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AN EFFICIENT SCHEME TO SOLVE FOURTH ORDER 

NONLINEAR TRIPLY SINGULAR FUNCTIONAL 

DIFFERENTIAL EQUATION 

 

 

 

Abstract 

We present a novel mathematical model based on the fourth            

order multi-singular nonlinear functional differential equations. This 

designed nonlinear functional model has singularities at three points, 
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making the model more complicated and harder in nature. The  

delayed and multi-prediction terms in the model clearly represent the 

functionality of the model. Three different variants of the novel 

nonlinear triply singular functional differential model have been 

presented and the numerical results of each variant are obtained by 

using a well-known spectral collocation technique. For the perfection 

and excellence of the designed mathematical nonlinear model, the 

obtained numerical results of each variant have been compared with 

the exact solutions. 

1. Introduction 

The study of functional differential (FD) equations have achieved a huge 

attention of researchers due to its variety of applications in biological, 

physical, engineering, social sciences, medical, finance and economics. 

Some of the wider range applications of FD equations are used in aggregate 

data problems [1], electrodynamics [2], simulation of population growth [3], 

HIV-1 infection model [4], tumor growth biological model [5], chemical 

kinetics system [6], infection hepatitis model of B-virus [7], gene regulations 

system [8] and viral infections system model [9]. Moreover, the singular 

differential equations are very important for the research community and 

play a vital role in the phenomena of astrophysics, spherical cloud of gas, 

science, engineering and technology. The singular study for the differential 

models is very interesting and experimental for researchers due to the 

singularity appearance at origin. Some wide-ranging applications of singular 

models are stellar structure model [10], thermal explosions system [11], 

model based on isothermal gas spheres [12], thermionic currents [13], 

oscillating magnetic regions [14], classical as well as quantum mechanics 

[15], isotropic continuous media [16], dusty fluid based models [17] and in 

the study of morphogenesis [18]. In recent few decades, the researcher’s 

community is interested to solve and produce the numerical outcomes of FD 

and singular FD models due to the strength and importance of these models. 

There are many numerical existing techniques that have been used to solve 

the second order singular FD equations; some of them are a numerical 
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approach explained by two mathematicians Kadalbajoo and Sharma [19, 20]. 

Mirzaee and Hoseini [21] used a collocation method with Fibonacci 

polynomials for solving singularly perturbed differential-difference 

equations. Sabir et al. [22] used differential transformation scheme for 

solving third-order nonlinear multi-singular functional differential equations. 

Xu and Jin [23] executed the boundary functions and fractional steps scheme 

for solving the model based on singular perturbed functional differential 

systems. Geng et al. [24] functioned a numerical scheme for presenting the 

solution of delay differential models using the singularly perturbation. The 

aim and task of the present study is to present the mathematical model 

named as fourth order nonlinear multi/triply-singular (MS) functional 

differential system (FDS), i.e., MS-FDS and present the numerical outcomes 

of the model by using a well-known numerical spectral collocation scheme. 

The general form of the novel model fourth order nonlinear MS-FDS is 

given as: 
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where ,iτ  4,3,2,1=i  show the positive parameter values. Moreover, ,iδ  

4,3,2,1=i  are the positive constant values. The above novel designed 

nonlinear FD model has triply singularities at zero, that makes the model 

more harder and complicated in nature. The above fourth order nonlinear 

model is obtained by extending the impressive work of Sabir et al. [22], 

which is about to exploit the second and third orders nonlinear model based 

on nonlinear singular FD equation. For the clarification of the designed 

novel model, three different problems have been discussed and numerically 

solved by applying a famous numerical spectral collocation scheme. 
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The prime factors of the recent study are briefly provided as: 

• The mathematical formulation of fourth order nonlinear triply singular 

FD model is developed effectively by extending the research work of Sabir 

et al. [22]. 

• The novel designed fourth order nonlinear triply singular FD model is 

solved numerically by using the spectral collocation scheme. 

• For the clarification of the novel designed nonlinear triply singular         

FD model, the obtained numerical outcomes from the spectral collocation 

scheme are compared with the exact solution of each problem. The matching 

of the obtained and exact results designates the excellence of the designed 

novel model. 

• Influence of the present scheme for solving the fourth order nonlinear 

triply singular FD model with higher accuracy and precision as well as 

outstanding reliability. 

• The above fourth order FD model represented by equation (1) stated 

below is not easy to design and solve due to triply singularity, higher 

nonlinearity and functional nature. The spectral collocation scheme is a great 

selection and better choice to solve numerically such types of complex 

models. 

