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ON 3D COMPRESSIBLE PRIMITIVE EQUATIONS 

APPROXIMATION OF ANISOTROPIC NAVIER-STOKES 

EQUATIONS: RIGOROUS JUSTIFICATION 

 

Abstract 

In this paper, we obtain the 3D compressible primitive equations 
approximation without gravity by taking the small aspect ratio limit to 
the Navier-Stokes equations in the isothermal case with gravity. The 
aspect ratio (the ratio of the depth to horizontal width) is a geometrical 
constraint in general large scale geophysical motions that the vertical 
scale is significantly smaller than horizontal. We use the versatile 
relative entropy inequality to prove rigorously the limit from the 
compressible Navier-Stokes equations to the compressible primitive 
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equations. In addition to the presence of gravity, we consider that the 
viscosity of the fluid depends on its density and that it is submitted to 
a quadratic friction force. 

1. Introduction 

Atmospheric flow in meteorology, water flow in oceanography, and 

limnology are all described by the Navier-Stokes equations. Due to the fact 

that the aspect ratio 

widthsticcharacteri
depthsticcharacteri=ε  

is very small in most geophysical domains, asymptotic models have been 

used see, e.g., [10, 18, 27]. One such model is the primitive equations  

model; see, e.g., [13, 14], wherein the unknown flow variables are velocity, 

pressure, temperature, and salinity (in the case of an ocean). Besides, most 

geophysical fluids are stratified (i.e., density is a known function of the 

temperature (and salinity, if any)) and have a free surface. In this paper, we 

shall focus on the assumption that the pressure is hydrostatic, i.e., increases 

linearly with respect to the depth, as in the static case. This law agrees well 

with experiment and is frequently taken as a hypothesis in geophysical fluid 

dynamics. Therefore, many scientists suggest that the viscosity coefficients 

must be anisotropic. 

We consider the following compressible anisotropic Navier-Stokes 

problem: 

( )
( ) ( ) ( ) ( )( ) ( )
( )








ρ=ρ
ρ=∂µ∂−µ−ρ∇+⊗ρ+ρ∂

=ρ+ρ∂

,

,2

,0

2
21

cp

fUUDdivpUUdivU

Udiv

zzxxt

t

 

 (1.1) 

in the thin domain ( ) .,0 εΩ×T  Here ,0>t  ( )21, xxx =  and z are time, 

horizontal and vertical variables, respectively, 

{( ) }ε<<∈=Ωε zxzx 0,;, 2
T  



Rigorous Justification: Isothermal Case 111 

with 2
T  a bi-dimensional torus. The unknown functions ,ρ  ( )vuU ,=         

and p represent the density, velocities and the pressure of the medium, 

respectively. vudivdivU zx ∂+=  ( )
21

with xxxdiv ∂+∂=  and =∇  

( )zx ∂∇ ,  are the three-dimensional spatial divergence operator and gradient, 

respectively. ( )uDx  is the strain tensor with ( ) =uDx  
2

T
xx uu ∇+∇

 along 

the horizontal directions. ( )21, µµ  are the turbulence viscosities in the 

horizontal and vertical directions, respectively, which depend on the 

variables t, x, z and the density ρ  generally. The term f is the quadratic 

friction source term and the gravity strength is given as follows: 

,κ−−= gukuf  

where k is a positive constant coefficient, g is the gravitational constant          

and ( )T1,0,0=κ  (where T
X  stands for the transpose of tensor X). The 

pressure ( ) ρ=ρ 2
cp  is a usual expression used in the isothermal case with 

2
c  a specific constant [12, 33]. 

We assume the density ( ),, xtρ=ρ  that is, ρ  is independent of z. 

As atmosphere and ocean are the thin layers, where the fluid layer depth 

is small compared to radius of sphere, Pedlosky [36] pointed out that “the 

pressure difference between any two points on the same vertical line depends 

only on the weight of the fluid between these points”. 

We suppose  

( )ρµ=µ1    and   ( ) .2
2 ερν=µ  

As stressed by Azérad and Guillén [2], it is necessary to consider the above 

anisotropic viscosities scaling, which is fundamental for the derivation of 

Primitive Equations (PE). Under this assumption, the system is rewritten as 

follow: 
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( ) ( )
( ) ( ) ( ) ( )

( ) ( )( ) ( )( )
( ) ( ) ( ) ( )

( ) ( )( ) ( )( )
( )
















ρ=ρ

ρ−=∂ρν∂ε−ρµ−

ρ∂+ρ∂+ρ+ρ∂

∂ρν∂ε+ρµ=

ρ+ρ∇+ρ∂+⊗ρ+ρ∂

=ρ∂+ρ+ρ∂

.

,2

,2

,0

2

2

2

2

cp

gvvDdiv

pvuvdivv

uuDdiv

uukpuvuudivu

vudiv

zzxx

zzxt

zzxx

xzxt

zxt

 (1.2) 

We perform a vertical scaling to make the domain independent of ,ε  that 

is, ,tt ′=  xx ′=  and .zz ′ε=  The new fixed domain (without the «'» 

symbol) is {( ) }.10,;, 2 <<∈=Ω zxzx T  

As in [26], the corresponding kinematic scaling is 

( ) ( ) ( ),,,,,,, zxtuzxtuvuU ε== εεεε  

( ) ( ) ( ) ( ),,,,,,
1

,, xtxtzxtvzxtv ρ=ρεε= εε  

for any ( ) ( ).1,0:, 2 ×=Ω∈ Tzx  Then, the system (1.2) becomes the 

following compressible scaled Navier-Stokes equations (CNS): 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )( ) ( )( )
( ( ) ( ) ( ) ( ) ( )( )

( )( )) ( )
( )
















ρ=ρ

ρε−=ρ∂+∂ρν∂−

ρµ−ρ∂+ρ+ρ∂ε

∂ρν∂+ρµ=

ρ+ρ∇+ρ∂+⊗ρ+ρ∂

=ρ∂+ρ+ρ∂

εε

εεεε

εεεεεεεεε

εεεε

εεεεεεεεεεεε

εεεεε

.

,

2

,2

,0

2

22

cp

gpv

vDdivvvudivv

uuDdiv

uukpvuuudivu

vudiv

zzz

xxzxt

zzxx

xzxt

zxt

 (1.3) 

We make the following boundary conditions: 

εu  and ερ  are periodic in the directions ,, 21 xx  respectively, 

,010 =|=| =ε=ε zz vv  

 0,0 1010 =|=|=|∂=|∂ =ε=ε=ε=ε zzzzzz uuuu  (1.4) 



Rigorous Justification: Isothermal Case 113 

and the initial conditions: 

 ( ) ( ) ( ) ( ) ( ).,0,,,,0,0 00 xxzxmzxUx ρ=ρ=ρ εεε  (1.5) 

In this work, our goal is to prove that as ,0→ε  the system (1.3) 

converges in a certain sense to the following compressible primitive 

equations (CPEs): 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )( ) ( )( )
( )

( )













ρ=ρ

=ρ∂

∂ρν∂+ρµ=

ρ+ρ∇+ρ∂+⊗ρ+ρ∂

=ρ∂+ρ+ρ∂

.

,0

,2

,0

2
cp

p

uuDdiv

uukpuvuudivu

vudiv

z

zzxx

xzxt

zxt

 (1.6) 

Geophysical fluid dynamics is a crucial field for understanding the 

behavior of the atmosphere and the ocean. However, when it comes to 

analyzing and simulating the complex flows in these systems, using the 

complete hydrodynamical and thermodynamical equations is mathematically 

and numerically challenging. To overcome this, scientists have introduced 

the Primitive Equation (PE) model in geophysical fluid dynamics. The PE 

model was initially derived by Richardson in the 1920s for weather 

prediction. However, due to stability issues in calculations, it did not achieve 

much success. It was Bryan in [7] who improved the PE model in 1969 by 

incorporating the hydrostatic approximation. Although the PE model showed 

promising results in early simulations and applications, mathematical 

research on the PE model started much later. In the 1990s, Lions et al.           

[27, 28] were the first to study the PE model and made significant 

contributions to this field. Since then, the PE model has progressed through 

the precise analysis of simpler models. There is a vast amount of literature 

dedicated to the PE model, with numerous studies and references exploring 

its various aspects. Some notable research topics include the works by 

Bresch et al. [4-6], Cao et al. [8-10], Guo et al. [22, 23], Ju [25], Lions et al. 

[29, 30], Temam and Ziane [38] and Wang and Yang [40], among others. 

These studies have contributed to the understanding and development of the 

PE model in geophysical fluid dynamics. 



