (et = 2peiie) 0.0 [0, (0y - up)dc. @11

In the following, we estimate the terms on the right-hand side of (4.11).

Firstly, we deal with I o Peite (P — ug)0,0,@p dxdz in the following:
| o Peite (@ ~ug) 0.0, @y dudz = IQ Pe (e = 990,90y Uy — ug)dxdz

+ JQ ey 0.0, 9y L@y — ug)dxdz

= Il +12, (412)

where

~ Z

Oy = -[0 Oy (x, s, t)ds.
Using Cauchy’s inequality, it follows that

I = JQ Pe (i - E‘|)H)6ZD)C(|)H oy — ug)dxdz
1 - ~
< E” GZDx(pH ”LOO(Q)(J.Q psll,t‘S - (lededZ + JQ psl“g - (ledede

2
dxdz + &([pg. Ue]|[r. @)

[ e =) s)as

s CJst

< cf o [ 11 = o P05t + £ I )
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< cf [ pelte =@ P()dvids + &(oc. VIl )

<C j el e~ 0y 1 (s)dxdz + &([pe. UelIlr. @)

< C&([pe. Ugl[r, dl). (4.13)

Similar to the above analysis (4.10), we decompose the term [, into

three parts

I = [ peu0.0.0u Doy — ue)dxs

= ©y 0.0 - u.)dxdz
| Qx{ps%}pg@q 0,0 0y — ug)
+{ x (£<ppcrr)Pe0:00n @y = ue)dxds

+ jQ X{pe 27} P 00,0y L@y = ug)dxdz

<| X{p <L}1”L2(Q)” ”||L°°(Q)|| @00,y ||L3(Q)|| O — ug ||L6(Q)
£72

+C| X{%<ps<2r}(Pe =) 20l Qa0 0.@u l|3 ()l @ — e 1160

2

Lz(Q)” @000y I3 ()l @ = ue ;50

+| X{pe 227}Pe I

< Coe. Ullr )0+ N D0y - Dy

* A0 0zt [ (4.14)

Let us consider another non-linear term:

J.Q Pelte0 Py [0, (Py — ug)dxdz.
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Then

IQ Peite0 @y [0 (9 — ug)dxdz
= IQ Xpg <27 Peited Py [0, (Qp — ue)dxdz

+ [ X(pes271 Pefic0 0u (0, (@n ) ds, (4.15)
where the first term on the right side of (4.15) gets split into two parts as

JQ Xpg <27 Peited Py [0, (Qy — ue)dxdz

= IQ Xp, <27 Pe (il — Q)00 [, (@ — ue)dxdz
* IQ Xpg <27 Pe@0, 0y (P — ug)dxdz

= IQ Xp, <27 Pe (il — 0)0.0y [, (@ — ue)dxdz

+{ x Ll (9~ e ddz

_
+ IQ X{pgsé} PO Oy (G = utg) dxdz

<l X{ps%}lﬂﬁ(g)" i @)l @0 Pur I o)l Bxorr = Dt [12(q)
+| X{%pgqf}ps 20l @094 = ()l Ba@nr = Oate 20

+| Xps<2?\/p_£”L°°(Q)" 0P ||L°°(Q)
x| /e (it = (~P1-1)||L2(Q)|| D@y — Oyue ||L2(Q)

< CE([pg. Ue]llr. o)) (2) + N D@y — Oug ”12((2)' (4.16)
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The decomposition of remainder of (4.15) is identical to the above as:

[ X(pe227) P00 [0,y = )t
- J.Q X{ps 227} P (ifs — EpH)az(pH [0, (@ — ug)dxdz

+ IQ X{pe 227} psZPHaz(PH [0, (@y — ug)dxdz

= J, + . (4.17)

We have, by using (3.18),

Jy = IQX{pszzf} ngpHGZ(pH [, (o — ug)dxdz
0% y0 _
< JQX{PSZZV} Pe’ " Pyo, 0y O, (@ — ug)dxdz

< || Xgpg 227102 2l €60 @n [l () Bxrr = Ot |2

< X210 2 g+ M o = Dt I
< CE(pe. Ul D)+ N Dy = e 2 @18

Due to Holder and Cauchy inequalities, it follows that

Ji = J.QX{pszZ?} Pe (it — ZPH)az(pH [0, (@ — ug)dxdz

< | Xgpe 227}Pe ||L4(Q)|| X{pe 227} (il = ZPH)”L“(Q)

*[10,0m ll;= ()l Ox@ — Oue 120
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2

