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Abstract 

We use stochastic differential equations (SDEs) to model the spread  

of the malaria parasite through a compartmental model of the type 

( ).- vhhhhh ISRILS  Considering the transmission rates ( )tβ  and ( )tν  

by introducing standard Brownian motion in order to render the 

ordinary differential equation into SDE, we obtain the existence and 

uniqueness of the solution. 

0. Introduction 

Malaria is one of the infectious diseases transmitted to humans by a 

highly anthropophilic mosquito, the (infected) female Anopheles, which 

generally bites between dusk and dawn. Its mathematical modelling 

dates back to the beginning of the 20th century [1]. Several mathematical 

models have been developed to study the dynamics of the spread           

of malaria. These include Ross’s ( )vvvhhh SISSIS -  models, the 

( )vvhhhh ISSRIS -  models in [3, 4], and the ( )hhhhh SRIES  models in [5, 

6]. However, none of these models take account of the random nature of 

the transmission of parasites. In this model, in addition to Plasmodium 

falciparum transmission in a given area, we introduce any other random 

form of contamination by other parasites. This article is structured as 

follows: first we present some preliminary results, necessary for the 

conduct of our work, then we present our results relating to the 

stochastic approach to the spread of plasmodia. Finally, we simulate the 

trajectories of our results. 

1. Mathematical Preliminaries and Notations 

1.1. Ross’s ( )vvvhhh SISSIS -  model 

In 1911, Ross [1] proposed a model which took into account both 

anopheline and human populations. This model is certainly the starting point 

for vector-host models. In his model, Ross assumes that both the human and 

Anopheles populations are constant and that one mosquito bites “a” humans 
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per unit time where “a” is a constant [7]. The scheme for the spread of 

malaria in Ross’s ( )vvvhhh SISSIS -  model is shown in Figure 1. 

 

Figure 1. The final disease transmission graph. 

He obtains the differential system (1) governing the ( )vvvhhh SISSIS -  

model of malaria: 
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After solving this system (1) by [7], we obtain the basic reproduction 

number 0R  defined by: 

 210
11

bamabR µγ=  (2) 

and state the following theorem [8, 9]: 

Theorem (Mosquito theorem). (1) If ,10 ≤R  then disease disappears 

completely from the population after a certain time. 

(2) If ,10 >R  then disease remains endemic in the population. 



Abdoul Karim DRABO et al. 366 

This so-called mosquito theorem can be used to determine the endemic 

character of epidemics in a given region. 

1.2. Model ( )vvhhhh ISSRIS -  

Since malaria provides temporary immunity and is not lethal if treated,    

it is possible to use a SIRS (susceptible-infected-recovered-susceptible) 

model, since recovered individuals return to the S class with probability 

( )0>pp  or relapsed individuals become infected again with probability 

.1 p−  To Ross’s ( )vvvhhh SISSIS -  model, we add the R reinstated 

compartment. These types of models are also solved by [10, 11]. Figure 2 

illustrates the scheme of disease progression. 

 

Figure 2. Malaria transmission diagram. 

In this model, the differential equation system satisfies equation (3): 
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where ,hS  ,hI  ,hR  vS  and vI  represent the number of susceptible humans, 

infectious humans, recovered humans, susceptible mosquitoes and infectious 

mosquitoes, respectively. These types of models ( )vvhhhh ISSRIS -  are also 

studied by authors such as [3, 4] and many others. 

1.3. Model ( )vhhhhh ISRILS -  

Studies have shown that the incubation period for plasmodia varies from 

one plasmodium to another. As this incubation period is long, it is necessary 

to extend the model ( )vvhhhh ISSRIS -  by introducing an additional class of 

exposed or latent individuals .hL  At this latent stage, the individual has a 

probability p of being infectious and a probability p−1  of recovering, then 

becoming susceptible again. The disease progression diagram in this type of 

model is represented in Figure 3. 

 

Figure 3. Plasmodia propagation diagram. 