Spectral methods [26-29], distinguished by their comprehensive and 

exponentially convergent characteristics, demonstrate superiority when 

compared to alternative numerical techniques. A key aspect common to all 

spectral methods is the representation of the solution to the problem as a 

finite series of various functions [30, 31]. Spectral methods encompass 

diverse techniques, including collocation [33], tau [34], Galerkin [35], and 

Petrov-Galerkin [36]. 

The remainder of the paper is supplied as follows: Section 2 provides the 

specifics of the developed methodology based on the spectral collocation 

scheme. Section 3 contains detailed numerical results. The last section 

includes a list of some closing thoughts and potential directions for future 

research. 
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2. Shifted Jacobi Collocation Method 

For an accurate solution, the weighted residual collocation approach         

is essential [37-40]. This paper presents a numerical approach to solve a 

nonlinear singular second order coupled functional differential model by 

means of the shifted Jacobi collocation method: 
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,0 L≤≤ x  (1) 

where ,iτ  4,3,2,1=i  show the positive parameter values. Moreover, ,iδ  

4,3,2,1=i  are the positive constant values. The solution of equation (1) is 

approximated as 
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The shifted Jacobi collocation method is used at 
( )σρχ ,

,, jKL
 nodes to 

approximate the independent variable. The values of the dependent variable 

are assumed to be Jacobi-Gauss-Lobatto nodes. We estimate the necessary 

derivatives of the first and second orders of the approximate solutions: 



A. H. Tedjani, Mahmoud M. Abdelwahab and M. A. Abdelkawy 32 

( ) ( ( )( ))
=

σρ ′τ+χς=τ+χ′
K

LK JZ

0

4
,
,4

j

jj  

( )( )
=

+σ+ρ
− τ+χ+σ+ρ+ς=

K

L
P

L
1

4
1,1

1,

1

j

jj
j

 

( ) ( ).,
,, 4

χ℘= σρ
τKL  (3) 

Also, we get 

( ) ( ( )( ))
=

σρ ″τ+χς=τ+χ′′
K

LK JZ

0

3
,
,3

j

jj  

( )
( )

( )( )
=

+σ+ρ
− τ+χ

+σ+ρ+Γ
+σ+ρ+Γς=

K

L
P

L
2

3
2,2

2,2
1

3

j

jj
j

j
 

( ) ( ),
,

,, 3
χΞ= σρ

τKL  (4) 

( ) ( ( )( ))
=

σρ ′″τ+χς=τ+χ′′′
K

LK JZ

0

2
,
,2

j

jj  

( )
( )

( )( )
=

+σ+ρ
− τ+χ

+σ+ρ+Γ
+σ+ρ+Γς=

K

L
P

L
3

2
3,3

3,3
1

4

j

jj
j

j
 

( ) ( ),
,

,, 2
χ= σρ

τKLϒ  (5) 

( )( ) ( ( )( ))( )
=

σρ τ−χς=τ−χ
K

LK
JZ

0

1
,
,1

j

iv
jj

iv
 

( )
( )

( )( )
=

+σ+ρ
− τ−χ

+σ+ρ+Γ
+σ+ρ+Γς=

K

L
P

L4

1
4,4

4,4 1

5

j
jj

j

j
 

( ) ( ).,
,, 1

χΩ= σρ
τKL  (6) 



An Efficient Scheme to Solve Fourth Order Nonlinear … 33 

Then, we can estimated the residual of (1) as 
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At the 3−K  points, the residual (7) is  
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For unknown coefficients ,jς  ,...,,0 K=j  the system of nonlinear 

algebraic equations derived from equations (8) and (9) can be solved. 

3. Results and Discussions 

Here, the numerical solutions of the three nonlinear examples based on 

the designed model MS-FDS are presented. The study of nonlinear equations 

is considered very significant and has many applications. 