L4(Q)|| X{p822?} (1’78 - ’(va)

2
< ” X{pSZZ?}pS ” ) + )\" Dx(pH - Dxus ||L2(Q)

2
||L4(Q
< X{pg 227}Pe ||i4(Q)|| X{pszzf}(ﬁe - ZPH)”L3(Q)

X | X(pez2r} (Tt = 00y ) [ 2(q) + M D0 = D ”iZ(Q)

4 -~ ~ ~ 0
<| X{pg=27}Pe ”L4(Q)” X{pe 227} (it — @) ”L3(Q) +N| Ot — O, 0y ||L2(Q)

~ ~ 2 2
+ )‘” az”e - az(pH ||L2(Q) + )‘" U@y — Uyue ||L2(Q)

< | XGpe2re It | ipe2r) e ~ ) 2

X | X{pp 227} (e = @)l 511(q) + M Dslie = 00y ||iz(Q)

2
’(Q)

2

+ )\” aZﬁS - aZZPH ” L2(Q)

+ )‘" Dx(pH - Dx”e ”
8 ~ ~ 2
< " X{p8 22}7}p€ "L4(Q)” X{p822}7} (”e - (pH) ||L2(Q)

+ Al X{p, 227} (e = ZpH)”iz(Q + M| Ot ~ O, @y ||i2(Q

) )

+ )\” azﬁs - GZCNPH ”iZ(Q) + )‘" Dx(pH - Dxus ”iz(Q)’ 4.19)

where we have used Lemma 2.2:

2 2
(A e 1V V2 A VRN T A S 2L PR

From (3.18), we have

8/4
I X{pe227}Pe |Ii4(Q) =Up Zerﬁdxdz) < CE([pe. Uelllr. 9)*. (4.20)
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Recalling (4.13), we have

” X{pg 227} (ﬁs - ZpH)”iz(Q) = J.p >2?|"7:»: - Eva |2dxdz

1 ~ 0
= —pP:|u dxdz
Jps>2r Pe Pelits — @y |

" r " E([ps’ 8] |[r’ (p])

Asin (4.19), we have

< B = 0o |

” Dxﬁs - x(pH ” I (Q)’

(@)

~ ~ 2
” az”e - az(pH ”Lz(Q) S ” az”& - Z(pH ||L2(Q)

4.21)

(4.22)

Combining the estimates (4.20), (4.21) and (4.22), we arrive at the

conclusion that

[ e = cf he)&(pe. Uelllr. )
Ao
+
J I Ote = 0,0 2 ol
ANE
N[ 10z 0.0 I

where h(t) O (0, T).

(4.23)

The estimate of remainder in (4.11) can be completed by the analogous

method. Therefore, we can summarize what we have proved as follows:
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&(lpe. Uil ODESS + [ [ pelDu : Dlue = @) + 6% O ) e
< [ nOE(ee. Ul At

” 0.us — 0,0y || )dt

T
A (0 - Oo0y |

(@) 2(Q)

T
* IOIQp_: (div(rDy@y ) + az(rachH ) (@ — ug)dxdzdt
T
_[ _[ (o —ug)O, rdxdzdt + IOIQ egPe (@3 — ve ) dxdzdt
T
¥ JOJQ kpg (ug| g | = Op| @y ) (@ — ug)dxdzdr

T
+ IO .[Q ((r - ps)a—;r + (r - ps)div(p+ % [(r(p— ngg)jddedt + 0(82),

(4.24)

Then we deduce that
T
&(lpe. Uelllr o)EZ5 + [ [ pe(Dolute = @) 0 (ue = @)
+0,(ug — @ )| + €% Dvg |*) ddzdr
T
- Jo .[Q (divy(rDx@y ) + az(”‘az(f’H ) (@ — ug)dxdzdt

T
* JOJQ Pe(Dy @y Oy (ug — @) + 0,9y [ (ug — @p ))dxdzdr

< [ 10)&pe. Ul A ()t
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T
+ )\J‘() (" D)CMS x(pH "LZ( ) + ” aZus Z(pH "LZ(Q))

fTp
[ (B8 1) i D01) + 0000010 ) @1y = )z

JoJ r
fT o

* JoJ QkpS(%' ug | = Q| Oy |)((PH — ug ) dxdzdt
NI ( )dxdzd

+ € _ ¢
Jolo gpS (p3 Ve XAZ

cTp
- | o) Q((ps - I’)a—;r + (pe — r)dive + % peUe - I’(P)jdXdzdt

fTp
~Jol QTS(CPH = ug) O rdxdzdi + o(e?). (4.25)

he)