The ordinary differential equations (ODEs) governing the deterministic 

model ( )vhhhhh ISRILS -  are presented by the system of equations (4): 
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Mosquito ODEs are neglected here because susceptible humans have 

already received infecting bites. All the parameters and their biological 

interpretation are recorded in Table 1. 

The dynamics of N  is obtained by summing the equations of the 

system (4). As 

( ) ( ) ( ) ( ) ( ),ttttt RILSN +++=  

we obtain 

( )
( ) ( ) ( ) .t

et
t

td µ−λ=⇔µ−λ= N
N

N
 

• If ,µ<λ  then ( ) ,0 → ∞→t
tN  the population dies out. 

• If ,µ=λ  then the population remains constant for all t. 

• If ,µ>λ  then ( ) ,∞ → ∞→t
tN  the population is exploding. 

Table 1. Model parameters and their meanings 

Parameter Name Unit Meaning 

N  Population size 
Number of 

individuals 

At time t,  

( ) ( ) ( ) ( ) ( )ttttt RILSN +++=  

λ  Birth rate 
( )

day

person/Birth
 Rate of newborns per year 

µ  Death rate 
( )

day

person/Deaths
 

Natural death rate of susceptible, latent, 

infectious and recovered individuals 

per year 

θ  Incubation rate day–1 

Rate of transition from latent to infectious 

state with probability p or from latent to 

recovered state with probability p−1  

( )NIS ,,f  

Transmission rate 

(susceptible to 

latent) 

jour–1 
Rate of change from susceptible to 

latent state 

ν  

Transmission rate 

(infectious to 

removed) 

day–1 
Rate at which an infectious individual 

migrates into the recovered compartment 

γ  

Rate of immunity 

loss (recovered to 

susceptible) 

day–1 

The rate at which recovered individuals lose 

their temporary immunity and become 

susceptible after infectious contact 
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We make the following changes to the variables in the model (4): =S  

,NS  ,NL=L  ,NI=I  and NR=R  so that 1=+++ RILS . 

Then we work with proportional incidences. The system of equations (4) 

then takes the form of the following relationship (5): 
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The transmission function ( )ISg ,  defined by ( ) kSIISg =,  (where k 

is a positive constant of proportionality) plays an important role in disease 

dynamics. Researchers [5, 6] have obtained a ratio-dependent non-linear 

incidence rate that takes the following form: 
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α being the parameter that measures the psychological or inhibitory effect. 

Similarly, the proportional impact function in our model is defined by 

( ) ( ) ,
,,

NN

NIS vI
St

f β=  (6) 

where vI  represents the population of infectious mosquitoes and ( )tβ  is a 

random variable defined in Subsection 2.2. As in Ngwa and Shu’s model 

[12], we define the force of infection from mosquitoes to humans by 

,
N

v
vvv

I
nck =  (7) 

where vn  represents the number of bites a mosquito makes on humans per 

unit of time; and vc  is the probability of the parasite entering the body of a 
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susceptible human bitten by an infectious mosquito .vI  By substituting 

vv

vv

nc

kI =
N

 in equation (6), the incidence function becomes 
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 (8) 

Also, equation (5) takes the following form (9): 
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2. Main Results 

In this section, we first determine the base reproduction rates 0R  of           

the models ( )vvhhhh ISSRIS -  and ( ),- vhhhhh ISRILS  then transform the 

deterministic model ( )vhhhhh ISRILS -  into a stochastic model and carry out 

a comparative study. 