Jules Ouya and Arouna Ouedraogo 114 

The research in geophysical fluid dynamics has traditionally focused on 

the incompressible case of the Primitive Equation (PE) model, mainly due to 

historical reasons. However, it is well known that the atmosphere and ocean 

exhibit compressible properties. Therefore, it is natural and interesting          

to consider the compressible version of the PE model, known as the         

CPE model. In recent years, several researchers have made significant 

contributions to the study of the CPE model. Gatapov and Kazhikhov [20], 

as well as Ersoy and Ngom [13], investigated the CPE model with constant 

viscosity coefficients and proved the global existence of weak solutions in 

the two-dimensional case. Liu and Titi [31, 33] extended the analysis to the 

three-dimensional case and established the local existence of strong 

solutions for the CPE model. They considered the zero Mach number limit 

of the CPE model. This limit corresponds to the situation where the fluid 

flow becomes nearly incompressible. Ersoy et al. [12] introduced the 

concept of dimensionless numbers and employed asymptotic analysis to 

study the CPE model with viscosity coefficients that depend on the density. 

They obtained interesting results in this setting. The stability of weak 

solutions in the CPE model has also been investigated. Ersoy et al. [12] and 

Tang and Gao [37] demonstrated the stability of weak solutions, which 

means that under certain uniform bounds, a subsequence of weak solutions 

will converge to another weak solution. In recent developments, Liu and Titi 

[32] and independently Wang et al. [39], utilized the B-D entropy to prove 

the global existence of weak solutions for the CPE model. This entropy-

based approach has provided valuable insights into the behavior of the 

solutions. Overall, the research on the compressible version of the PE model, 

the CPE model, has made significant progress in recent years, with studies 

focusing on global existence, stability, and entropy-based analysis of weak 

solutions. 

According to the studies by Azérad and Guillén [2] and Li and Titi [26], 

the hydrostatic approximation is a significant aspect of the PE model, as 

emphasized by these authors. Establishing the rigorous justification for the 

transition from the anisotropic Navier-Stokes equations to the hydrostatic 

approximation through the small aspect limit is evidently of great practical 
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importance. Numerous studies have been conducted on the convergence of 

incompressible flows. For instance, Azérad and Guillén [2] demonstrated the 

convergence of weak solutions from the anisotropic Navier-Stokes equations 

to weak solutions of the PE model. Li and Titi [26] employed the method of 

weak-strong uniqueness to prove the aspect ratio limit of the incompressible 

anisotropic Navier-Stokes equations, showing the convergence from weak 

solutions to strong solutions of the incompressible PE model. 

Our main objective is to provide a rigorous justification for the limit 

passage in the context of weak solutions of the compressible Navier-Stokes 

equations (CNS). Recent studies by Bella et al. [3] and Maltese and Novotný 

[34] have proven the limit passage from the 3D compressible Navier-Stokes 

equations to the 1D and 2D compressible Navier-Stokes equations in thin 

domains. Drawing inspiration from their work, we have developed and 

adapted the idea of the relative entropy inequality for the compressible 

Navier-Stokes equations. However, there are significant mathematical 

differences between the Navier-Stokes equations and the CPE model. The 

hydrostatic approximation in the CPE model eliminates information about 

the vertical velocity in the momentum equation, and the vertical velocity is 

determined by the horizontal velocity through the continuity equation. As           

a result, analyzing the CPE model becomes considerably challenging. 

Consequently, the classical methods used in the Navier-Stokes system 

cannot be straightforwardly applied to the CPE model. 

Additionally, in [1], Andrášik et al. have proven the existence of        

weak-strong solutions for the problem (1.6) with general external forces f. 

However, in our work, we focus on the hydrostatic case and specifically 

consider the case where .κ−−= guruf  Our study is among the first to 

use the relative entropy inequality to establish the hydrostatic approximation 

in the compressible case. A similar approach was taken in [19], where the 

pressure is assumed to be of the form γρ  with ,4>γ  viscosities are 

constants, and there are no external forces. The introduction of the versatile 

relative entropy inequality can be found in [19]. It is important to mention 

that the cornerstone of our analysis is based on the relative energy 
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inequality, which was originally introduced by Dafermos [11]. Subsequently, 

Germain [21] applied it to the compressible Navier-Stokes equations. 

Feireisl and his co-authors [16, 17] further generalized the relative energy 

inequality to solve various problems related to compressible fluid models. 

The rest of paper is organized as follows. In Section 2, we recall some 

useful inequalities. We introduce the definition of weak solutions, strong 

solution, relative energy and state the main theorem in Section 3. Section 4 is 

devoted to proof of the convergence. 

2. Preliminaries 

In this section, we introduce some basic inequalities needed in the         

later proof. The first inequality is the so-called generalized Poincaré 

inequality. 

Lemma 2.1 (See [15]). Let 62 ≤≤ p  and 0≥ρ  such that 

Ω
∞≤=ρ< Mdx0    and   Ω

γ ≤ρ 0Edx  

for some ( ).1>γ  Then  

( ) ( ) ( ),22
1

ΩΩΩ ρ+∇≤
LLL

ffCf pp  

where C depends on M and .0E  

The following is the famous Gagliardo-Nirenberg inequality (for the 

proof, see [35]). 

Lemma 2.2. For a function R→Ω:u  defined on a bounded Lipschitz 

domain ,n
R⊂Ω  ,,1 ∞≤≤∀ rq  and a natural number m, suppose that a 

real number θ  and a natural number j are such that 

qn

m

rn

j

p

θ−+θ





 −+= 111

   and   .1≤θ≤
m

j
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Then there exists a constant C independent of u such that 

( ) ( )
.1 θ−

Ω
θ

Ω
≤

qr
LL

m
p

j
uuDCuD  

3. Main Results 

Before showing our main result, we give the definition of a weak 

solution for CNS and a strong solution for CPE. 

3.1. Dissipative weak solutions of CNS 

Providing the definition of weak solutions to (1.3), we give the energy 

inequality. 

Definition 3.1. We say that ( )εεερ vu ,,  is a finite weak energy solution 

to the system of (1.3), with boundary (1.4) and initial conditions (1.5) if 

( ( )) ( ( ))
( ( ) ) ( ( ))

( ( ( )) ) ( ( ) )

( ( ) ) ([ ] ( ))












Ω∈ρΩ∈ρ∇

Ω∈∇ρΩ∈ρ

Ω∈ρΩ∈ρ

Ω∈ρΩ∈ρ

εε

εε
×

εε

∞
εεεε

∞
ε

∞
ε

;;,0,;,0

,;,0,;,0

,;,0,;,0

,;,0,;,0

333
1

222

3222222

2222

11

LTLuLTL

LTLvLTLuD

LTLvLTLu

HTLLTL

x

x

 (3.1) 

• the continuity equation 

( ) 
τ

Ω εεεεε

τ=

=Ω ε ϕ∂ρ+ϕ∇⋅ρ+ϕ∂ρ=




 ϕρ
00

dxdzdtvudxdz zxt

t

t

 (3.2) 

holds for all [ )( );,0 Ω×∈ϕ ∞
TCc  

• the momentum equations 

  
τ

Ω εεε
τ

Ω εε

τ=

=Ω εε φ∂ρ−φ∂ρ−




 φρ
000

dxdzdtvudxdzdtudxdzu HzHt

t

t
H  

( ( ) ( ) ) 
τ

Ω εεεεε φ∇⊗ρ−ρµ+
0

:2 dxdzdtuuuD Hxx  
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( ) ( )  
τ

Ω ε
τ

Ω εε φρ−φ∂∂ρν+
00

dxdzdtdivpdxdzdtu HxHzz  

 
τ

Ω εεε =φρ+
0

,0dxdzdtuuk H  (3.3) 

and  

 
τ

Ω εε

τ=

=Ω εε φ∂ρε−




 φρε
0

3
2

0
3

2
dxdzdtvdxdzv t

t

t

 

 
τ

Ω εεε φ∇⋅ρε−
0

3
2

dxdzdtvu x  

( ) ( ) 
τ

Ω εε φ∇ρµε+
0

3
2 :2 dxdzdtvD xx  

( ( ) ) 
τ

Ω εεεε φ∂ρ−∂ρνε+
0

3
22

dxdzdtvv zz  

( ) 
τ

Ω ε φ∂ρ−
0

3dxdzdtp z  

 
τ

Ω εφρε−=
0

3dxdzdtg  (3.4) 

hold for all [ )( )Ω×∈φφ ∞
TCcH ,0, 3  and for a.e ( ).,0 T∈τ  

Combining (3.3) and (3.4), we obtain 

( )
τ=

=Ω εεε 




 φε+φρ
t

t
H dxdzvu

0
3

2  

( ) 
τ

Ω εεε φ∂ε+φ∂ρ−
0

3
2

dxdzdtvu tHt  

( ) 
τ

Ω εεεε φ∂ε+φ∂ρ−
0

3
22

dxdzdtvvu zHz  

( )( ( ) ( ) ) 
τ

Ω εεε φ∇ε+φ∇ρµ+
0

3
2 ::2 dxdzdtvDuD xxHxx  
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( ) 
τ

