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Abstract

Exact solutions of fractional evolution equations in the sense of
Caputo-Hadamard with Cauchy and boundary conditions are obtained

by employing the SBA method.
1. Introduction

Mathematical modeling using fractional calculations is in use because
integer derivative equations are not always well suited to explain certain
phenomena efficiently. However, due to the non-local structure of these
operators, linked to its memory effect, fractional derivation is a high storage
of information. As a result, its use in the construction of mathematical
models for a given phenomenon comes at a high cost in terms of numerical
resolution. When using a discretization algorithm for non-integer derivatives,
this structure must be taken into account, resulting in high algorithm
complexity. Many classical numerical methods also encounter difficulties
due to the complexity of their non-linear parts. Numerous attempts to solve
these equations can be found in the literature. For example, in [12], the
HPM, HPTM methods have been used, and the FNDM, NHPM methods in
[17]. But most of these methods besides being complex only give an
approximate solution to the problem. These can only solve Cauchy-type
problems. These limitations motivate our interest in the developing a new

method that takes these shortcomings into account.

In this article, we propose an iterative method known as the Some Blaise
Abbo (SBA) method, capable of taking into account the complex structure

of fractional derivation which easily handles non-linearity taking boundary
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conditions into account. Results obtained using the SBA method with
Cauchy conditions can be found in the literature [2, 8, 9, 16].

2. Preliminaries
Most of the definitions and properties we employ for our work can be
found in [1, 10, 13, 14, 20, 22, 24].
2.1. Fractional integral in Hadamard’s sense

Definition 2.1. Let ¢, POR, 0<a<t<b<+ow and o[ R™. Then

the fractional integral in Hadamard’s sense of order O for a function

f OLa, b] is defined by

1 ¢t (19! dt
HI3r() = Wja[ln(?ﬂ fO,  fora>0, t Ofa; b]. 2.1)
f(T), fora =0,

2.2. Fractional derivation in the sense of Caputo-Hadamard
Definition 2.2. Let a, bR, 0<a<r<b<+co and a OR" with

n=[a]+1 and &= t%, AC[a; b] be a space of absolutely continuous

functions and ACE ={f :[a;b] - R; f, 8" ' O AC[a; b]}. Then the
fractional derivative in the Caputo-Hadamard sense of order o for a

function f O ACg|a, b] is defined by

DG (1)
H T8 £(t) = ﬁj; [ln(%ﬂn_a _l(r%jn f(r)%, fora N,
=:8"f(t), fora ON,

f(2), for a =0.
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Proposition 2.1. For a, b[OR, 0<a <t <b <+ and o ] R* with

n=[a]+1. For f O Ll[a; b],

g PTG f() = £ ), (2.2)
s j

Ha CHpO r(1) = £(r) - (?Sf—_z(") Eal (2.3)
Swnoy

3. Description and Convergence of the SBA Method

Here we use an improved version of the Some Blaise Abbo (SBA)
method. The peculiarity of this version is that it simplifies the classical

approach and sets a sufficient condition for the convergence of the series
+o00

ul = Z u},, the approximate solution of the problem at the first iteration.
n=0

3.1. Description of the SBA method applied to fractional Caputo-
Hadamard equations with Cauchy and boundary conditions

In this subsection, we show how to generalize the improved SBA
method to find the solution of fractional equations with initial and/or
boundary conditions. We describe this by taking a PDE in the sense of
Caputo-Hadamard with the following initial and boundary conditions:

DY = L(u) + N(u),

(37u)(a, x) = £(x), j=0,1,2, .o m -1,
u(r, 1) = g(t),

u(t, 12) = h(t),

L<x<l,0<a<t<T, (3.1)

where u = u(t, x), m=[a]+1, u, = Ou

Ox

N are linear and non-linear operators, respectively, such that L(u) = L;(u)

, in a suitable space, and L and
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+ Ly (uy, thyys Uyyys o) With L, # 0. In this description, we take the case
where Lu = u,. The technique generalizes to Lu defined above. Based on

the above assumptions, the model (3.1) takes the form:

‘D = uy + N(u),

(3u)(a, x) = fi(x), j=0,1,2, .y m—1,
u(t, ) = g(t),

u(t, ) = h(t),

ZISXS12,0<61<Z<T,

u=ut,x), m=[a]+1, u, = g—z (3.2)

Integrating the first equality of (3.2) between /; and /,, we obtain

e 1) = ule. ) + | ;2 N(ulr. s))ds - | ;2 CDYu(t, 5)ds =0.  (33)
1 1

Similarly, by applying Hadamard’s fractional integral HT% of order o
to the first equality of (3.2), we obtain

~ f(x)
il

m—1
u(t, x) - Z
j=0

[m(éﬂ] — Z%u,) - 7% (Nu) = 0. (3.4)
Equations (3.3) and (3.4) give

ult, x) = "fm[m(éﬂ’ vult, ) - ule, 1)+ T%u,)

l Iy |
+ j 12 N(ur, 5))ds - j 12 <DYu(r, 5)ds + T%(Nu).
1 1



6 G. KABORE, B. Abbo, W. SOME, O. SO and B. SOME

Setting

Ru=7%u,),

_ b o I o (3.5)
Nu = _Il Diult, s)ds + L N(u(z, s))ds + Z°%(Nu),
1 1

we obtain

u(t, x) = mz_:l fj(x) [ln(éﬂj +u(t, I,) —u(t, ) + Ru + Nu. (3.6)

