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PICARD’S METHOD OF SUCCESSIVE 
APPROXIMATION FOR FRACTIONAL ORDER 

INITIAL VALUE PROBLEM 

 

Abstract 

In this paper, we derived Picard’s successive approximation technique 
for fractional differential systems in which the derivative has been 
taken in the Riemann-Liouville sense. We investigated the existence 
and uniqueness results of the present method. Two numerical examples 
are given to show the efficiency of the presented method. 

1. Introduction 

Fractional calculus serves as an extension of classical calculus, delving 
into fractional-order derivatives and integrals, along with their associated 
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properties, as noted in [14]. The genesis of fractional calculus dates back to 
Leibniz’s 1695 letter to l’Hospital [22]. In contemporary times, the 
significance of fractional calculus has grown due to its capacity to broaden 
the scope of differential equations from integer to real number orders [9]. 
Notably, fractional differential equations have captivated the scientific 
community, offering enhanced precision in describing real-world 
phenomena, as exemplified by viscoelastic material stress-strain relations 
that find optimal representation in fractional differential equations. Similarly, 
while integer-order differential equations might suffice for modeling 
population growth or decay, complex scenarios such as wars and epidemics 
necessitate fractional population models [4, 8, 11, 20]. 

The applications of fractional-order differential equations span diverse 
domains, including engineering, chemistry, biology, and economics [7, 9, 10, 
13, 15, 16, 19, 21]. Consequently, solving fractional-order differential 
equations remains both extensive and consequential [10]. The arsenal of 
analytical techniques-comprising the Green function method, Laplace 
transform method, and power series method-equips researchers with tools to 
derive exact solutions for fractional-order differential equations [2, 13]. 
However, it is important to acknowledge that numerous fractional-order 
differential equations defy exact solutions. In these scenarios, 
mathematicians have strived to devise approximate solutions by extending 
existing numerical methods to encompass fractional-order differential 
equations [5, 6, 24, 25]. 

Picard’s iterative method gives a sequence xyn  of approximate 

solutions to the initial value problem 

,

,,

00 yxy

yxfxy
dx
d

 

which converges to the exact solution as n  [23]. As per the study done 
by Lyons et al. [13], Picard’s iterative method has been extended to solve 
fractional order initial value problems where the derivative has been taken in 
the Caputo sense. 
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Motivated by the above work, we consider the following initial value 
problem: 
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where 10  and xyDx
RL
x0

 represents the Riemann-Liouville fractional 

derivative of order  of the function .xy  

2. Preliminaries 

This section discusses some basic definitions and important results 
required to prove our main results. 

Theorem 2.1 (The mean value theorem for derivatives) [1]. If xf  is 

continuous function on the interval ba,  and differentiable on the open 

interval ,, ba  then there exists in ba,  at least one number c such that  

.cf
ab

afbf  

Definition 2.2 [17]. The Gamma function is the generalization of 
factorial n! and it allows n to take any real or even complex value. The 
Gamma function is defined by the formula 

0
1 ., Rxdttex xt  

Definition 2.3 [17]. The Beta function is defined by the definite integral 

1

0
11 .,,1, RyxdtttyxB yx  

Definition 2.4 [18]. Let xf  be a piecewise continuous function on 

,,0  integrable on any finite sub interval of ,0  and  be a non 
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negative real number. Then for ,0t  Riemann-Liouville fractional integral 

of xf  of order  is defined by the formula 

x

xx
RL
x dttftxxfD

00
.0,1 1  

We used the following symbol xfIx
RL
x0

 for Riemann-Liouville 

integration of xf  that is  

.
00

xfDxfI x
RL
xx

RL
x  

A special case of Riemann-Liouville fractional integral is when .00x  

Then the Riemann-Liouville operator becomes ,0 xyDx
RL  and the formula 

becomes 

x
x

RL dttftxxfD
0

1
0 .0,1  

From above equation we can easily see that 

.0,1,0,1
1

0
xxxIx

RL
x  

Definition 2.5 [26]. Let tf  be continuous on ,0  and .0,  

Then for all t, 

.tfDDtfDtfDD  

Definition 2.6 (Riemann-Liouville fractional derivatives [3]). The 
fractional derivative of order  is defined by using the fractional integration 
as 

.1,,
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nnxfDDxfD n
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n
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Definition 2.7 [3]. The Caputo derivative xfDx
C
x0

 of order 0  for 

the real valued function xf  is defined as 
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3. Results 

In the present section, we have given Picard’s method of successive 
approximation for the fractional order differential equations in which we 
have taken Riemann-Liouville fractional order derivative. After applying the 
Riemann-Liouville fractional derivative of order 1  in (1) we have  

.,1
0

yxfDy x
RL
x  (2) 

Suppose that yxfDx
RL
x ,1

0
 is continuous function in some neighbourhood 

of ., 00 yx  Therefore, from (2) we can write 

x

x x
RL
x dttytfDxyxy

0 0
.,1

0  (3) 

In order to avoid confusion, we have used the dummy variable t instead of x. 
By using the index law of fractional integral and fractional differential 
operator [12] in the above equation, we have 

.,
00 tytfIxyxy x

RL
x  (4) 

For finding the solution of (1), we will find the solution of (4) by an 
approximate method and improve it by using a repeatable process and try to 
take it near to an exact solution as much as we want. 

