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HOPF BIFURCATION OF A DIFFUSIVE 

PREDATOR-PREY SYSTEM WITH NONLOCAL 

INTRASPECIFIC COMPETITION 

 

Abstract 

The study of predator-prey models and reaction-diffusion equations 

helps us to more comprehensively and accurately explain the changes 

in population density in the natural world, and is an important        

aspect of biological and mathematical research. The study of Hopf 

bifurcations is a significant topic of research on reaction-diffusion 

equations, and it is of great importance for our understanding of 

population behavior. Firstly, we modify a predator-prey system with 

local effects studied by Geng et al. [1] and conduct further research 

based on this system. Secondly, we investigate the existence of               
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the positive equilibrium in the system. We find that the positive 

equilibrium exists only under certain conditions, and we provide 

criteria through the study of the properties of a cubic function. 

Thirdly, we present the characteristic equations for two different 

systems under the scenarios of 0=n  and .0≠n  Since the model 

includes two integral terms, we categorize into two different Hopf 

bifurcation scenarios based on the magnitude of the value of certain 

parameters. We provide conditions under which the system undergoes 

Hopf bifurcation for each case. 

1. Introduction 

In the past, researchers often assumed that individuals only interact with 

those nearby in the dynamic processes involving single or multiple species 

with interactions. However, during the 20th century, studies in population 

dynamics have shown that the interactions among individuals have a certain 

range, and assumption that interactions are always nonlocal might not help 

us understand the behavioral mechanisms of species. Furter and Grinfeld [2] 

articulated the importance of studying nonlocal interactions in their research. 

Ermentrout and Cowan [3] demonstrated that nonlocal spatial interactions 

can lead to the system having more complex bifurcations and spatiotemporal 

patterns. We refer to [1] for further studied nonlocal competition based on 

the modified system. 

In this paper, we focus on nonlocal interaction on the Hopf bifurcations 

of the system. We first present the following Holling-Tanner predator-prey 

model: 
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 (1) 

Ω  is a region where organisms live in the Euclidean space, and the 

integral term in the model can be considered as the nonlocal competition 

among individuals within the species. In the case where Ω  is a bounded 

region, the analytic expression for ( )yxk ,  is 
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( ) .
1

, Ω=yxk  

Here, Ω  characterizes the volume size of the habitat, and the competition 

strength is the same at any location. We refer to this kind of nonlocal 

interaction as global interaction. There have been quite a few achievements 

in the study of this interaction in recent years. For the Holling-Tanner 

predator-prey model with global interaction, Chen et al. [4] demonstrated 

that the stable periodic orbits bifurcating from the positive constant steady 

state can be spatially inhomogeneous. Chen and Yu [5] account for the 

impact of global interaction on Hopf bifurcations based on the Rosenzweig-

MacArthur predator-prey model. Shi et al. [6] proved that global competition 

can result in spatially inhomogeneous periodic patterns. Geng et al. [1] 

assume ,π=Ω l  and write system (1) as 
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 (2) 

We modify this system, and then take into account the nonlocal effects 

within the predator population, resulting in the following system: 
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 (3) 
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Here, ( )txu ,  and ( )txv ,  represent the densities of prey and predator 

species at location x at time t. 1d  and 2d  are the diffusion coefficients for 

the respective species, r represents the birth rate of the prey, N represents the 

environmental carrying capacity for the prey, a represents the ability of the 

prey to evade predators, b represents the competition intensity between prey 

and predators, θ  represents the conversion coefficient of prey turning into 

nourishment for predators, l can be considered as a measure of the length       

of the habitat, d represents the death rate of predators, δ  represents the 

intensity of intraspecific competition among predators, and the integral term 

represents intraspecific competition within the species. ,1d  ,2d  r, l, N, a, b, 

θ, b and δ are positive constants. 

In the following section of this paper, we focus on system (3), 

investigating the existence of its positive constant equilibrium. We find that 

the positive constant equilibrium does not persistently exist, and their 

analytical expressions are difficult to obtain. Therefore, we further analyze 

and obtain the criteria for the existence of positive constant equilibrium. 

Subsequently, by analyzing the Taylor expansion of the system at the 

positive equilibrium point, we obtain the characteristic equation. Due to the 

distinct structure of this model, we discuss the distribution of the roots of the 

characteristic equation in two different situations. We obtain the stability       

of the positive equilibrium and outline the conditions for the system to 

undergo a local Hopf bifurcation. 