Ω εεεεε φ∇⋅ε+φ∇⊗ρ−
0

3
2: dxdzdtvuuu xHx  

( ) ( ) 
τ

Ω εεε φ∂∂ε+φ∂∂ρν+
0

3
2

dxdzdtvu zzHzz  

( ) ( ) 
τ

Ω ε φ∂+φρ−
0

3 dxdzdtdivp zHx  

  
τ

Ω ε
τ

Ω εεε φρε−φρ−=
0

3
0

.dxdzdtgdxdzdtuuk H  (3.5) 

In the following, we take ( ) ερµ=ρµ  and ( ) ,ερν=ρν  where .0, >νµ  

Formally, multiplying the momentum equation (1.3)2 by horizontal 

velocity ,εu  then by integrating by parts on ,Ω  we can deduce the following 

energy inequality: 

 Ω Ω εεεεεεε ρ+





 ρ−ρρ+ρ dxdzukdxdzu

dt

d 32 ln
2
1

 

( ( ) )Ω εεε ≤∂ν+µρ+ .02 22
dxdzuuD zx  (3.6) 

In the same way, multiplying the momentum equation (1.3)3 by vertical 

velocity ,εv  then by integrating by parts on ,Ω  we can deduce the following 

energy inequality: 

( ( ) ) Ω εεεΩ
ε

ε |∂|ν+µρε+ρε dxdzvvDdxdz
v

dt

d
yx

222
2

2 2
2

 

 Ω εεεΩ εε ρρ≤ρε−≤ dxdzvgdxdzvg  

,
2

2







 ρ+ρε≤  Ω εεΩ ε dxdzvdxdzg  (3.7) 

where we used Cauchy’s inequality in second to third line.  
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Combining (3.6) and (3.7), we obtain the energy inequality 

( )Ω εεεεεε 



 ρ−ρρ+ε+ρ dxdzvu

dt

d
ln

2
1 222  

( ( ) )Ω εεε |∂|ν+µρ+ dxdzuuD zx
222  

( ( ) )Ω εεε |∂|ν+µρε+ dxdzvvD zx
222 2  

 Ω Ω εεεε ρε−ρ−≤ dxdzvgdxdzuk
3  

 Ω εεΩ εεΩ ε ρ−






 ρ+ρε≤ .
2

32
dxdzukdxdzvdxdz

g
 (3.8) 

We assume that the initial data satisfies 

( ) ( )

( ) ( )

( )













Ω∈
ρ

Ω∈ρ∇Ω∈ρ−ρρ

Ω∈ρ+∞<≤ρ<

.

,,ln

,,0

1

0

2
0

2
0

1
000

1
00

L
m

LL

LMx

x  (3.9) 

3.2. Strong solution of CPE 

The couple ( )φ,r  ( )( )3,where φφ=φ H  is a strong solution to the CPE 

system (1.6) in ( ),,0 T×Ω  if it satisfies the equations in (1.6) with the 

boundary condition (1.4). Also, the solution satisfies following regularities: 

( ( )),;,0 2 Ω∈ ∞
HTLr   ( ( )),;,0 1 Ω∈∂ ∞

HTLrt  0>r  for all ( ),,, zxt  

( ( )) ( ( )),;,0;,0 423 ΩΩ∈φ ∞
HTLHTLH ∩  

( ( )) ( ( )),;,0;,0 122 ΩΩ∈φ∂ ∞
HTLHTLHt ∩  

with initial data ( ) 0, 0
2

0 >Ω∈ rHr  and ( ).3
0 Ω∈φ H  
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As the density is independent of z, we can obtain the following 

information of vertical velocity for the weak solution of CNS: 

( ) ( ) ( ),~,, uzdivudivzxtv xx ρ+ρ−=ρ  in the sense of ( ),1 Ω−
H  (3.10) 

where  

( ) ( ) ( ) ( ) ==
1

00
.,,,,,,,,~ dzzxtuxtudssxtuzxtu

z
 

3.3. Relative entropy inequality 

Motivated by [16, 17], for any finite energy weak solution ( ),, ρu  where 

( ),, vu=u  to the CNS system (1.3), we introduce the relative energy 

functional 

[ ] [ ]( )φρξ ,|, rU  

Ω 









+ρ−ρ−ρρ+φ−ρε+φ−ρ= dxdzrrvu H lnln

22
1 2

3

2
2  

( ) ΩΩ
φρε+φρ−










ρ−ρρ+ρε+ρ= dxdzvudxdzvu H 3

22
2

2 ln
22

1
 

( ) ΩΩ
ρ+










ρ−φρε+φρ+ ,ln

22
1 2

3

2
2

dxdzrdxdzrH  (3.11) 

where ( ) ( )3,,, φφ=φ Hrr  designs the local strong solution of the CPE 

(1.6) showed recently in [1], and r is a strictly positive function defined on 

( ).,0 T×Ω  

Lemma 3.1 (See [1, 19]). A general function ( )ρ= GG  can be 

decomposed into the essential and residual parts as 

,resess GGG +=  

where 

 













∈ρ

=
.0

,2,
2
1

:
otherwise

rronG
Gess  (3.12) 
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Let us define 

( ) ( )


ρ
ρρ=ρ=ρ

1
.lndy

y

yp
H  

We would like to point out that the function 

 ( ) ( ) ( ) ( ) 0,,lnln >ρ+ρ−ρ−ρρ=′−ρ−−ρρ rrrrHrrHH֏  (3.13) 

is strictly convex with minimum 0 attained at .r=ρ  Therefore, for every 

,0 ∞<<<< rrr  there is a positive constant c such that 

 ( ) ( ) ( ) ( ) ( ) ,2
rcrHrrHH −ρ>′−ρ−−ρ  (3.14) 

wherever 





∈ρ rr 2,

2
1

 and 

 ( ) ( ) ( ) ( ) ,rcrHrrHH −ρ>′−ρ−−ρ  (3.15) 

wherever .2,
2
1

\ 





∈ρ +

rrR  

Let us specify that 
( )

rr
T Ω×

=
,0
inf  and 

( )
.sup

,0
rr

T Ω×
=  

Due to the convexity of H and (3.12), we can deduce the following 

coercivity properties (see (3.14) and (3.15)): 

[ ][ ]( )φρξ εε ,, rU  

 ( )Ω
ρ++−ρ+φ−ρε+φ−ρ≥ .122

3
22

dxdzrvuC resresessH  (3.16) 
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Thus, we deduce to (3.16) that 

( )

[ ] [ ]( ) ( )

[ ] [ ]( ) ( )

[ ] [ ]( ) ( )

( )

[ ] [ ]( ) ( )

















φ|ρξ≤

φ−ε+φ−ρ

φ|ρξ≤ρ

φ|ρξ≤

φ|ρξ≤

−ρχ=−ρ

εε

Ω

εεΩ

εεΩ

εε

Ω Ω






 <ρ<





 

.,,

,,,

,,,1

,,,

2
3

22

2

2
2

2

trUC

dxdzvu

trUCdxdz

trUCdxdz

trUC

dxdzrdxdzr

H

res

res

r
ress

  (3.17) 

Moreover, from [16], we have 

[ ] [ ]( ) ( ) ( ),,0,, TLtrU
∞

εε ∈φ|ρξ  

{ }( ) [ ] [ ]( ) ,,, 1
2

α
εε≥ρ φ|ρξ≤ρ α rUC

rL
 

{ }( ) [ ] [ ]( ) .1,,, 21
2

2
2 >αφ|ρξ≤ρ εε≥ρ

α
rUC

rL
 (3.18) 

The symbol C denotes a generic positive constant, which may vary from 

time to time. 