2.1. Basic reproduction rate 0R  

Proposition. The basic reproduction rates 0R  of the models 

( )vvhhhh ISSRIS -  of Subsection 1.2 and ( )vhhhhh ISRILS -  of Subsection 1.3 

are given, respectively, by 

 
( )

( ) ( ) ( )p
R +−ηγ+µ+µ+γη

γβα+µ+βα=
11

1 21
01   and  

( )
( ) ( )( ) .02 λ+νλ+θ

θβ=
t

pt
R  (10) 

Proof. To determine the basic reproduction rate ,0R  we apply the van 

den Driessche method [8]. The non-linear system of ordinary differential 

equations in the relationship (3) derived from the model in Figure 2 can be 
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expressed as 

( ) ( ),XX
dt

dX
jj VF −=  

where ( )XjF  represents new infections and ( ) ( ) ( )XXX jjj
−+ −= VVV  

represents the rate of individuals entering and leaving compartment j [8], 

respectively. The Jacobian matrices of ( )XF  and ( )XV  at equilibrium 

without disease 0E  are, respectively, 
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The set ( )1−
FVSp  of eigenvalues of the matrix 1−
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The basic reproduction number 0R  is the spectral radius of the next 

generation matrix: 
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( ),1
0

−ρ= FVR  

i.e., the basic reproduction number 01R  of our model (3) (Subsection 1.2) is: 
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Similarly for the model (9) (Subsection 1.3), we have 
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Then the basic reproduction rate 02R  is given by the spectral radius of 

.1−
FV  □ 

Corollary 1. The disease-free equilibrium of the system (3) is locally 

and asymptotically stable if 101 <R  and unstable if .101 >R  

Corollary 2. The malaria-free equilibrium 0E  of the system (9) is 

locally asymptotically stable if 102 <R  and unstable if .102 >R  

2.2. Stochastic formulation of the ( )vhhhhh ISRILS -  model 

In this subsection, we study the ( )vhhhhh ISRILS -  model which takes 

random effects into account. In her work, May [13] showed that all the 

parameters involved in a population model fluctuate randomly because the 
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factors controlling them are not constant. Suppose that such a system (9) is 

affected by random disturbances of the white noise type. In this situation, it 

is natural to describe its implementation by the corresponding system of 

stochastic differential equations. In the case of malaria, we thus assume that 

the transmission rates ( )tβ  and ( )tν  can fluctuate around a certain value 

due to the continuous fluctuation of the environment. Thus the model (9) is 

made stochastic by the following result: 

Theorem. Consider the system of ordinary differential equations 

(ODEs) (9) governing the spread dynamics of Plasmodium falciparum in a 

given region. Then there are random effects of infection by other plasmodia 

rendering this ODE system into a system of stochastic differential equations 

(SDEs). Moreover, this SDE system exists and almost certainly admits in the 

domain ] ]41,0  a unique solution ( ) 0,,, ≥= tttttt RILSX  for any initial 

value ] ] .1,0
4

0 ∈X  

Proof. Let us first consider the following results: 

Lemma 1. The model (9) governing the dynamics of the spread of 

Plasmodium falciparum in a given region can be made stochastic. 

Proof. We define the transmission parameters ( )tβ  and ( )tν  by: 

( ) ( ) ( )
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



=ξσ+ϑ=ν

=ξσ+β=β

,4,3,1
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idtttt
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ii

ii
 (11) 

where ,iσ  { }4...,,1=i  represents the noise intensities. In the following, we 

assume that ,iσ  { }4...,,1=i  are constant. Let us say 0=σi  or 1 (the 

condition 0=σi  means that the disturbance does not exist); ( ),tiξ  

{ }4...,,1=i  are i.i.d white Gaussian noise terms of zero expectation         

such that ( ) ( ).tdBdtt ii =ξ  ( ),tBi  { }4...,,1=i  are independent      

standard Brownian motions defined on a filtered probability space 
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( ( ) ( ) ),,,, 0
44

PFRBR ≥++ tt  where ( )4
+RB  denotes the Borelian tribe of .4

+R  

We assume that { }0000 ,,, RILS  is 
0t
F -measurable and independent of 

( ) ( ),0tBtB ii −  { }.4...,,1=i  By transferring the relationship (11) into the 

system of equations (9), we then obtain the system of stochastic differential 

equations (12) governing the dynamics of the transmission of plasmodia: 
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This completes the construction of the SDE system. □ 