2. The Existence of Positive Equilibrium and Criterion 

In this section, we study the existence of positive equilibrium and 

provide a criterion. Predator-prey model is as follows: 
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In remaining part of this paper, we set ( ) ( )
π

=α
l

dytyuyxK
0

,,,  

( ) ( )
π

=β
l

dytyvyxK
0

,,,  ( ) ,
1

, π=
l

yxK  l which is the expression for 

habitat length. For convenience, we set ,
a

u
u =  ,θ

δ=δ  ,θ= d
d  and drop 

the bar. System (3) can be written as 
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We set 

( ) ( ) ,
1

1,, 
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To get the positive equilibrium, then we set 

( )
( )
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

=β
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vuG
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 (5) 

We obtain 

( ) ( ) [ ( ) ] ,0~2~12~~ 223 =δ−−δ−+−+−δ+δ= rabdurapbdbupraurapuf  

where 

.
N

a
p =  

Now, we study the property of the cubic function of u~  to obtain the 

distribution of the positive equilibrium in system (3). The derivative of u~  is 

given by 
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( ) ( ) ( ) rapbdbupraurapuf δ−+−+−δ+δ=′ 2~122~3~ 22  

and 

( )[ ] [ ( ) ].212122 22
rapbdbrappra δ−+−δ−−δ=∆  

When ,0>∆  the two null points are ,, 21 uu ′′  and when ( )uf ~  has three 

null points in R, then the null points are ,,, 321 uuu  where .321 uuu <<  

Theorem 2.1. The positive equilibrium 
∗

E of the system (3) exists if and 

only if the parameters satisfy one of the following set of conditions: 
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Proof. We only prove (i), (ii), (iii), (v), (vi). 

(i) When ,0≤∆  we can obtain that ( )uf ~  is monotonically increasing 

in ( ),,0 1u′  ( ) ,00 <δ−−= rabdf  and ( ) .~lim +∞=+∞→′ ufu  Therefore, 
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there exists ( )∞+∈ ,01u  such that ( ) .01 =uf  We obtain 
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d
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3. Stability of the System and Local Hopf Bifurcation 

3.1. Characteristic equation 

Based on the system (3), we set ( ) ( )
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The characteristic equation is 
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that c is greater than 0. The characteristic equation can be written in the 

following form: 
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,000
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which can be written in the following form 
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3.2. Stability of the positive equilibrium point and Hopf bifurcation 

value 

(1) When ,
2

1
0 ≤< c  ( ) ,00 >rT  ( ) .00 >rD  If H

nr  is the Hopf 

bifurcation value of the system, H
nr  satisfies ( ) ( ) ,0,0 >= H

nn
H

nn rDrT  and 
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we obtain 
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n <  Therefore, the bifurcation value 

that might cause system (3) to undergo a Hopf bifurcation can be expressed 

as { } ,11
M
n

H
nr ==Λ  where 

.0 121 ⋯⋯ <<<<<< +
H
M

H
M

HH
rrrr  

The value of M is determined by the magnitudes of l, B, .2d  We provide 

a condition and a series of conclusions as follows: 

( )1H  ( ) ( ) .041 4
1

42
212 <−++ lBdMddd  

Lemma 3.1. When the parameter satisfies condition ( ),1H  then the 

following hold: 

  (i) When ( ),,0 1
H

rr ∈  all the roots of the characteristic equation have 

negative real parts. 

 (ii) When ,1
H

rr =  the characteristic equation has a pair of purely 

imaginary roots, and all other roots have negative real parts. 

(iii) When ( ),, 1
H
j

H
j rrr +∈  the characteristic equation has 2j roots with 

positive real parts, where ....,,2,1 Mj =  



Hopf Bifurcation of a Diffusive Predator-prey System … 405 

Proof. When ( )1H  holds, for any ( ),,0 1
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H
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n rTrT  the conclusion (i) 

is established. When ,1
H
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i rT  the conclusion (ii) is proven. When ( ),, 1

H
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H
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( ) 0<rTi  ( ),...,,1 ji =  there are j characteristic equations that have a pair 

of roots with positive real parts, the conclusion (iii) thus holds. Furthermore 
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Theorem 3.2. If 
2

1
0 ≤< c  and condition ( )1H  holds, then for the  

system (3), the following hold: 

  (i) When ( ),,0 1
H

rr ∈  the system (3) is locally asymptotically stable at 

the positive equilibrium .∗
E  

 (ii) When ,1
H

rr >  the system (3) is unstable at the positive equilibrium 

.∗
E  

(iii) ( )Mnr
H

n ...,,2,1=  is the Hopf bifurcation value of the system (3). 

Let .
2

1>c  If H
r0  is the Hopf bifurcation value of the system, H

r0  

satisfies ( ) ( ) ,0,0 0000 >= HH
rDrT  and we obtain 
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As we discussed earlier, we have addressed the expression for H
nr            

when it is the bifurcation value of system (3). The bifurcation values that 

might cause system (3) to undergo Hopf bifurcation can be written as 

{ }M
i

H
ir 02 ==Λ  ( ).NM ∈  The value of M is the same as in the previous 

context. 