Our main result is the following theorem: 

Theorem 3.1. Let 0max >T  be the life time of strong solution to CPE 

system (1.6) corresponding to initial data [ ]., 00 φr  Let ( )εεερ vu ,,  be a 

sequence of dissipative weak solutions to the CNS system (1.3) from the 

initial data ( )000 ,, vuρ  depending on ε  which satisfies (3.9). Suppose that  

[ ] [ ]( ) .0,, 0000 →φ|ρξ rU  

Then 

 
( )

[ ] [ ]( ) ,0,,sup
max,0

→φ|ρξ εε
∈

rUess
Tt

 (3.19) 

when ,0→ε  and where the couple ( )φ,r  satisfies the CPE system (1.6) on 

the time interval [ ).,0 maxT  
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Remark 3.1. In order to see more clearly the sense of the limit above, 

we notice that (3.19) implies, for example, 

r→ρε  strongly in ( ( )),;,0 1 Ω∞
LTL  

φ→ρ εε rU  strongly in ( ( )),;,0 2 Ω∞
LTL  

φ→ρ εε rU  strongly in ( ( )).;,0 2 Ω∞
LTL  

To establish the relative entropy inequality, we first take ,
2
1 2

Hφ=ϕ  

then 2
3

2

2
φε=ϕ  as a test function independently in weak formulation           

of the continuity equation (3.2). We obtain, by using identity ( ) =φφ∂ iij  

,2 iji φ∂φ  

( ) ( )Ω ε τ⋅φτ⋅ρ dxdzH ,,
2
1 2  

( ) ( )Ω
⋅φ⋅ρ= dxdzH 0,

2
1 2

0  

( ) 
τ

Ω εεεεε φ∂φρ+φ∇⋅φρ+φ∂φρ+
0

dxdzdtvu HzHHxHHtH  (3.20) 

and 

( ) ( )Ω ε τ⋅φτ⋅ρε
dxdz,,

2
2

3

2
 

( ) ( )Ω
⋅φ⋅ρε= dxdz0,

2
2

30

2
 

( ) 
τ

Ω εεεεε φ∂φρ+φ∇⋅φρ+φ∂φρε+
0

333333
2 .dxdzdtvu zxt  (3.21) 
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Second, with test function ,ln r=ϕ  we have 

( ) ( )Ω ε τ⋅τ⋅ρ dxdzr ,ln,  

( ) ( )Ω
⋅⋅ρ= dxdzr 0,ln0  

 
τ

Ω εεεεε 





 ∂ρ+∇ρ+∂ρ+

0
.dxdzdt

r

r
v

r

r
u

r

r zxt  (3.22) 

In the third step, we rewrite (3.5) as 

( ) ( ) ( ) ( ) ΩΩ εεε ⋅φε+φρ−τ⋅φε+φρ dxdzvudxdzvu HH 0,30
2

0,003
2 ,  

( ) 
τ

Ω εεε φ∂ε+φ∂ρ−
0

3
2

dxdzdtvu tHt  

( ) 
τ

Ω εεεε φ∂ε+φ∂ρ−
0

3
22

dxdzdtvvu zHz  

( ( ) ( ) ) 
τ

Ω εεε φ∇ε+φ∇ρµ+
0

3
2 ::2 dxdzdtvDuD xxHxx  

( ) 
τ

Ω εεεεε φ∇⋅ε+φ∇⊗ρ−
0

3
2: dxdzdtvuuu xHx  

( ) 
τ

Ω εεε φ∂∂ε+φ∂∂ρν+
0

3
2

dxdzdtvu zzHzz  

 
τ

Ω εεε φρ+
0

dxdzdtuuk H ( ) ( ) 
τ

Ω ε φ∂+φρ−
0

3 dxdzdtdivp zHx  

 
τ

Ω εφρε−=
0

3 .dxdzdtg  (3.23) 

We multiply (3.22) and (3.23) by –1 and sum it up with (3.20) and the 

energy inequality (3.8) to deduce 
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( )Ω εεεεεεεε τ⋅









ρ−ρ−ρρ+φ−ρε+φ−ρ dxdzrvu H ,lnln

22
1 2

3

2
2  

( )Ω εεεεεεεε ⋅








ρ−ρ−ρρ+φ−ρε+φ−ρ− dxdzrvu H 0,lnln

22
1 2

3

2
2  

( ( ) )  
τ

Ω εεε
τ

Ω εε ∂ν+µρ+ρ+
0

22

0

3 2 dxdzdtuuDdxdzdtuk zx  

( ( ) ) 
τ

Ω εεε ∂ν+µρε+
0

222 2 dxdzdtvvD zx  

( ) 
τ

Ω εεε φ∂ε+φ∂ρ+
0

3
2

dxdzdtvu tHt  

( ) 
τ

Ω εεεε φ∂ε+φ∂ρ+
0

3
22

dxdzdtvvu zHz  

( ( ) ( ) ) 
τ

Ω εεε φ∇⋅ε+φ∇ρµ−
0

3
2:2 dxdzdtvDuD xxHxx  

( ) 
τ

Ω εεε φ∂∂ε+φ∂∂ρν−
0

3
2

dxdzdtvu zzHzz  

 
τ

Ω εεε φρ−
0

dxdzdtuuk H  

( ) 
τ

Ω εεεεε φ∇⋅ε+φ∇⊗ρ+
0

3
2: dxdzdtvuuu xHx  

( ) 
τ

Ω εεεεε φ∂φρ+φ∇⋅φρ+φ∂φρ≤
0

dxdzdtvu HzHHxHHtH  

( ) 
τ

Ω εεεεε φ∂φρ+φ∇φρ+φ∂φρε+
0

333333
2

dxdzdtvu zxt  

 
τ

Ω εεεεε 





 ∂ρ+∇ρ+∂ρ−

0
dxdzdt

r

r
v

r

r
u

r

r zxt  
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τ

Ω εε
τ

Ω ε ρε−φρε+
00

3 dxdzdtvgdxdzdtg  

( ) ( ) 
τ

Ω ε φ∂+φρ−
0

3 .dxdzdtdivp zHx  (3.24) 

We have  

( ( ))Ω εεεεε φ∂ε+φ∂ρ−φ∂φρε+φ∂φρ dxdzvu tHttHtH 3
2

33
2  

( ) ( ) Ω εεΩ εε φ∂−φρε+φ∂−φρ= .33
2

dxdzvdxdzu tHtH  (3.25) 

By a direct computation, we have 

( ) ( ) Ω εεεΩ εεε φ∇ρ−=φ⊗ρ .HxHx uuuudiv  

So 

( )Ω εεεεε φ∇⋅ε+φ∇⊗ρ− dxdzvuuu xHx 3
2:  

( ) 
τ

Ω εεεε φ∂ε+φ∂ρ−
0

3
22

dxdzdtvvu zHz  

( )Ω εεεεεεεε φ∂φρε+φ∇φρε+φ∂φρ+φ∇⋅φρ+ dxdzvuvu zxHzHHxH 33
2

33
2  

( )Ω εεε φφ∂+φ∇ρ= dxdzdtvu HHzHx  

( )Ω εεεε φ∂+φ∇⋅ρ− dxdzdtuvu HzHx  

( )Ω εεε φ∂+φ∇ρε+ dxdzvu zx 33
2  

( )Ω εεεε φ∂+φ∇⋅ρε− dxdzvvu zx 33
2  
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( ) ( )Ω εεεε −φφ∂+φ∇ρ= dxdzdtuvu HHzHx  

( ) ( )Ω εεεε −φφ∂+φ∇ρε+ .333
2

dxdzvvu zx  (3.26) 

The sum of (3.25) and (3.26) gives 

( ) ( )Ω εεεε −φφ∂+φ∇+φ∂ρ dxdzdtuvu HHzHxHt  

( ) ( )Ω εεεε −φφ∂+φ∇+φ∂ρε+ .3333
2

dxdzvvu zxt  

Moreover, we add the following equality to (3.24): 

( ) ( )   
τ

ΩΩ Ω
∂=⋅−τ⋅

0
0,, rdxdzdtdxdzrdxdzr t  

( ) 
τ

Ω
∂=

0
.dxdzdtrpt  (3.27) 

Thus, the right-hand of (3.24) is given by 

( ) .
r

r
U

r

r
r

r

r
v

r

r
u

r

r
r tzxt

t
∇ρ−∂ρ−=






 ∂ρ+∇ρ+∂ρ−∂ εεεεεεεε  (3.28) 

Furthermore, considering that φ satisfies no-slop boundary conditions, 

we have 

( ) ( ) ΩΩ
φ=φ+∇⋅φ dxdzrdivdxdzrdivr  

 Ω∂
=⋅φ= .0dSr n  (3.29) 

Thus, we can add the term ( )Ω
φ+∇⋅φ dxdzrdivr  to the right-hand side of 

(3.24) to obtain 

( ) .
r

r
rdivrrdivrdiv

∇φ+φρ−=φ+∇⋅φ+φρ− εε  (3.30) 
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Hence, the sum of (3.28) and (3.30) gives 