Let { }41 ...,, XX  be the pathological states corresponding respectively 

to the { }RILS ,,,  states of malaria, and let ,idX  { }4...,,1=i  be the        

small variation of the state iX  and dt a variation of time. Let 

( ) ( ) 00 ,,, ≥≥ = ttttttt RILSX  be an Itô diffusion homogeneous in time, i.e., 

a Markov process ( ){ } 0≥ω ttX  whose state space is the probabilized space 

( ( ) )PRBR ,, 44
++  satisfying a stochastic differential equation of the form 

( ) ( )( ) ( )( ) ( ) { },4...,,1,, 00 ==+= iXtXdBtXgdttXftdX itiii  (13) 

where tB  is a standard Brownian motion of dimension 4, 44: ++ → RRf  the 

drift coefficient and 444: ×
++ → Rg R  the diffusion coefficient are fixed so 

that the SDE admits a single solution at all times. It is assumed that the 

functions f and g are locally Lipschitzian and are defined for any 

{ }4...,,1=i  by 
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We denote by ( )AXPt ,0  the probability measure on the tribe generated 

by all the random variables ( ) 0≥ttX  defined by 
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for any choice of time ,0 21 kttt <<<≤ ⋯  for any Borelian 

( )4
21 ...,,, +⊂ RBkAAA  and .4

0 +∈∀ RX  We define the differential operator 

of the generator of the Itô diffusion of the relation (13) by 

 ( ) ( ) ( ) 
= =

∂∂
∂′+∂

∂=
4

1

4

1,

2

, ,
2

1

i ji
ji

ji
i

i XX
Xgg

X
XfL  (14) 

where g′  is the transpose matrix of g in .44×
R  
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Lemma 2. The domain of L contains the set of twice continuously 

differentiable functions with compact support. 

Proof. Let ϕ  be a function of class ( ),42
+RC  i.e., twice continuously 

differentiable with compact support, and apply Itô’s formula to ( ).tt XY ϕ=  

In dimension 1, we obtain 
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ssssh dsXgXdsXfXxY EE  
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0 0

2
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h dsXgX

h
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .
2

1
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2

0

xgxxfxxL
h

xYh

h

ϕ′′+ϕ′=ϕ=ϕ−
+→

E
 

The 4-dimensional case is treated in a similar way by applying the 

multidimensional Itô formula. □ 

The operator L defined in this way is uniformly elliptic in .4
+R  That is, 

by posing ( ) ( ) ( ),XaXgg ij=′  there exists a positive constant c such that 
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( )
=

ϕ≥ϕϕ
4

1,

2
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jiij cXa  for all 4
+∈ RX  and for all non-zero vectors 

,...,, 4
41 +⊂ϕϕ=ϕ R  where .2

4
2
3

2
2

2
1 ϕ+ϕ+ϕ+ϕ=ϕ  

Lemma 3. The stochastic differential equation of the model (12) almost 

certainly admits a single positive local solution ( )′= ttttt RILSX ,,,  for 

[ ]et τ∈ ,0  and for any initial value ] [ ,1,0
4

00
∈= XX t  where eτ  denotes 

an extremely large finite time. 

Proof. The solution to this stochastic differential equation can take on 

negative values, which is not consistent with modelling disease states. To do 

this, we pose: 

( ),ln tt XY =  with ( )′= ttttt zwvuY ,,, and ( ) .,,,
′= ttttt RILSX  

Then, using Itô’s formula,  

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )








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 (15) 

at 0≥t  with the initial value ( ).ln 00 XY =  According to Mao [14], we see 

that the coefficients of the model (15) are locally Lipschitzian, i.e., there is a 

unique local solution tY  in [ ].,0 eτ  Therefore, for any initial values ,0S  ,0L  
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0I  and ,0R  the unique positive local solutions of the model (15) are given 

by ( ),tu
t eS =  ( ),tv

t eL =  ( )tw
t eI =  and ( ).tz

t eR =  □ 

Lemma 4. The solution of the stochastic differential equation system 

(12) is global in the sense that .∞=τe  

Proof. For each integer ,0nn >  we define the stopping time as follows: 

 [ ] ( )












∈τ∈=τ

c

en n
n

tXt ,
1

:,0inf  (16) 

such that nτ  is increasing when n tends towards ∞  and ,inf ∞=∅  where 

∅  denotes the empty set: 

en
n

τ≤τ=τ
+∞→

∞ suplim  a.s. 