1
= 7

Applying the method of successive approximations, we obtain

m—1 i
RIS ) [m&ﬂ] s ik (1, ) =k 1) + Ra* + Nkl (3.7)

Al
= 7

We look for uk as a series of the form

W = . (3.8)
By (3.8) and (3.7), we obtain the following SBA algorithm:

4 =S -y

k _ k
Uy+] = Ru,,.

(3.9)

The above algorithm consists in first calculating the terms of the
+0o0
sequence (u,’f)n for fixed k =1, and deduce u* if the series Zu,’i
n=0
converges.

So for the first iteration, £k =1, we choose uO such that NuO =0.

+0o
Calculating the terms of the sequence (u}l)n, we deduce u' = 2”111 Then
n=0
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we evaluate Nu'. If Nu' = 0, then u' s the general solution of the
problem. Otherwise, if possible, we replace the initial problem by an

equivalent transformation, with the new non-linear term N, so that by
repeating the algorithm, we can obtain Nu' =o0.
3.2. Convergence of the SBA method

The proof of convergence can be found in our previous article [9].
4. Examples

Example 4.1. Consider the following nonlinear fractional evolution

equation in the Caputo-Hadamard sense:

2
CHDGM :a_u+l(&] .

ox 2| gy2
u(0, x) = x2,
4.1
u(t, 0) =0,
n()]
=L \dJ]_

u(t, 1)

Ma+1)°

0sx<l; O0<a<t<b<+wo; 0<asl; u=ult,x); ulCh(a;b]);

CH DY) the derivative in the Caputo-Hadamard sense; 7/ 7% (I the integral

in the Hadamard sense.

From the above description, we obtain the following SBA algorithm:

{u(l)( = uk(O, x) + uk(t, 1) - uk(t, 0) + Nu* 1, 42)

kK _ k
Up+1 = Ruy
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with
k
Ruk =Hl'a[—au ],
Ox

1 2 k-1 2
NuFt = —J. (FD%* (1, 5))ds +%HIG(—6 u (r x)j

0 Py
1( A2, k=1 2
+1J‘ ou 1.5) 2(t, 5) ds.
2Jo Os

First iteration, k = 1.

The algorithm (4.2) for k =1 taking u® such that Nu® =0 gives:

¢ a
L [ln(zﬂ
N CED
a
(]
[ a
RN T 4.3)
20
()]
“2 =2 e +1)
u, =0,n=3

So,
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Evaluating Nul, we have

! :_J'I(HDGMI( lHIa(azu (r, X)J 2]‘ (az ul(r, S)}

0 x>

We deduce the solution to the problem as:

ool LG

Mo +1) ra +1) -

4.4)

Example 4.2. Consider the following nonlinear fractional evolution

equation in the Caputo-Hadamard sense:

ulr, 0) = - [1(1)}1 ) W) 45)

0<x<1, 0<a<t<b<+wo; 0<ac<l u=u(t,x); uDCé([a;b]);
CH Dg (D! the derivative in the Caputo-Hadamard sense; Hr 2 (D) the integral

in the Hadamard sense.
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Proceeding as above, we obtain the following SBA algorithm:

{ué‘ = uk(O, x) + uk(t, 1) - uk(t, 0) + NukT, 4.6)
u1]1(+l = Run
with
k
Ru* ZHIG(—au j,
Ox
k-1 Vo k-1 1 a o 9% 72, x) ’
Nu =—I( DY (e, s))ds + T TV —2 2
0 4 ox?
1( A2, k=1 3
+1J. w1, 5) (t. 5) ds.
4Jo 052
First iteration, £ = 1.
The algorithm (4.6) for k =1 taking u® such that Nu® =0, is as
follows:
a
1 ()
up :x(l—x)—2m,
a
LG
U T 47
2a
()
uh = - a
2 2o +1)
u,l, =0,n=23
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So,

5] o W 1

1

=
—~
—

|

=
~

|
(V)

11
r 1
p—
=
N
Q |~
N
[y | S
Q
|
\9]
1
[
=
N\
Q |~
—
| I—
[}
Q

x(1 = x)+ (-1 -2x)

Evaluating Nul, we have

We deduce the solution to the problem as:

PN Lo

Fa+1) “TRa+1)" (4.8)

5. Conclusion

The results obtained in this article show that the SBA method is suitable
for the numerical resolution of fractional Caputo-Hadamard-type evolutions
with Cauchy and boundary conditions. The peculiarity of this method is that
it does not discretize like classical numerical methods, and consequently the

physical properties of the modeled phenomena are preserved. What is more,
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it uses an algorithm that bypasses the computation of Adomian polynomials

and efficiently handles the non-linear part involving these equations.
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