Step 3. Now, we estimate the remaining terms in the relative energy
inequality (4.25). We have

[ B oy —ue)r + (o - )2

+ (pE - I") le(p + % [(ngg - r(p)dXdZdt

1 -
= _IO 0 F;f' oyU,r — Pe uSDxr + (psr r) (0,r + rdive)

- Dr + %pgvedxdzdt
T _
([ Pe _Pe=r) g, ~ O o4 9
= JO o oyU,r p odr . rQ + . Peve dxdzdt

— IT Pe Pe 0,r
=)o o0, r —— (pHD - Pe cp3a r+ == pgvsdxdzdt

= I I Pe (ve — @3)0_rdxdzdt = 0, (4.26)
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using the fact that 0,r + rdivg+ @Jr =0 and the periodic boundary

condition. Moreover, using the inequality of Cauchy, we get from (3.17) that

IQ epe (@3 — v )dxdz = J. e/Pe /P (@3 — ve ) dxdz

1 g2 2
< J.QEdeXdZ + J.QTps| @3 — vg |“dxdz

< CE([pg. Uellr, @) (4.27)

Furthermore, using again Cauchy’s inequality, we have

ka Pe (gl tte | = pr| @y [)(@p = ug)dxdz
1
< k[ 5 Pelue] ue | = 0| 0y [V
1
+ kaEp8| Op —ug |2dXdZ

1
s kJ.QEps(”d g | — @yl Oy |)2dxdz + CE([ps, U€]|[r, q)). (4.28)
We decompose the term

IQ [& B 1) (div,(rD @) +0.(r0 .0y )) (g — ue)dxdz

r

of (4.25) into two parts and we use the regularity of the strong solution to get

1
[ L ox = )i, (D01 + 0,010,000 )) (@ = et
= CIQ' Pe =7 |ess| Oy —ug |dxdz

+C[ 1o 1l Ou ~ ueldrdz = Ky + Ko (4.29)
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According to (3.16) using the inequality of Cauchy, we have

1
Kl < CJ.Q \/p_£|p8 - r|ess\/g| Oy —ug |dxdz

= CJ.Q (| Pe =7 |3ss + ps| Oy —ug |2)dxdz

< C&([pe. Ugl[r, dl). (4.30)

We split K, as follows:

KZZCJ _|Pe — [ @y — ue |dxdz
pe>2r
+CJ 1 | Pe =7l 0y — ug |dxdz,
ps<51’

where the first integral may be treated in the same way as K; and second

integral is estimated with the help of the inequality of Poincaré as follows:

cf 1 Ipe=rlloy - u|duz
Pe<5r

857
st' —u. |dxd
Ql(PH ug |dxdz

< CJ.Q 12, dxdz + AIQ| Oy — ug |*dxdz

< CE(pe. Ul o)+ M O = 0,0 Py

+ N 0,us — 0,0y ||iz(Q). (4.31)
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Furthermore, as D@y is bounded,

[, (D90 + 0,062,001 — )

+ JQ Pe (D @y : O (ug — @) + 0,0y 00, (ug — @y ))dxdz
= IQ D@y = O (@ —ug) + rd @y (0,05 — 0,ue)dxdz

+ JQ Pe (D @y : O (ug — @y ) + 0,05 00, (ug — @ ))dxdz
- -[Q (Pe = ) D@y : Oug = @y )dxdz
< %H Doy ||L°°(Q)UQ(pg — r)2dxdz + IQ| g - 0p) |2dxdzj

< C&(pe. Uelllr ) + M O = O I

2
+ )‘” 0 ug =0,y "LZ(Q)' (4.32)
Therefore, the relative entropy inequality can be written as

of L 1
E([pe. Uellr, @) (1) + CIO [” pZ (Dug — D@y ) "iz + 82" pZOve "iz dt

< [ he@)&lpe. Uelllr. o) @)ar + &(lpe. Uil 6)(0)
# A[ | e Oy |2

Tr k
* Io IQEPS(M5| ug | = @ | Oy |) dudzdr + ofe?). (4.33)
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When € tends towards O in (4.33), we get

sh_% &(lpe. Uelllr. @) (1) < sh_% C_[OT he (1) &([pe, Uelllr, @) (1)dr.  (4.34)

Then applying the Gronwall’s inequality, the proof of Theorem 3.1 is

complete.
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