( ) ( )
r

r
rdivr

r

r
U

r

r
r t ∇φ+φρ−+∇ρ−∂ρ− εεεε  

( ) ( ) ( ).εεεε ρ−φ⋅∇+φρ−+∂ρ−= Ur
r

r
divr

r

r
r t  (3.31) 

Furthermore, we have 

( ( ) ( ) )2222 εεε ε+ρµ vDuD xx  

( ( ) ( ) )3
2:2 φ∇⋅ε+φ∇ρµ− εεε xxHxx vDuD  

( ( ) ( ) )εεεεε ∇⋅ε+∇ρµ= vvDuuD xxxx
2:2  

( ( ) ( ) )3
2 ::2 φ∇ε+φ∇ρµ− εεε xxHxx vDuD  

( ( ) ( ) ( ) ( ))3
2:2 φ−∇⋅∇ε+φ−∇ρµ= εεεεε vvuuD xxHxx  

and 

( ) ( )3
2222 φ∂∂ε+φ∂∂ρν−∂ε+∂ρν εεεεεε zzHzzzz vuvu  

( ( ) ( )).3
2 φ−∂∂ε+φ−∂∂ρν= εεεεε vvuu zzHzz  

Putting these together, we get the relative entropy inequality defined by 

[ ] [ ]( ) ( )τ⋅φ|ρξ εε ,,, rU  

( ( ) ( )) 
τ

Ω εεεεε φ−∇∇ε+φ−∇ρµ+
0

3
2 ::2 dxdzdtvvuuD xxHxx  

( ( ) ( )) 
τ

Ω εεεεε φ−∂∂ε+φ−∂∂ρν+
0

3
2

dxdzdtvvuu zzHzz  

[ ] [ ]( ) ( )0,,, ⋅φ|ρξ≤ εε rU  

( ) ( ) 
τ

Ω εεεε −φφ∂+φ∇+φ∂ρ+
0

dxdzdtuvu HHzHxHt  
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( ) ( ) 
τ

Ω εεεε −φφ∂+φ∇+φ∂ρε+
0

3333
2

dxdzdtvvu zxt  

( ) ( )  
τ

Ω εεεε
τ

Ω εε −φρ+−φρε+
00

3 dxdzdtuuukdxdzdtvg H  

( ) ( ) ( ) 
τ

Ω εεεε 





 ρ−φ⋅∇+φρ−+∂ρ−+

0
.dxdzdtUr

r

r
divr

r

r
r t  (3.32) 

With ,12 =ν=µ  we rewrite (3.32) as 

[ ] [ ]( ) ( ( ) ) 
τ

Ω εεεε
τ=

=εε ∇ε+φ−∇ρ+|φ|ρξ
0

22
0 :,, dxdzdtvuDurU H

t
t  

( ) ( ) 
τ

Ω εεεε −φφφ+φ∂+φ∇+φ∂ρ≤
0

dxdzdtukvu HHHHzHxHt  

( ) ( ) 
τ

Ω εεεε −φφ∂+φ∇+φ∂ρε+
0

3333
2

dxdzdtvvu zxt  

 
τ

Ω ε φ∇⋅∇ε+
0

3
2

dxdzdtv ( ) 
τ

Ω εε −φρε+
0

3 dxdzdtvg  

( ) ( ) 
τ

Ω εεεε −φφφ−ρ+
0

dxdzdtuuuk HHH  

( ) ( ) ( ) 
τ

Ω εεεε 





 ρ−φ⋅∇+φρ−+∂ρ−+

0
,dxdzdtUr

r

r
divr

r

r
r t  (3.33) 

where ( )uuDDu zx ∂= ,  and we add  

( ( ) ( ))εεε −φφφ−−φφφρ ukuk HHHHHH  

in right-hand of (3.32). 

4. Convergence 

In this section, we prove our main result. The proof of Theorem 3.1 is 

strongly based on the relative energy inequality (3.33) by considering the 
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strong solution ( ),, φr  where ( )3, φφ=φ H  as a test function in the relative 

entropy (3.11). 

As in [1], we have the following remark: 

Remark 4.1. We assume that the strong solution satisfies (1.6) 

pointwise and all the terms in this formulation are well defined. In particular, 

( )( ),,01
TCr ×Ω∈  ( )( )31 ,0 TC ×Ω∈φ  with ( )( ) .,0 331 ××Ω∈∇ TCU  It 

is worth to mention that the proof presented below works also for weak 

solutions with sufficient regularity. 

Next, in three steps, we prove our main result. 

Step 1. Estimate on the relative energy inequality (3.33). 

We begin by 

( ) ( ) ( ) Ω εεεΩ εεε φ∇⋅−φφ−ρ=φ∇⋅−φρ dxdzuudxdzuu HxHHHxH  

( )Ω εε φ∇⋅−φφρ+ .dxdzu HxHH  (4.1) 

As [ ]3,, φφHr  is a strong solution, concerning the first term of (4.1), we 

have (recall that Hxφ∇  is a bounded function) 

( ) ( ) ( ) ( ) Ω εεεΩ εεε φ∇⋅−φφ−ρ≤φ∇⋅−φφ−ρ dxdzuudxdzuu HxHHHxHH  

Ω εε −φρ≤ dxdzuC H
2  

[ ] [ ]( ),,, φ|ρξ≤ εε rUC  (4.2) 

where we used (3.17). 

Again, since [ ]3,, φφHr  is a strong solution of (1.6), we can rearrange 

the momentum equation (1.6)2 as follows: 
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( ) HzHxHHxHtHHt rrrdivrr φ∂φ+φ∇⋅φ+φφ+∂φ+φ∂ 3  

( ) rkrr xHHzH ∇+φφ+φ∂φ+ 3  

( ) ( )HzzHxx rrDdiv φ∂∂+φ=  

[ ]HHHzHxHHt kr φφ+φ∂φ+φ∇⋅φ+φ∂ 3  

( ) ( )[ ]3φ∂+φ+∂φ+ rrdivr zHxtH  

( ) ( ) ,rrrDdiv xHzxHxx ∇−φ∂∂+φ=  

which by means of the continuity equation reduces into 

HHHzHxHHt k φφ+φ∂φ+φ∇⋅φ+φ∂ 3  

( ) ( )( ).1
rrrDdiv

r xHzzHxx ∇−φ∂∂+φ=  

So we rewrite 

( )HHHzHxHt kvu φφ+φ∂+φ∇+φ∂ρ εεε  

( HHHzHxHHt k φφ+φ∂φ+φ∇φ+φ∂ρ= ε 3  

( ) ( ) )HzHxH vu φ∂φ−+φ∇φ−+ εε 3  

( ) ( )( )rrrDdiv
r xHzzHxx ∇−φ∂∂+φρ= ε  

( ) ( ) .3 HzHxH vu φ∂φ−ρ+φ∇φ−ρ+ εεεε  

Hence, 

( ) ( ) 
τ

Ω εεεε −φφφ+φ∂+φ∇+φ∂ρ
0

dxdzdtukvu HHHHzHxHt  

( ) ( )( ) ( ) 
τ

Ω ε
ε −φ∇−φ∂+φρ=

0
dxdzdturrrDdiv

r HxHzHxx  

( ) ( ) ( )  
τ

Ω εε
τ

Ω εεε −φρ−φ∂−φφ−ρ+
0

2

0
3 dxdzdtudxdzdtuv HHzH  
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( ) ( )( ) ( ) 
τ

Ω ε
ε −φ∇−φ∂∂+φρ≤

0
dxdzdturrrDdiv

r HxHzzHxx  

( ) ( ) [ ] [ ]( ),,,
0

3 φ|ρξ+φ∂−φφ−ρ+ εε
τ

Ω εεε  rUCdxdzdtuv HzH  (4.3) 

where we have used (4.2). 