Clearly, 00 yxy  is a constant function and is a solution of (4). In 

order to find the first approximation we have used the 00 yxy  in the 

right hand side of (4). The first approximation 1y  is given by the equation 

., 001 0
ytfIyy x

RL
x  

We will use 1y  in the right hand side of (4) to get the next approximation 

,2y  
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., 102 0
ytfIyy x

RL
x  

By continuing in this way we get the nth approximation ,ny  

., 10 0 nx
RL
xn ytfIyy  

In next theorem, we have shown that sequence ny  converges to the exact 

solution of (4). 

Theorem 3.1. Let ,, yxf  yxfDx
RL
x ,1

0
 and 

y
f  be the continuous 

functions on some closed rectangle R and whose sides are parallel to the 
axes. Let 00, yx  be an interior point of R. Then there exists a real number 

0h  such that in the interval hxx 0  initial value problem 

represented by (1) has a unique solution ,xyy  where .10  

Proof. It is clear that any solution of the initial value problem 
represented by (1) is a continuous solution of the integral equation (4). We 
have used it to prove that the initial value problem given by (1) has a unique 
solution in the interval hxx 0  and consequently in the interval 

.0 hxx  For this, we have proved that the sequence given by 

,00 yxy  

,, 001 0
ytfIyxy x

RL
x  

,, 102 0
ytfIyxy x

RL
x  

              

,, 10 0 nx
RL
xn ytfIyxy  (5) 

              

converges to an exact solution of (4). It is easy to observe that sequence 
xyn  is the sequence of nth partial sum of the infinite series given by 
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1 10 n nn xyxyxy  

xyxyxy 010  

     .112 xyxyxyxy nn  (6) 

Therefore convergence of (6) will ensure the convergence of (5). For the 
completion of the proof we will find 0h  that gives the interval 

hxx 0  and on this interval we will show that 

Step 1. The series (6) converges to a function .xy  

In the hypothesis of the theorem we have taken yxf ,  and 
y
f  are 

continuous on closed rectangle R. Therefore, yxf ,  and 
y
f

 are bounded 

on R. Therefore, there exist numbers 0M  and 0K  such that  

,, Myxf  (7) 

,K
y
f

 (8) 

for all points in rectangle R. 

Let 1, yx  and 2, yx  be two distinct points in rectangle R. Then by 

mean value theorem for derivative, we have  

,,,, 2121 yyyxf
y

yxfyxf  (9) 

where y  lies between 1y  and .2y  From (8) and (9), we have  

,,, 2121 yyKyxfyxf  (10) 

where 1, yx  and 2, yx  lie on the same vertical line in rectangle R. Now 

we choose 0h  such that  

,1kh  (11) 



Jag Mohan and Anju Sood 

 

352 

and the rectangle formed by hxx 0  and hMyy 1max0  

lies in rectangle R. Let us denote this rectangle by .1R  It is easy to observe 

that such h must exist because 00, yx  is an interior point of rectangle R. 

For the proof of Step 1, it is enough to show that series 

    
1 10 n nn xyxyxy  

xyxyxy 010  (12) 

     .112 xyxyxyxy nn  (13) 

In order to prove the convergence of (12) we will find .1 xyxy nn  

Firstly we will show that graph of xyn  lies in 1R  for all n and consequently 

in R. It is true for .00 yxy  Therefore, points xyx 0,  are lies in 1R  

and hence from (7) we have ,, 0 Mxyxf  

 tytfIyxy x
RL
x 001 ,

0
 

x

x
dttytftx

0
0

1 ,1  

x

x
dttxM

0

1  

.
1

hM  

Therefore, 

.
101 hMyxy  

Hence, graph of xy1  lies in .1R  
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Similarly, 

