_3"' "'\ Advances in Differential Equations and Control Processes
. © 2023 Pushpa Publishing House, Prayagraj, India
q' L http://www.pphmj.com

. " http://dx.doi.ore/10.17654/0974324323023
Volume 30, Number 4, 2023, Pages 413-429 P-ISSN: 0974-3243

AN INTEGRO-DIFFERENTIAL EQUATION IN
COMPOUND POISSON RISK MODEL WITH VARIABLE
THRESHOLD DIVIDEND PAYMENT STRATEGY TO
SHAREHOLDERS AND TAIL DEPENDENCE BETWEEN
CLAIMS AMOUNTS AND INTER-CLAIM TIME

Kiswendsida Mahamoudou OUEDRAOGO!,

Delwendé Abdoul-Kabir KAFANDO! ",

Francois Xavier OUEDRAOGQ!, Lassané SAWADOGO!
and Pierre Clovis NITIEMA?

'Université Joseph KI ZERBO

03 BP 7021 Ouagadougou
Burkina Faso

e-mail: mahouedra20(@gmail.com

fxavierouedraogo@gmail.com

Received: October 6, 2023; Accepted: November 21, 2023

2020 Mathematics Subject Classification: 91B05, 62HO0S.

Keywords and phrases: Gerber-Shiu function, copula, integro-differential equation, ruin
probability.

*Corresponding author

How to cite this article: Kiswendsida Mahamoudou OUEDRAOGO, Delwendé Abdoul-Kabir
KAFANDO, Francois Xavier OUEDRAOGO, Lassané SAWADOGO and Pierre Clovis
NITIEMA, An integro-differential equation in compound Poisson risk model with variable
threshold dividend payment strategy to shareholders and tail dependence between claims
amounts and inter-claim time, Advances in Differential Equations and Control Processes
30(4) (2023), 413-429. http://dx.doi.org/10.17654/0974324323023

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Published Online: December 2, 2023




414 Kiswendsida Mahamoudou OUEDRAOGO et al.

2Université Thomas SANKARA
04 BP 8938 Ouagadougou 04, Burkina Faso

e-mail: pnitiema(@gmail.com

3Université Ouaga 3S
06 BP 10347 Ouagadougou 06, Burkina Faso
e-mail: kafandokabir92(@gmail.com

Abstract

This article is an extension of the compound Poisson risk model with
variable threshold dividend payment strategy to sharcholders and a
dependence between claims amounts and inter-claim times via
Spearman copula. We find the integro-differential equation associated
to this risk model.

1. Introduction

In the modeling of financial risks, especially in insurance, we have long
assumed independence between the random variables involved in the risk
model [12, 18, 23]. However, in certain practical contexts, this assumption is
inadequate and too restrictive. For instance, in flood insurance, the
occurrence of multiple floods in a short period can lead to significant
damages and claim amounts due to the accumulation of water. In earthquake
insurance, it is the opposite, as in a high-risk area, the longer the time
between two earthquakes, the more significant the second earthquake due to

the accumulation of energy.

To address this limitation, many works integrate dependence between
certain random variables, particularly claim amounts and inter-claim times,
into the risk model, using Farlie-Gumbel-Morgenstern copula [5, 7, 10, 11,
13, 19, 20, 22]. Although this copula is commonly used in the literature, it

has certain limitations and cannot model tail dependencies [2-4].

To overcome the insufficiency of the Farlie-Gumbel-Morgenstern

copula, while taking into account the reality of insurance companies, we
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consider in this work a compound Poisson risk model with dependence
between claim amounts and inter-claim times via Spearman copula and a
variable threshold dividend payment strategy to shareholders of equation
by = at+by, where 0 <u <by; 0 <a<c.

The risk model with affine threshold dividend payment strategy was
proposed to compensate the non-optimality of the risk model with constant
threshold dividend payment strategy [6]. In this model, when the surplus

process reaches the variable threshold barrier by, the premium are paid to
shareholders at a constant rate ¢ — a. Denoting by Uy(t) the surplus process
in the presence of the threshold dividend barrier by (with Up(0) = u), the

model follows the following dynamics:

cdt — dS(t)  if Up(t) < by

dU (1) = .
V(1) {adt—ds(t) if Up (1) = by, (-

where

e Uy (t) is the surplus process in the presence of the dividend barrier of

threshold by (the initial surplus U,(0) = u, where 0 < u < b).

e C is a constant rate of premium collected by the insurer per unit of time,
0<ac<c

e S(t)= ZiN:(lt)Xi is the aggregated loss process with a compound
Poisson distribution, where

# {N(t), t > 0} is the total number of recorded claims up to time t,
following a Poisson process with intensity A > 0. (Note that S(t) =0 if
N(t) = 0).