Moreover, we have 

3333333 φ∂φ+φ∇φ+φ∂=φ∂+φ∇+φ∂ εε zxHtzxt vu  

( ) ( ) .333 φ∂φ−+φ∇φ−+ εε zxH vu  

Thus, using Cauchy’s inequality and (3.17), we get 

( ) ( ) 
τ

Ω εεεε −φφ∂+φ∇+φ∂ρε
0

3333
2

dxdzdtvvu zxt  

( ) ( )  
τ

Ω εεε
τ

Ω εε φ∂+φ∇+φ∂ρε+−φρ≤
0

2
333

4

0

2
3 dxdzdtvudxdzdtv zxt  

[ ] [ ]( ) ( ) 
τ

Ω εεεεε φ∂+φ∇+φ∂ρε+φ|ρξ≤
0

2
333

4,, dxdzdtvurU zxt  

[ ] [ ]( ) ( ) 
τ

Ω εεε φ∂φ+φ∇φ+φ∂ρε+φ|ρξ≤
0

2
3333

4,, dxdzdtrU zxHt  

(( ) ( ) ) 
τ

Ω εεε φ∂φ−+φ∇φ−ρε+
0

2
333

4 .dxdzdtvu zxH  (4.4) 

We decompose ( )Ω ε φ∂φ+φ∇φ+φ∂ρ dxdzzxHt
2

3333  into three parts as 

follows: 

( )Ω ε φ∂φ+φ∇φ+φ∂ρ dxdzzxHt
2

3333  

( )Ω ε






 <ρ<

φ∂φ+φ∇φ+φ∂ρχ=
ε

dxdzzxHt
r

r
2

3333
2

2
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( )Ω ε






 ≤ρ

φ∂φ+φ∇φ+φ∂ρχ+
ε

dxdzzxHtr
2

3333
2

 

{ } ( )Ω ε≥ρ φ∂φ+φ∇φ+φ∂ρχ+ ε dxdzzxHtr
2

33332  

( ) ( )Ω ε






 <ρ<

φ∂φ+φ∇φ+φ∂−ρχ≤
ε

dxdzrC zxHt
r

r
2

3333
2

2

 

( )Ω






 ≤ρ

φ∂φ+φ∇φ+φ∂χ+
ε

dxdzr zxHtr
2

3333
2

 

{ } ( )Ω ε≥ρ φ∂φ+φ∇φ+φ∂ρχ+ ε dxdzzxHtr
2

33332  

( ) [ ] [ ]( )φ|ρξ+−ρχ≤ εεΩ ε






 <ρ< ε

,,2

2
2

rUCdxdzrC
r

r  

{ }Ω ε≥ρ +ρχ+ ε CdxdzC r2  

[ ] [ ]( ) .,, CrUC +φ|ρξ≤ εε  (4.5) 

Putting (4.5) into (4.4), we have 

( ) ( ) 
τ

Ω εεεε −φφ∂+φ∇+φ∂ρε
0

3333
2

dxdzdtvvu zxt  

[ ] [ ]( ) ( ).,, 2ε+φ|ρξ≤ εε orUC  (4.6) 

Moreover, we apply again the inequality of Cauchy as 

    
τ

Ω

τ

Ω

τ

Ω
ε

ε 











 φ∇+∇ε≤φ∇⋅∇ε
0 0

2
3

0

2
2

3
2

22
dxdzdtdxdzdt

v
dxdzdtv  

( ) 
τ

Ω ε ε+∇ε≤
0

22
2

.
2

odxdzdtv  (4.7) 
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Thus, the entropy relative inequality (3.33) becomes 

[ ] [ ]( ) ( ( ) ) 
τ

Ω εεεε
=
=εε ∇ε+φ−∇ρ+|φ|ρξ

0

2
2

0 2
:,, dxdzdtvuDurU H

rt
t  

[ ] [ ]( ) ( ( ) ( )) ( ) 
τ

Ω ε
ε

εε −φφ∂∂+φρ+φ|ρξ≤
0

,, dxdzdturrDdiv
r

rUC HHzzHxx  

( ) 
τ

Ω ε
ε ∇−φρ−

0
rdxdzdtu

r xH  

( ) ( ) 
τ

Ω εεε φ∂−φφ−ρ+
0

3 dxdzdtuv HzH  

( ) 
τ

Ω εε −φρε+
0

3 dxdzdtvg  

( ) ( ) 
τ

Ω εεεε −φφφ−ρ+
0

dxdzdtuuuk HHH  

( ) ( ) ( ) ( ) 
τ

Ω εεεε ε+





 ρ−φ⋅∇+φρ−+∂ρ−+

0

2 .odxdzdtUr
r

r
divr

r

r
r t (4.8) 

Step 2. We estimate the non-linear term 

( )( ) 
τ

Ω εεε φ∂−φφ−ρ
0

3 dxdzdtuv HzH  

of (4.8). This estimate is the major difficulty in our analysis. We have 

( ) ( ) 
τ

Ω εεε φ∂−φφ−ρ
0

3 dxdzdtuv HzH  

( ) 
τ

Ω εεε φ∂−φρ=
0

dxdzdtuv HzH  

( ) 
τ

Ω εε φ∂−φφρ−
0

3 .dxdzdtu HzH  (4.9) 
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In a similar way to [16, 19, 24], we decompose 

( )Ω εε φ∂−φφρ dxdzu HzH3  into three parts. We have 

( )Ω εε φ∂−φφρ dxdzdtu HzH3  

( )Ω εε






 <ρ<

φ∂−φφρχ=
ε

dxdzu HzH
r

r 3
2

2

 

( )Ω εε






 ≤ρ

φ∂−φφρχ+
ε

dxdzu HzHr 3
2

 

{ } ( )Ω εε≥ρ φ∂−φφρχ+ ε dxdzu HzHr 32  

( ) ( ) ( ) ( )ΩεΩΩε






 <ρ<

−φφ∂φ−ρχ≤
ε

632 3
2

2
LHLHzLr

r urC  

( ) ( ) ( ) ( )ΩεΩΩΩ






 ≤ρ

−φφ∂φχ+ ∞
ε

632 3
2

1
LHLHzLLr ur  

{ } ( )Ω εε≥ρ φ∂−φφρχ+ ε dxdzu HzHr 32  

( )  Ω






 ≤ρΩ ε







 <ρ< εε

χ+−ρχ≤ dxdzCdxdzrC r
r

r 1
2

2

2
2

 

{ } ( )Ω Ωεε≥ρ −φλ+ρχ+ ε
2

2 6
L

Hr udxdzC  

[ ] [ ]( )
( )

2
2,,

Ωεεε ∇−φ∇λ+φ|ρξ≤
L

xHx urUC  

( )
.2

2 Ωε∂−φ∂λ+
L

zHz u  (4.10) 

Note that in the last inequality, we have used Lemma 2.1. 

The crucial and difficult part of our proof is the analysis of the first term 

of the right-hand of (4.9). Using (3.10), we have 
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( )Ω εεε φ∂−φρ dxdzuv HzH  

( ) ( )( ) ( )Ω εεεεε φ∂−φρ+ρ−= dxdzuuzdivudiv HzHxx
~~  

( ) ( )Ω εεεεε φ∇∂−φρ−ρ= dxdzuuzu HxzH
~~  

( ) ( )Ω εεεεε −φ∇⋅φ∂ρ−ρ+ .~~ dxdzuuzu HxHz  (4.11) 

In the following, we estimate the terms on the right-hand side of (4.11). 

Firstly, we deal with ( )Ω εεε φ∇∂−φρ dxdzuu HxzH
~  in the following: 