We want to show that ∞=τ∞  a.s. Let us proceed by absurdity, i.e., 

0>∃T  and ] [1,0∈ε  such that { } .ε>≤τ∞ TP  

In other words, there exists an integer 01 nn ≥  such that =Ωn  

{ } ,ε≥≤τ TnP  for all .1nn ≥  

Consider the positive function V of class 2
C  defined by 

++ → RR
4:V  

( ) ( ) ( ) ( ) ( ).lnlnlnln,,, RRIILLSSRILS −+−+−+−֏  

Applying Itô’s lemma to the function V, we obtain: 

( ) ( ) ( ) ( ) ( )tdBLtdBSt
nc

k
LVdtdV

vv

v
2211 11 −κσ+−βσ−=  

( ) ( ) ( ) ( ),11 4433 tdBRtdBI −σ+−σ+  
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where 
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for all ,0≥t  ( ) ( ) ] [.1,0, ∈νβ tt  Therefore, there exists 0>M  independent 

of S, L, I and R such that ( ) .,,, MRILSLV ≤  Consequently, 

( ) ( ) ( ) ( )tdBSt
nc

k
MdtRILSdV

vv

v
11 1,,, −βσ−≤  

( ) ( ) ( ) ( )tdBItdBL 3322 11 −σ+−κσ+  

( ) ( ).1 44 tdBR −σ+  

By integrating the two members of the above inequality from 0 to 

,Tn ∧τ  where ( )TT nn ,min τ=∧τ  and taking the expectations, we obtain 
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the following: 

( ) ( ) ( ) ( )( )
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We know that { } ,ε≥≤τ=Ω Tnn P  for any 1nn ≥  and according to 

the relationship (16), for any ,nΩ∈ω  there exists a certain k such that 

( )ωτ ,nkX  is equal to either n or 
n

1
 for .4,3,2,1=k  Hence, 
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It follows from the relationship (17) that 
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where ( )ωΩχ
n

 is the indicator function of .nΩ  Since ,∞→n  we get 

( ) ( ) ( ) ( )( ) ∞=+>∞ MTRILSV 0,0,0,0  a.s., 

which is a contradiction, because we must have .∞=τ∞  Consequently, the 

solution of the stochastic differential equation system (12) is global. 
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With the demonstration of these lemmas, the proof of the theorem is 

complete. □ 

2.3. Numerical simulations and interpretations 

In this subsection, we make a comparative study of the trajectories of 

solutions obtained by simulation in MATLAB R2022b. 

 

(a) Deterministic case 

 

(b) Stochastic case 

Figure 4. Simulation of ODE and SDE solution trajectories. 
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The introduction of Brownian motion induced a disturbance in the latent 

individuals. This could be due to the variability in the latency period of the 

different plasmodia. The spike of latent individuals in Figure 4(a) indicates 

that 80% of these individuals are almost infected by the same parasite. 

Similar variability between infected and recovered individuals can be 

observed in Figures 4(a) and 4(b). The differences in probabilities observed 

between the deterministic and stochastic cases mean that Figure 4(a) reflects 

the image of an area where the only virulent plasmodium is present, whereas 

Figure 4(b) illustrates the image of an area where several parasite strains are 

present, making malaria diagnosis complex. 

3. Conclusion and Perspectives 

In this paper, we have proposed a stochastic approach to model the 

random propagation of plasmodia through stochastic differential equations. 

Presenting prototypes of existing models for the development of our model, 

we have shown the existence and uniqueness of the differential equations 

governing our model. Finally, we simulated the trajectories of the solutions.  
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