* {Xj,1>1} is a sequence of random variables representing the

individual claim amount with a common density function f and cumulative
distribution function F assumed to follow an exponential distribution with
parameter f3.
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e The inter-claim times {Vj,i>1} form a sequence of random

variables following an exponential distribution with the parameter A, the
probability density function k(t) = re™™. and the cumulative distribution
K(t)=1-e™.

The purpose of this work is to determine the integro-differential equation
of Gerber-Shiu function in the risk model defined by equation (1.1). To
achieve this, the rest of the article is organized as follows: In Section 2, we
present the preliminaries related to the risk model defined by equation (1.1).
In Section 3, we introduce the tail dependence structure. In Section 4, we
determine the integro-differential equation satisfied by the Gerber-Shiu
function in the risk model defined by equation (1.1).

2. Preliminaries

2.1. Instant of ruin
The instant of ruin Ty, of the insurance company is defined by
Tp = inf{t > 0, U(t) < 0}. (2.1)
When the probability of ruin is always zero, by convention, we denote
T, = oo, and in this case
ut)=0, vt>o0.
2.2. Expected discounted penalty function of Gerber-Shiu

The expected discounted penalty function of Gerber-Shiu, first appeared
in the work of Gerber and Shiu [12]. Nowadays, this function is of significant
interest in research.

Its analysis remains a central question both in insurance and finance, as it
is a valuable tool not only for studying the probability of ruin but also
calculating retirement and reinsurance premiums, option pricing, and more.

It is defined by

oo(u) = Efe WU ) [Up(To) DIz < ) U(O) =u).  22)
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where

e Ty, is the instant of ruin defined by equation (2.1).

e T, is the instant just before ruin.
¢ J is an interest force.

e The penalty function W(X, y) is a positive function of the surplus just

before ruin, Uy (Ty ) and the deficit at ruin |Uy(Ty) |, VX, y = 0.

e 1, is an indicator function, which equals 1 if event 15 occurs and 0

otherwise.
3. Model of Dependence Based on Spearman Copula

Copulas introduced by Abe Sklar in 1998, are an innovative and relevant
tool for introducing dependence between multiple random variables. Given
the marginal distribution functions of several random variables, copulas
allow us to establish their joint distribution function. Nowadays, they are
fundamental in modeling multivariate distributions in finance, insurance and
hydrology. Key references on copulas theory include Joe [8] and Nelsen [9].

In this article, the structure of dependence is ensured by the Spearman

copulas. It is defined for all (u, v) € [0, 1]* and a e [0, 1] as follow:

Ca(u, V) = (l—OL)C|(U, V)+OLCM (U, V): (3.1
where Cj(u,v)=uv; Cp(u,v)=min(u,v) and o is a dependency
parameter.

The Spearman copulas allow for the introduction of positive dependence
as well as tail dependencies in many situations. It also includes independence
when o = 0. Using formula (3.1), the random vectors of claim amounts and

inter-claim times (X, V) possess the joint distribution function given by

Fx,v (% 1) = Co(Fx (), Ry (1) = (1 - a)Fy (x, ) + aFy (x, 1), (3.2)
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where Fy and R, are the marginal distributions of the random variables X
and V, respectively.

In the risk model defined by equation (1.1), the Gerber Shiu function
dp(u) takes the following form (see [2], [3] or [4]):

dp(U) = (1= a)(Ip 1 (U) + 1p,2 (W) + o, 3(u) + 1, 4 (1)), (33)

where

© e U+ct

o loa(= [ [ e p(u + et - x)dF (x, 1),

el o(u)= I: J:ict e w(u + ct, x —u — ct)dF (x, t),
o e u+ct

ol = e plu et - x)dFy (x ),

o0 o0 —Bt
o Iy 4(u) = .[o Ju+cte w(u + ct, x —u —ct)dFy (X, t).

4. Integro-differential Equation Satisfied by the
Gerber-Shiu Function ¢p(u)

To obtain integro-differential equation satisfied by Gerber-Shiu function

dp(u) in the risk model defined by equation (1.1), we follow the approach

described below:

o The first claim occurs at time t before the surplus process reaches the

. . by —u .
barrier by (1.6., t <o j Its amount X satisfies X < U + Ct.

o The first claim occurs at time t before the surplus process reaches the

. . by —u .
barrier by (1.6., t <o a j Its amount X satisfies X > u + ct.
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e The first claim occurs at time t after the surplus process reaches the

. . by —u .
barrier by (1.6., t>2 3 ) Its amount X satisfies X < at + b.

e The first claim occurs at time t after the surplus process reaches the
bO —u

barrier by (i.e., t> ) Its amount X satisfies X > at + by.