( ) ( ) ( ) Ω εεεΩ εεε −φ⋅φ∇∂φ−ρ=φ∇∂−φρ dxdzuudxdzuu HHxzHHxzH
~~~  

( )Ω εε −φ⋅φ∇∂φρ+ dxdzuHHxzH
~

 

,21 II +=  (4.12) 

where 

( ) φ=φ
z

HH dstsx
0

.,,
~

 

Using Cauchy’s inequality, it follows that 

( ) ( )Ω εεε −φ⋅φ∇∂φ−ρ= dxdzuuI HHxzH
~~

1  

( ) 






 |φ−|ρ+|φ−|ρφ∇∂≤  Ω εεΩ εεΩ∞ dxdzudxdzu HHLHxz
22~~

2
1

 

( ) ( ) [ ] [ ]( ) Ω εεεε φ|ρξ+φ−ρ≤ ,,
2

0
rUdxdzdssuC

z

H  

( ) [ ] [ ]( ) Ω εεεε φ|ρξ+






 φ−ρ≤ ,,
1

0

2
rUdxdzdssuC H  
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( ) [ ] [ ]( ) Ω εεεε φ|ρξ+φ−ρ≤
1

0

2 ,, rUdxdzdssuC H  

( ) [ ] [ ]( )Ω εεεε φ|ρξ+φ−ρ≤ ,,2
rUdxdzsuC H  

[ ] [ ]( ).,, φ|ρξ≤ εε rUC  (4.13) 

Similar to the above analysis (4.10), we decompose the term 2I  into 

three parts 

( )Ω εε −φ⋅φ∇∂φρ= dxdzuI HHxzH
~

2  

( )Ω εε






 ≤ρ

−φ⋅φ∇∂φρχ=
ε

dxdzuHHxzHr
~

2

 

( )Ω εε






 <ρ<

−φ⋅φ∇∂φρχ+
ε

dxdzuHHxzH
r

r
~

2
2

 

{ } ( )Ω εε≥ρ −φ⋅φ∇∂φρχ+ ε dxdzuHHxzHr
~

2  

( ) ( ) ( ) ( )ΩεΩΩΩ






 ≤ρ

−φφ∇∂φχ≤ ∞
ε

632
~

1
2

LHLHxzHLLr ur  

( ) ( ) ( ) ( )ΩεΩΩε






 <ρ<

−φφ∇∂φ−ρχ+
ε

632
~

2
2

LHLHxzHL
r

r urC  

{ } ( ) ( ) ( )ΩεΩΩε≥ρ −φφ∇∂φρχ+ ε 632
~2

2 LHLHxzH
L

r u  

[ ] [ ]( ) ( )
( )

2
2,,

Ωεεε ∇−φ∇λ+φ|ρξ≤
L

xHx utrUC  

( )
.2

2 Ωε∂−φ∂λ+
L

zHz u  (4.14) 

Let us consider another non-linear term: 

( )Ω εεε −φ∇⋅φ∂ρ .~ dxdzuu HxHz  
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Then 

( )Ω εεε −φ∇⋅φ∂ρ dxdzuu HxHz
~  

( )Ω εεε<ρ −φ∇⋅φ∂ρχ= ε dxdzuu HxHzr
~

2  

{ } ( )Ω εεε≥ρ −φ∇⋅φ∂ρχ+ ε ,~
2 dxdzuu HxHzr  (4.15) 

where the first term on the right side of (4.15) gets split into two parts as 

( )Ω εεε<ρ −φ∇⋅φ∂ρχ ε dxdzuu HxHzr
~

2  

( ) ( )Ω εεε<ρ −φ∇⋅φ∂φ−ρχ= ε dxdzuu HxHzHr
~~

2  

( )Ω εε<ρ −φ∇⋅φ∂φρχ+ ε dxdzuHxHzHr
~

2  

( ) ( )Ω εεε<ρ −φ∇⋅φ∂φ−ρχ= ε dxdzuu HxHzHr
~~

2  

( )Ω εε






 <ρ<

−φ∇⋅φ∂φρχ+
ε

dxdzuHxHzH
r

r
~

2
2

 

( )Ω εε






 ≤ρ

−φ∇⋅φ∂φρχ+
ε

dxdzuHxHzHr
~

2

 

( ) ( ) ( ) ( )ΩεΩΩΩ






 ≤ρ

∇−φ∇φ∂φχ≤ ∞∞
ε

22
~

1
2

LxHxLHzHLLr ur  

( ) ( ) ( )ΩεΩΩε






 <ρ<

∇−φ∇φ∂φρχ+ ∞
ε

22
~

2
2

LxHxLHzHL
r

r u  

( ) ( )ΩΩε<ρ ∞∞ε φ∂ρχ+
LHzLr2  

( ) ( ) ( )ΩεΩεε ∇−φ∇φ−ρ× 22
~~

LxHxLH uu  

[ ] [ ]( ) ( )
( )

.,, 2
2 Ωεεε ∇−φ∇λ+φ|ρξ≤

L
xHx utrUC  (4.16) 
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The decomposition of remainder of (4.15) is identical to the above as: 

{ } ( )Ω εεε≥ρ −φ∇⋅φ∂ρχ ε dxdzuu HxHzr
~

2  

{ } ( ) ( )Ω εεε≥ρ −φ∇⋅φ∂φ−ρχ= ε dxdzuu HxHzHr
~~

2  

{ } ( )Ω εε≥ρ −φ∇⋅φ∂φρχ+ ε dxdzuHxHzHr
~

2  

.21 JJ +=  (4.17) 

We have, by using (3.18), 

{ } ( )Ω εε≥ρ −φ∇⋅φ∂φρχ= ε dxdzuJ HxHzHr
~

22  

{ } ( )Ω ε
α
ε≥ρ −φ∇⋅φ∂φρχ≤ ε dxdzuHxHzHr

~2
2  

{ } ( ) ( ) ( )ΩεΩΩ
α
ε≥ρ ∇−φ∇φ∂φρχ≤ ∞ε 22

~2
2 LxHxLHzHLr u  

{ } ( ) ( )
222

2 22 ΩεΩ
α
ε≥ρ ∇−φ∇λ+ρχ≤ ε L

xHx
L

r uC  

[ ] [ ]( ) ( )
( )

.,, 2
2 Ωεεε ∇−φ∇λ+φ|ρξ≤

L
xHx utrUC  (4.18) 

Due to Hölder and Cauchy inequalities, it follows that 

{ } ( ) ( )Ω εεε≥ρ −φ∇⋅φ∂φ−ρχ= ε dxdzuuJ HxHzHr
~~

21  

{ } ( ) { }( ) ( )Ωε≥ρΩε≥ρ φ−χρχ≤ εε 44
~~

22 LHrLr u  

( ) ( )ΩεΩ ∇−φ∇φ∂× ∞ 2LxHxLHz u  
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{ } ( ) { }( )
( ) ( )

22
2

2
2 244

~~
ΩεΩε≥ρΩε≥ρ ∇−φ∇λ+φ−χρχ≤ εε L

xHx
L

Hr
L

r uu  

{ } ( ) { }( ) ( )Ωε≥ρΩε≥ρ φ−χρχ≤ εε 34
~~

2
2

2 LHr
L

r u  

{ }( ) ( ) ( )
2

2 22
~~

ΩεΩε≥ρ ∇−φ∇λ+φ∇−∇χ× ε L
xHxLHr uu  

{ } ( ) { }( )
( ) ( )

22
2

4
2 234

~~~~
ΩεΩε≥ρΩε≥ρ φ∇−∇λ+φ−χρχ≤ εε L

Hxx
L

Hr
L

r uu  

( ) ( )
22

22
~~

ΩεΩε ∇−φ∇λ+φ∂−∂λ+
L

xHx
L

Hzz uu  

{ } ( ) { }( ) ( )Ωε≥ρΩε≥ρ φ−χρχ≤ εε 24
~~

2
4

2 LHr
L

r u  

{ }( ) ( ) ( )
2

2 21
~~~~

ΩεΩε≥ρ φ∇−∇λ+φ−χ× ε L
HxxHHr uu  

( ) ( )
22

22
~~

ΩεΩε ∇−φ∇λ+φ∂−∂λ+
L

xHx
L

Hzz uu  

{ } ( ) { }( )
( )

2
2

8
2 24

~~
Ωε≥ρΩε≥ρ φ−χρχ≤ εε L

Hr
L

r u  

{ }( )
( ) ( )

22
2 22

~~~~
ΩεΩε≥ρ φ∇−∇λ+φ−χλ+ ε L

Hxx
L

Hr uu  

( ) ( )
,

~~ 22
22 ΩεΩε ∇−φ∇λ+φ∂−∂λ+

L
xHx

L
Hzz uu  (4.19) 

where we have used Lemma 2.2: 

324
2

LLL
fff ∇≤    and   .123

2
HLL

fff ≤  

From (3.18), we have 

{ } ( )
[ ] [ ]( ) .,, 2

48

2

48
2 4 φ|ρξ≤







 ρ=ρχ εε≥ρ εΩε≥ρ 
ε

ε rUCdxdz
rL

r  (4.20) 
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Recalling (4.13), we have 