Next, we provide two conditions and a series of conclusions: 
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H
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Lemma 3.3. If the parameter satisfies condition ( ),1H  ( )2H  and ( ),3H  

then the following hold: 
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  (i) When ( ),,0 0
H

rr ∈  all the roots of the characteristic equation have 

negative real parts. 

 (ii) When ,0
H

rr =  the characteristic equation has a pair of purely 

imaginary roots, and all other roots have negative real parts. 

(iii) When ( ),, 1
H
j

H
j rrr +∈  the characteristic equation has ( )12 +j  

roots with positive real parts, where ....,,2,1,0 Mj =  
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and therefore { }M
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H
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for any ( ).,0 1
H
Mrr +∈  When the condition ( )1H  is satisfied, ( ) 0>rDn  

( )....,2,1=n  The remaining part of the proof is similar to the proof of 

Lemma 3.1. Furthermore, 

( )( )
12 −=λ

c
dr

Red
 or .0>c  

Theorem 3.4. If ( ) ( )21 ,,
2

1
HHc >  and ( )3H  hold, then the following 

hold: 

  (i) When ( ),,0 0
H

rr ∈  the system (3) is locally asymptotically stable at 

the positive equilibrium .∗
E  

 (ii) When ,0
H

rr >  the system (3) is unstable at the positive equilibrium 

.∗
E  

(iii) ( )Mnr
H

i ...,,2,1,0=  is the Hopf bifurcation value of the system 

(3). 
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4. Numerical Simulation 

In this section, we assign values to the parameters in system (3) such  

that they satisfy the conditions stipulated in Theorems 3.2 and 3.4. Utilizing 

mathematical software, we obtain graphical representations of the numerical 

solutions for u and v to validate the conclusions drawn in the theorems. 

We set ,11 =d  ,05.02 =d  ,1=a  ,1.0=r  ,4.5=l  ,4=N  ,5=b  

,4.0=θ  ,86.1=d  and .10=δ  It is straightforward to verify that these 

parameter values satisfy the conditions in Theorem 3.2(i). When the         

initial values for u and v are set at ( ),1.0,1.0  we obtain the graphical 

representations for u and v, shown in Figure 1. ( ) ( )( )txvtxu ,,,  tends to the 

positive equilibrium ( ).341.0,283.0  

For Theorem 3.2(ii), we set ,97.01 =d  ,14.02 =d  ,1=a  ,1.0=r  

,5.5=l  ,56.37=N  ,75.1=b  ,4.0=θ  ,86.1=d  and .27.9=δ  When the 

initial values for u and v are ( ),1.0,1.0  we obtain Figure 2, which is 

consistent with our theoretical conclusions. 

 

Figure 1. In the case where ,11 =d  ,05.02 =d  ,1=a  ,1.0=r  ,4.5=l  

,4=N  ,5=b  ,4.0=θ  ,86.1=d  and ,10=δ  ( ) ( )( )txvtxu ,,,  tends to 

the positive equilibrium ( ).341.0,283.0  
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Figure 2. In the case where ,97.01 =d  ,14.02 =d  ,1=a  ,1.0=r  ,5.5=l  

,56.37=N  ,75.1=b  ,4.0=θ  ,86.1=d  and ,27.9=δ  ( ) ( )( )txvtxu ,,,  

is unstable and tends to a spatially inhomogeneous periodic solution, which 

is consistent with our conclusions. 

Similarly, for the conditions specified in Theorem 3.4(i), we set ,11 =d  

,05.02 =d  ,12.1=a  ,086.0=r  ,5.5=l  ,26.3=N  ,4=b  ,52.0=θ  

,86.1=d  and .74.9=δ  When the initial values for u and v are 

( ),07.0,07.0  we obtain the graphical representations for u and v, shown          

in Figure 3. Then ( ) ( )( )txvtxu ,,,  tends to the positive equilibrium 

( ).461.0,340.0  

 

Figure 3. In the case where ,11 =d  ,05.02 =d  ,12.1=a  ,086.0=r  

,5.5=l  ,26.3=N  ,4=b  ,52.0=θ  ,86.1=d  and ,74.9=δ  ( ( ),, txu  

( ))txv ,  tends to the positive equilibrium ( ).461.0,340.0  
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For Theorem 3.4(ii), we set ,11 =d  ,14.02 =d  ,75.0=a  ,11.0=r  

,5.5=l  ,1.33=N  ,0.2=b  ,4.0=θ  ,2=d  and .25.7=δ  When the 

initial values for u and v are ( ),07.0,07.0  we obtain Figure 4, which is 

consistent with our theoretical conclusions. 

 

Figure 4. In the case where ,11 =d  ,14.02 =d  ,75.0=a  ,11.0=r  

,5.5=l  ,1.33=N  ,0.2=b  ,4.0=θ  ,2=d  and ,25.7=δ  ( ( ),, txu  

( ))txv ,  is unstable and tends to a spatially inhomogeneous periodic 

solution, which is consistent with our conclusions. 
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