By conditioning on the time and the amount of the first claim and

considering the different scenarios mentioned above, the integrals |b,1(U)

and Ip ,(u) in relation (3.3) become:

bo=U et
“ lpa(@ = [ e [ e N p(u+ et - x)dF (x, 1)
0 at+by
+ J.bo—u Jo e %y (at + by — X)dF (x, t).
c—a
bo-u
el (u)y=| ¢2 e w(u + ct, x — u — ct)dF (x, t)
b,2 0 u+ct ’ 1%

+ I;—U Ioo e Stw(at + by, x — at — by)dF; (x, t).
c-a at+by

By defining Iy (u) = Ip j(u) + Ip 2(u), we have
b= et st
lp(u) = Ioc‘a .[o e “dp(u+ct —x)dF(x, t)

0 at+by _
+ IMIO e gy (at + by — x)dFy (x, )

c—a
b()—U o
+ j c-a I e w(u + ct, x —u — ct)dFy (x, t)
0 u-+ct
+ Ibo—u J. e w(at + by, x — at — by )dF| (x, t),
at+by

c—a
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by—u
c-a

0

1p(u) = xj

J.:+ct e_(5+x)t¢b(u + ¢t — x) fy (x)dxdt

© at+b,
+ kj u Io 0 e 3+t (at + by — x) fy (x)dxdt

c—a

b()—U -
+ xj' c-a j e (MU + ct, x — u — ct) fy (x)dxdt
0 u+ct

+ XI;O_U on e+ Mly(at + by, x — at — by) fy (x)dxdt.
(?—_a at+bg

4.1)
To simplify the notation of equation (4.1), we introduce
o0
o(u) = I w(u, x —u) f(x)dx;
u
u
op(u) = .[0 dp(u —x) F(X)dx + &(u). 4.2)
Equation (4.1) becomes
bp—u
1p(u) = A j o e (Mg (u + ct)dt
#2f oy —u € O oy (at + by)dt. 4.3)
c—-a
The relation (4.3) can be put in the form:
Ip(u) = XI: e_(S”‘)tcb((u +ct) A (at + by))dt, 4.4)

where U A V = min(u, V).

Now, we determine the integrals Ip, 3(u) and I, 4(u) in relation (3.3).
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The support of copula Cyy is D = {(u, v) € [0, 1] : u = v}.

d%Cy

On the domain [0, 1]2\D, =0 and on D, Cy, follows a uniform
distribution.

Since the structure of dependence between the claim amounts and inter-

claim times is described by the copula Cy;, these are monotonous and there
almost surely exists an increasing function I, such that X = 1(V) (see Nelsen

[9, P. 27]). We deduce that (see [2], [3] or [4]):
A
I(t) = +t. .
(t) B t 4.5)

The joint distribution Fy y (X, t) of the random vector (X,V) is

singular, and its support is the domain
D" ={(x 1) : Fx (x) = Ry ()} = {(x, ) : x = I(t);.

Its distribution is G(t) = Fy (I(t), t) = 1 - e on the domain

D' = {(x, t): x = %t}

The integral 1}, 3(u) becomes

b()—U
c—a u+ct _st
. Io e “op(u+ct —x)dRy (x; t)

|b,3(U)=I

0 at+b0 _
+ I - Io e %y (at + by — X)dFy (x; 1)
c—-a

- IK ey (U + ct — X)dG(t)

+ J J e %y (at + by — x)dG(t), (4.6)
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where
K={teR+:O£tSb0_uandOSXzﬁtSu+Ct}
c—a B
={teR+:OStSbO_Uand(&—cjtﬁu}
c—a B

:{teR’L:OStSk?_: andteR+}.

Because € > 2 and U > 0 (solvency condition: E[cV — X]> 0) and

p
u=>0.
Therefore,
.bp—u
K_[O, C_a}, (47
J={teR+:t2b0_uandx=&tﬁat+b0}
c-a B
={teR+:th0—_uand(——aj }
cC—a
A n A
E—a<0;u>0andt20:> teR" et E_ t<byr=R,.
Thus
J = bO_u-+oo (4.8)
|l c-a’ ' '

Using relations (4.7) and (4.8), the integral | 3(u) can be written as:

By-u
lp.3(U) = joc—a e Oy (U + ct — x)dG(t)

+ o —u € 2y (at + by — X)dG(1)

c—-a
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by—u
- xjﬁe‘(é"”)% (u +et— &t)dt
0 b B