{ }( )
( )  ≥ρ εΩε≥ρ

ε
ε |φ−|=φ−χ

r
H

L
Hr dxdzuu

2

22
2

~~~~
2  

 ≥ρ εε
εε

|φ−|ρρ=
r

H dxdzu
2

2~~1
 

( )
[ ] [ ]( ).,,

1 φ|ρξ≤ εε
Ω∞

rU
r

L

 (4.21) 

As in (4.19), we have 

( ) ( )
,

~~ 22
22 ΩεΩε φ∇−∇≤φ∇−∇

L
Hxx

L
Hxx uu  

( ) ( )
.

~~ 22
22 ΩεΩε φ∂−∂≤φ∂−∂

L
Hzz

L
Hzz uu  (4.22) 

Combining the estimates (4.20), (4.21) and (4.22), we arrive at the 

conclusion that 

( ) [ ] [ ]( ) 
τ τ

εε φ|ρξ≤
0 0

1 ,, dtrUthCdtJ  

( )
τ

Ωε φ∇−∇λ+
0

2
2 dtu

L
Hxx  

( )
τ

Ωε φ∂−∂λ+
0

2 ,2 dtu
L

Hzz  (4.23) 

where ( ) ( ).,01
TLth ∈  

The estimate of remainder in (4.11) can be completed by the analogous 

method. Therefore, we can summarize what we have proved as follows: 
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[ ] [ ]( ) ( ( ) ) 
τ

Ω εεεε
τ=

=εε ∇ε+φ−∇ρ+|φ|ρξ
0

22
0 :,, dxdzdtvuDurU H

t
t  

( ) [ ] [ ]( ) ( )
τ

εε φ|ρξ≤
0

,, dttrUth  

(
( ) ( )

)
τ

ΩεΩε φ∂−∂+φ∇−∇λ+
0

22
22 dtuu

L
Hzz

L
Hxx  

( ( ) ( )) ( ) 
τ

Ω ε
ε −φφ∂∂+φρ+

0
dxdzdturrDdiv

r HHzzHxx  

( ) ( )  
τ

Ω εε
τ

Ω ε
ε −φρε+∇−φρ−

0
3

0
dxdzdtvgrdxdzdtu

r xH  

( ) ( ) 
τ

Ω εεεε −φφφ−ρ+
0

dxdzdtuuuk HHH  

( ) ( ) ( ) ( ) 
τ

Ω εεεε ε+





 ρ−φ⋅∇+φρ−+∂ρ−+

0

2 .odxdzdtUr
r

r
divr

r

r
r t   

(4.24) 

Then we deduce that 

[ ] [ ]( ) ( ( ) ( ) 
τ

Ω εεε
τ=

=εε φ−∇φ−ρ+|φ|ρξ
0

0 :,, HxHx
t
t uuDrU  

( ) )dxdzdtvu Hz
222

εε ∇ε+φ−∂+  

( ( ) ( )) ( ) 
τ

Ω ε−φφ∂∂+φ−
0

dxdzdturrDdiv HHzzHxx  

( ( ) ( )) 
τ

Ω εεε φ−∂⋅φ∂+φ−∇φρ+
0

: dxdzdtuuD HzHzHxHx  

( ) [ ] [ ]( ) ( )
τ

εε φ|ρξ≤
0

,, dttrUth  
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(
( ) ( )

)
τ

ΩεΩε φ∂−∂+φ∇−∇λ+
0

22
22 dtuu

L
Hzz

L
Hxx  

( ( ) ( )) ( ) 
τ

Ω ε
ε −φφ∂∂+φ






 −ρ+

0
1 dxdzdturrDdiv

r HHzzHxx  

( ) ( ) 
τ

Ω εεεε −φφφ−ρ+
0

dxdzdtuuuk HHH  

( ) 
τ

Ω εε −φρε+
0

3 dxdzdtvg  

( ) ( ) ( ) 
τ

Ω εεεε 





 φ−ρ⋅∇+φ−ρ+∂−ρ−

0
dxdzdtrU

r

r
divr

r

r
r t  

( ) ( ) 
τ

Ω ε
ε ε+∇−φρ−

0

2 .ordxdzdtu
r xH  (4.25) 

Step 3. Now, we estimate the remaining terms in the relative energy 

inequality (4.25). We have 

( ) ( ) 
τ

Ω εε
ε ∂−ρ+∇−φρ−

0 r

r
rru

r
t

xH  

( ) ( )dxdzdtrU
r

r
divr φ−ρ⋅∇+φ−ρ+ εεε  

( ) ( ) 
τ

Ω
ε

ε
εε φ+∂−ρ+∇ρ−∇φρ−=

0
rdivr

r

r
ru

r
r

r txxH  

dxdzdtv
r

r
u

r

r
r

r

r zx
εεεε ρ∂+ρ∇+φ∇−  

( )
 

τ

Ω εε
εε ρ∂+φ∇−∇φ−ρ−∇φρ−=

0
dxdzdtv

r

r
r

r

r
r

r

r
r

r
z

xH  

 
τ

Ω εε
εεε ρ∂+∂φρ−∇φρ−∇φρ−=

0
3 dxdzdtv

r

r
r

r
r

r
r

r
z

zxHxH  

( ) 
τ

Ω ε
ε =∂φ−ρ−=

0
3 ,0dxdzdtrv

r z  (4.26) 
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using the fact that 0=∇φ+φ+∂ rrdivrt  and the periodic boundary 

condition. Moreover, using the inequality of Cauchy, we get from (3.17) that 

( ) ( ) Ω Ω εεεεε −φρρε=−φερ dxdzvdxdzv 33  

 Ω Ω εεε −φρε+ρ≤ dxdzvdxdz
2

3

2

22
1

 

[ ] [ ]( ).,, φ|ρξ≤ εε rUC  (4.27) 

Furthermore, using again Cauchy’s inequality, we have 

( ) ( )Ω εεεε −φφφ−ρ dxdzuuuk HHH  

( )Ω εεε φφ−ρ≤ dxdzuuk HH
2

2
1

 

Ω εε −φρ+ dxdzuk H
2

2
1

 

( ) [ ] [ ]( )Ω εεεεε φ|ρξ+φφ−ρ≤ .,,
2
1 2

rUCdxdzuuk HH  (4.28) 

We decompose the term 

( ( ) ( )) ( )Ω ε
ε −φφ∂∂+φ







 −ρ
dxdzurrDdiv

r HHzzHxx1  

of (4.25) into two parts and we use the regularity of the strong solution to get  

( ) ( ( ) ( )) ( )Ω εε −φφ∂∂+φ−ρ dxdzdturrDdivr
r HHzzHxx
1

 

Ω εε −φ−ρ≤ dxdzurC Hess
 

Ω εε +=−φ−ρ+ .21 KKdxdzurC Hres
 (4.29) 
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According to (3.16) using the inequality of Cauchy, we have 

Ω εεε
ε

−φρ−ρ
ρ

≤ dxdzurCK Hess

1
1  

( )Ω εεε −φρ+−ρ≤ dxdzurC Hess
22  

[ ] [ ]( ).,, φ|ρξ≤ εε rUC  (4.30) 

We split 2K  as follows: 

 >ρ εε
ε

−φ−ρ=
r

H dxdzurCK
2

2  

 <ρ εε
ε

−φ−ρ+
r

H dxdzurC

2
1 ,  

where the first integral may be treated in the same way as 1K  and second 

integral is estimated with the help of the inequality of Poincaré as follows: 

 <ρ εε
ε

−φ−ρ
r

H dxdzurC

2
1  

Ω ε−φ≤ dxdzuC H  

 Ω Ω ε−φλ+≤ dxdzudxdzC Hres
221  

[ ] [ ]( )
( )

2
2,,

Ωεεε φ∇−∇λ+φ|ρξ≤
L

HxxurUC  

( )
.2

2 Ωε φ∂−∂λ+
L

Hzzu  (4.31) 
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Furthermore, as HDφ  is bounded, 

( ( ) ( )) ( )Ω ε−φφ∂∂+φ− dxdzurrDdiv HHzzHxx  

( ) ( )( )Ω εεε φ−∂⋅φ∂+φ−∇φρ+ dxdzuuD HzHzHxHx :  

( ) ( )Ω εε ∂−φ∂φ∂+−φ∇φ= dxdzururD zHzHzHxHx :  

( ) ( )( )Ω εεε φ−∂⋅φ∂+φ−∇φρ+ dxdzuuD HzHzHxHx :  

( ) ( )Ω εε φ−∇φ−ρ= dxdzuDr HH :  

( ) ( ) ( ) 






 φ−∇+−ρφ≤  Ω Ω εεΩ∞ dxdzudxdzrD HLH
22

2
1

 

[ ] [ ]( )
( )

2
2,,

Ωεεε φ∇−∇λ+φ|ρξ≤
L

HxxurUC  

( )
.2

2 Ωε φ∂−∂λ+
L

Hzzu  (4.32) 

Therefore, the relative entropy inequality can be written as 

[ ] [ ]( ) ( ) ( )
τ

εεεεεε 












∇ρε+φ−ρ+τφ|ρξ

0

22
1

222
1

22,, dtvDDuCrU
LL

H  

( ) [ ] [ ]( ) ( ) [ ] [ ]( ) ( )
τ

εεεεε φ|ρξ+φ|ρξ≤
0

0,,,, rUdttrUth  


τ

ε φ∇−∇λ+
0

2
2 dtu

L
H  

( ) ( ) 
τ

Ω εεε ε+φφ−ρ+
0

22 .
2

odxdzdtuu
k

HH  (4.33) 
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When ε  tends towards 0 in (4.33), we get 

[ ] [ ]( ) ( ) ( ) [ ] [ ]( ) ( )
τ

εεε
→ε

εε
→ε

φ|ρξ≤τφ|ρξ
000

.,,lim,,lim dttrUthCrU  (4.34) 

Then applying the Gronwall’s inequality, the proof of Theorem 3.1 is 

complete. 
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