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Abstract 

This paper develops an ansatz method to derive the analytic solution 

of the neutron flux system under general initial conditions. Explicit 

closed series forms are established for the neutron flux and the 

delayed neutron concentration in terms of exponential functions. 

Existing results in the literature are recovered as special cases. 

1. Introduction 

In this paper, we consider the following system: 
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where ( )tx,φ  and ( )txC ,  stand for the neutron flux and the delayed 

neutron concentration, respectively. The parameters V, a
,  β, ν,  f

and 

λ in the system (1)-(2) were well defined/described in [1, 2]. The system is 

governed by the boundary conditions (BCs): 

( ) ( ) ,0,0,,0,0 >=φ=φ ttLt  (3) 

and the following initial conditions (ICs) in general form  

( ) ( ) ( ) ( ) ,0,0,,0, LxxgxCxfx <<==φ  (4) 

where ( )xf  and ( )xg  are given real functions. The model (1)-(4) is of great 

importance in both reactor design and theoretical nuclear physics. Obtaining 

accurate solution for the above system is essential for the purpose of safety 

considerations. In the literature, many authors [1-8] employed different 

techniques to solve the present system under specific constant ICs. These 

authors implemented ( )xf  and ( )xg  as constant functions, given by [1-8]: 
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( ) ( ) .0,, 00 Lxxgxf
f <<φλ

βν
=φ=


 (5) 

Although the authors [1-8] introduced different effective methods to 

solve the neutron diffusion system, such methods ignored the sense to obtain 

the solution in a direct manner. The preceding discussion formed the main 

purpose of the present work. Very recently, Al-Sharif et al. [9] developed 

ansatz method to solve the system (1)-(2) under the BCs (3) and the special 

case of the ICs (5). In [9], the authors showed that their ansatz method 

enjoyed many advantages over the previous analytical and numerical 

approaches [1-8]. As far as we know, the literature is rich of various methods 

to solve ordinary differential equations (ODEs) and partial differential 

equations (PDEs) such as the LT [10-18], differential transform method 

(DTM) [19, 20], the homotopy analysis method (HAM) [21, 22], the 

homotopy perturbation method (HPM) [23-27], and the Adomian 

decomposition method (ADM) [28-31]. However, most of the above 

methods need massive calculations to reach the desired accurate solution. 

The objective of this work is to introduce a simple procedure to obtain the 

solution of the system (1)-(2) under the BCs (3) and the general ICs (4). 

2. Analytic Approach 

Let us rewrite equations (1) and (2) as 
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Following Al-Sharif et al. [9], we assume ( )tx,φ  and ( )txC ,  in the 

forms: 
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where ( ) .12
L

nn
π+=γ  The coefficients ,nA  ,nB  ,nE  ,nε  and nδ  are 

unknowns, to be evaluated later. It may be important here to mention that  

the ansatz/assumption (9) automatically satisfies the BCs (3). Substituting 

equations (9) and (10) into equations (6) and (7) yields the following system 

(see [9] for details): 

( ) ,02 =λ−γ+ω−ε nnnn VEAVD  (11) 

( ) ,02 =λ−γ+ω−δ nnnn VFBVD  (12) 

( ) ,0=α−λ+ε nnn AE  (13) 

( ) .0=α−λ+δ nnn BF  (14) 

Applying the first IC in (3) implies  

 ( ) ( ) ( )
∞

=
=+γ

0

.sin

n

nnn xfBAx  (15) 

Thus as in [18], 

 ( ) ( ) γ=+
L

nnn dxxxf
L

BA
0

,sin
2

 (16) 

or  

 ,fnn IBA =+  (17) 
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where fI  is defined by  

 ( ) ( ) γ=
L

nf dxxxf
L

I
0

.sin
2

 (18) 

Similarly, the second IC in (3) leads to 

 ( ) ( ) ( ),sin

0


∞

=
=+γ

n

nnn xgFEx  (19) 

and, hence on account of [18],  

 ,gnn IFE =+  (20) 

where gI  is defined by 

 ( ) ( ) γ=
L

ng dxxxg
L

I
0

.sin
2

 (21) 

Accordingly, we have the algebraic system:  

 ( ) ,02 =λ−γ+ω−ε nnnn VEAVD  (22) 

( ) ,02 =λ−γ+ω−δ nnnn VFBVD  (23) 

( ) ,0=α−λ+ε nnn AE  (24) 

( ) ,0=α−λ+δ nnn BF  (25) 

,fnn IBA =+  (26) 

.gnn IFE =+  (27) 

This system must be solved in order to determine the unknowns A, B, E, F, 

nε  and .nδ  In [9], the authors showed that nε  and nδ  can be obtained as  
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where 

 ( )., 22
nnnn VDVbVDa γ−α+ωλ=γ−λ−ω=  (29) 

From (22) and (23), we have 
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where  

 .2
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Substituting (30) into (26), we get 

 .f
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n
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VFVE =Ω−δ

λ+Ω−ε
λ

 (32) 

On solving (32) and (27) for nE  and simplifying, we obtain 

( ) [( ) ]
( ) ., nn

nn

gfnnnn
n V

VII
E ε≠δε−δλ

λ−Ω−δΩ−ε
=  (33) 

We can prove that ( ) ( ) Vnnnn αλ−=Ω−δΩ−ε  (see Appendix in [9]). 

Therefore, equation (33) becomes 
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Employing (34) in (27), 
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., nn
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n

II
F ε≠δδ−ε

δ−Ω+α−
=  (35) 

From (34) and (35), it is obvious that the sum nn FE +  equals gI  which is 

equivalent to equation (27). Inserting (34) and (35) into equation (30), we 

obtain nA  and nB  as 
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and  
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=  (37) 

respectively. From the equality ( ) ( ) ,Vnnnn αλ−=Ω−δΩ−ε  we have 

( )nnnn V Ω−δαλ−=Ω−ε  and hence can get nA  in the form: 
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IVI
A δ−ε
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=  (38) 

Similarly, nB  takes the form 
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.
nn

fnng
n
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It may be noted from equations (38) and (39) that fnn IBA =+  which is 

equivalent to equation (26). 

2.1. The analytic solution 

From equation (9), we obtain ( )tx,φ  as 
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Also, from equation (10), we obtain ( )txC ,  as 
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where 
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3. Verification at Special Case 

In Section 2, the coefficients ,nA  ,nB  nE  and nF  are obtained in terms 

of fI  and gI  as 
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The main aim of this section is to show that the corresponding 

coefficients in [9] can be recovered as a special case of the current ones. In 

[9], the authors considered the ICs (5) as 

( ) ( ) ( ) ( ) ,0,,,0, 00 LxhxgtxCxfx <<φ==φ==φ  (46) 

where h is defined by 

 .λ
α=λ

βν
=
 f

h  (47) 

In this case, we can use equation (18) to calculate fI  as 
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From the definition ( ) ,12
L

nn
π+=γ  we can find that ( ) ,1cos −=γ Ln  .n∀  

Hence, equation (48) reads 
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4. Conclusion 

In this paper, a general ansatz method was developed to determine the 

analytic solution of the neutron flux system under general initial conditions. 

The neutron flux and the delayed neutron concentration were obtained in 

explicit forms. The proposed approach is straightforward and also simpler         

in contrast to other methods in the literature. Moreover, the results in the 

literature were recovered as a special case of the current ones. Furthermore, 

the developed approach may deserve a possible extension in future to 

include complex systems related to neutron diffusion. 
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