.
102 hMyxy  

By continuing in this way we can say that graph of ,xyn  lies in 1R  for all 

n. Since every continuous function defined on a closed interval attains its 

maximum value. Here xy1  is continuous, therefore there exists some 

positive number L such that 

.01 Lyxy  

Since the points xyx 1,  and xyx 0,  lie in ,1R  from (10), we have 

xyxyKxyxfxyxf 0101 ,, .KL  

Therefore,  

 tytftytfIxyxy x
RL
x 0112 ,,

0
 

KLIx
RL
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.
1
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Similarly,  

xyxyKxyxfxyxf 1212 ,,  

1
hKLK  

.
1

2 hLK  
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Therefore, 

tytftytfIxyxy x
RL
x 1223 ,,

0
 

1
2

0

hLKIx
RL
x  

.
1 2

2KhL  

If we continue in this way, we get 

.
1

1
1

1
1

n
n

n
nn KhLKhLxyxy  

Now from (11) and (12), we have 

    
1 10 n nn xyxyxy  

1 10 n nn xyxyxy  

.32
0 KhKhKhLy  

From equation (11), it is clear that series 

32
0 KhKhKhLy  

is convergent. Therefore, by nM -test, (6) is uniformly convergent. If the 

series (6) converges to ,xy  then sequence xyn  converges to .xy  

Step 2. xy  is a continuous solution. 

Since xyn  converges uniformly to xy  and xyn  are continuous 

functions, therefore, xy  is a continuous function of (4). 

Step 3. xy  is the unique solution of (4). 
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In this part, we have proved that xy  is the unique solution of (4). In 

order to show that xy  is the solution of (4), we show that 

.0,
00 tytfIyxy x

RL
x  (14) 

But we have 

,0, 10 0
tytfIyxy nx
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xn  (15) 

    tytfIyxy x
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Now, graph of xy  lies in rectangle R therefore from (10), we can write 

    tytfIyxy x
RL
x ,

00  

xyxyKhxyxy nn 1max
1

 

.max 1 xyxyKhxyxy nn  

Since xyn  converges uniformly to xy  therefore right hand side of the 

above inequality can be made as small as we like. Therefore, 

.0,
00 tytfIyxy x

RL
x  

Hence, xy  is the solution of (4). 

Finally, we show that solution xy  is the unique solution of (4). Let 

xy  be another solution of (4) on the interval .0 hxx  Since xy  is a 

continuous solution of (4), we have 
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.,
00 tytfIyxy x

RL
x  

Let .max 0yxyT  Then in the interval hxxx 00  we 

have 

tytftytfIxyxy x
RL
x 01 ,,

0
 

00
ytyIK x
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x  

.
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Similarly, 

 tytftytfIxyxy x
RL
x 12 ,,

0
 

tytyIK x
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x 10

 

11
2 hhTK  

.
1 2
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In general, we can write that 

.
1 n

n
n

KhTxyxy  

In the same way, similar result holds in .00 xxhx  Now by (11) 

,1Kh  therefore the limit of the right hand side of the above equation 

tends to zero as n tends to .  Hence .xyxy  Therefore, solution xy  

of (4) is a unique. Hence, initial value problem given by (1) has unique 
solution in the interval .0 hxx  
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4. Numerical Simulation 

Example 4.1. In Figure 1 with the help of Matlab software, we have 
plotted 20 iterations of Picard’s iterative method with the step size 1.0h  

by taking the interval 3,0  for the fractional order system 

,2
1

0
yxyDx

RL
x  

.10y  

It is clear from Figure 1 that after the 11th iteration all the iterations are 
superimposing on each other, therefore approximate solutions are converging 
towards a function. According to our result, this function is the required 
solution to the fractional order system given above. Hence, the convergence 
of our method is confirmed. 

 

Figure 1. Graphs of 10,2
1

0
yyxyDx

RL
x  in .3,0  
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Example 4.2. In Figure 2 with the help of Matlab software, we have 
plotted 20 iterations of Picard’s iterative method in the interval 4,0  with 

the step size 1.0h  of the initial value problem 

,

3

8

2
3

22
1

0

x

xyxyDx
RL
x  

.00y  

In Figure 2, curve with red circles is the curve of exact solution and exact 

solution of above initial value problem is .2xy  From Figure 2, it is clear 

that as the number of iterations are increasing the approximate solutions are 
converging towards exact solution. 

 

Figure 2. Graphs of 00,
3

8 2
3
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0
yxxyxyDx

RL
x  in .4,0  
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5. Conclusion 

Given the established understanding that analytic approaches cannot 
yield solutions for all fractional-order differential equations, the reliance on 
numerical methods becomes paramount. In this context, numerical 
techniques offer a viable avenue for approximating solutions to fractional-
order differential equations. In our current endeavor, we have expanded upon 
Picard’s iterative method, tailoring it for fractional-order differential 
equations that entail derivatives in the Riemann-Liouville sense. To 
substantiate our findings, we have furnished two illustrative examples. In 
both cases, we observed that after a limited number of iterations, the 
approximated solutions progressively converge toward the precise solutions. 
This underscores the effectiveness and reliability of the extended method 
presented in our work. 
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