.y J ,:;_u e‘(f’”)‘q)b(at + 1y — %t)dt. (4.9)

c—a

By analogy, we have

b()—U
——— 0
lp,4(u) = Ioc—a .[u+ct e MW +ct, x—u-— ct)Fy (x; 1)

a0 o0
+ Ibo—u j e w(at + by, X — at — by)Fy (x; t)
—a at+hy

= J.K, e w(u + ct, X — u — ct)dG(t)

; J.J,e_&w(at by, X —at — by)dG(t), (4.10)
where
K’={te]R+:tS by —u and0£X=&t2u+Ct}
c—a B

:{teR’L:tSbo_u and(%—c)tzu}

or{teR+ and(%—c)tku}zg.

Therefore,

K' =g, (4.11)

J’={teR+:t2b0_uandx:&tzatwtbo}
c—a B

:{teRJ’:tZio_; and(%—a)thO}-
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{t e R and (%—a)t > bo} =,

= (4.12)

Since

we have

By injecting relations (4.11) and (4.12) into (4.10), we obtain
Ib,4(u) = 0. (4.13)

Assume

15 (u) = Tp 3(u) + 1y 4(u).

Then using the relations (4.9) and (4.13), we have

Bo-u
Iy (u) = kJOC‘a e_(s””)tq)b(u +ct - %tjdt

© \
+ j Byu @ (8+7“)t¢b(at +1y - Bt)dt. (4.14)

c-a

The relation (4.14) can be put in the form:

X (u) = xj; e‘(M)‘q)b((u +ct - %t) A (at +1y — %tht. (4.15)

From the relations (3.3), (4.4) and (4.15), the Gerber-Shiu function
¢p(u) can be put into the form:

op(U) = A(1 - ) J’ : e~ ®+Mls (U + ct) A (at + by))dt

+ axj e (B+M)ty ((u +ct— %tj A (at +by - %tD dt.  (4.16)
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Setting S=u+Ct; S=uU+cCt— &t in the relation (4.16), we have

p

O+A

p() = (1 - a)j:’e‘(T)“‘”)ab(s A (a3 vy ))os

S+A - —
» P (s-u) 2
n B?;B_Xx . e (Bc—k) (I)b S A B BC —%\, (S - U) + bO ds.

(4.17)

Theorem 4.1. The Gerber-Shiu function ¢, (u) satisfies the following

integro-differential equation:

(o085 o

_ (Wf’ e, A a)@jcb(u)

c(Bc— 1)
apr(Bc(d + 1) —2) o
+[ c(Bc - 1)? - BC—X®]¢b(u)’ (4.18)

where D and ¢ are the differentiation and identity operators, respectively.

Proof. Differentiating the function ¢p(u) in the relation (4.17) with

respect to U, we have

(6+k

T)(s_u)c;b(s A (a S E 4y bODdS

(W) = £ 1- o) SEH)[ e

c

, OB + 1) [ L=
(e —n)? v
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a-
X Op| SA|B BC—BK (s—u)|+bgy |ds
-2 1= wop(v) - B?B—Xx dp(u). (4.19)

Using the differentiation and identity operators D and ¢, we calculate

g(u) = (D 9 Z A f)d)b(U). We have
9(6) = =1~ a)op(e) - Bgﬁ—xx do(u) + B%B—kx (Bcﬁ—x ‘%j
A
o S+A _u a-2
XJ e B(Bc‘k)(s )(I)b SA|IPB BC _a (s—u)|+by|ds. (4.20)

Differentiating the function g(u) in the relation (4.20) with respect to u,

we have

el dh(u)

’ Boéﬁz (BCB— r 3 (%)

0'(u) =~ 2 (1 - a)oh(u) -

S+ _&
o —Bl 5o |(s-u) a
xjue (Bc‘kj dp| S A BBC—BX (s—u)|+by [ds
oA B 1
- Bc—x(ﬁc—x _Ej‘bb(”)' (21

Using the differentiation and identity operators D and /¢, we calculate

h(u) = (D - %Z)g(u). We have
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nw) = B84 21— o) - 2 (1 - a)ob(u) - 522 dh(w)
OLBX(BC(S +A)—2) dp(U). (4.22)
c(Bc - 1)’
From the relations (4.20) and (4.22), we deduce (4.18). O

5. Conclusion

In this article, we have determined the integro-differential equation of

Gerber-Shiu function in the compound Poisson risk model with variable

threshold dividend payment strategy to shareholders and a dependence

between claim amounts and inter-claim times via the Spearman copula.

Determination of the ultimate ruin probability is our future goal.
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