3.1. Problem I 

The fourth order MS-FDS involving trigonometric functions is given by 

( )( ) ( )( ) ( )( )2
2

1
1

1
2

2

23

3

4

4

+χ
χχ

++χ
χχ+−χ

χ
ZZZ

d

d

d

d

d

d
 

( )( ) ( ) ( ),3
3
3

χ=χχ++χχχ
+ FZZ

d

d
 



A. H. Tedjani, Mahmoud M. Abdelwahab and M. A. Abdelkawy 34 

( ) ( ) ( ) ( )
.0,1,0,10 03

3

02

2

0 =|
χ

χ−=|
χ

χ=|χ
χ= =χ=χ=χ

d

d

d

d

d

d ZZZ
Z  

By using ( ) ( ),cos χ=χZ  the ( )χF  is selected to provide the precise 

answer. Table 1 contains a list of Problem I’s maximum absolute errors 

along with more precise results. Figure 1 displays the perfect matching 

between the approximate and exact solutions. Taking ,
2

1−=σ=ρ  we 

obtain the numerical solution of Problem I as: 

( ) 317217
15 1089346.25.01015757.11 xxx

−− ×−−×−=χZ  

584 1062497.20416666.0 xx
−×++  

7106 105714.200138888.0 xx
−×−−  

9118 1041827.6000024801.0 xx
−×−+  

1112107 1020075.11075609.2 xx
−− ×+×−  

1312129 1011339.71008911.2 xx
−− ×+×+  

.1042075.61049738.1 15131411
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−− ×+×−  (10) 

Table 1. Maximum absolute errors EM  of Problem I 
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10 
81008203.3 −×  81000505.3 −×  81088573.2 −×  31033498.3 −×  31015241.3 −×  

15 
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Figure 1. Curves of the exact and numerical solutions ( )KZZ and  of 

Problem I, where 
2

1−=σ=ρ  and .15=K  

3.2. Problem II 

Consider the nonlinear fourth order MS-FDS: 
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The formula ( ) 41 χ+χ+=χF  yields the precise answer. Table 2 

displays the maximum absolute errors of the method. Figure 2 shows           

the optimal matching of approximate and exact solutions achieved by the 

method. Absolute errors of Problem II, where 0=σ=ρ  and ,4=K  is 

shown in Figure 3. With ,0=σ=ρ  the numerical solution to Problem II is 

obtained: 

 ( ) .1022045.21 4216
4 xxx +×−+=χ −
Z  (11) 
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Table 2. Maximum absolute errors EM  of Problem II at 4=K  
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Figure 2. Curves of the exact and numerical solutions ( )KZZ and  of 

Problem II, where 0=σ=ρ  and .4=K  

3.3. Problem III 

Here, we test the fourth order MS-FDS: 
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The ( )χF  is chosen such that the exact solution is given by 

( ) .1 5χ+=χZ  Table 3 appears the accurate results for the maximum 

absolute errors EM  of our method. Also, we see the prefect matching of the 

approximate and exact solutions in Figure 4. Moreover, the absolute error of 

Problem II is sketched in Figure 5. Taking ,
2

1−=ρ  ,
2

1=σ  we obtain the 

numerical solution of Problem II as: 

( ) .1010862.31088178.81 5415316
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Table 3. Maximum absolute errors EM  of Problem III at 5=K  

( )σρ,  EM  ( )σρ,  EM  







−

2

1
,

2

1
 15

1077636.1
−×  






 −−

2

1
,

2

1
 15

1060902.2
−×  









2

1
,

2

1
 13

1008885.1
−×  ( )0,1  14

1033067.3
−×  

( )0,0  13
1008885.1

−×  







2

1
,0  14

1057572.2
−×  

 

Figure 3. Absolute errors of Problem II, where 0=σ=ρ  and .4=K  
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Figure 4. Curves of the exact and numerical solutions ( )KZZ and  of 

Problem III, where 
2

1
,

2

1 =σ−=ρ  and .5=K  

 

Figure 5. Absolute errors of Problem III, where ,
2

1−=ρ  
2

1=σ  and 

.5=K  

4. Conclusion 

The task to design a novel mathematical model based on the fourth order 

nonlinear triply singular FD equation along with its modeled equations was 

not easy. However, this model is presented successfully and solved by      

using the spectral collocation scheme numerically. For the perfection of the 
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designed model, the obtained numerical results using the spectral collocation 

scheme are compared with the exact solution for each problem. The basic 

traditional and conventional approaches fail to solve such a complicated and 

complex designed model because of triple singularity, higher nonlinearity 

and functional nature. The spectral collocation approach is a great technique 

and better selection to solve this complex, complicated, nonlinear and        

triply singular systems. Consequently, the implemented approach is not only 

effective but appropriate too. The spectral collocation scheme is a fast track 

convergent scheme, which can be implemented effectively to any type of 

functional, linear, homogeneous, nonlinear, non-homogeneous or multitype 

singularities. In future, system of second order, third order and fourth order 

multi-singular will be designed and can be verified by applying a proposed 

spectral collocation scheme. 
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