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Abstract 

In this paper, the flux limiter technique based on the method of         

lines is designed to simulate the nonlinear Rosenau-Korteweg              

-de Vries-regularized long wave equation. In order to illustrate the 

efficiency, accuracy and essentially non-oscillatory property of the 

present method, the error norms, discrete mass, momentum and energy 

conservative properties have been calculated. These calculations give 

good agreement for the exact solutions and numerical solutions of 

solitary and shock wave. 

1. Introduction 

Nonlinear evolution equations play an important role for the studies 

appeared in nonlinear sciences. The numerical solutions of nonlinear wave 

equations are necessary since most of these types of equations are not 

solvable analytically. The Korteweg-de Vries (KdV) equation is suitable for 

small-amplitude long waves such as shallow water waves, longitudinal           

wave in a channel, for example. The regularized long wave (RLW) equation 

is used to simulate wave motion in media with nonlinear wave steeping, 

dispersion and describes also shallow water waves, nonlinear dispersive 

waves, ion-acoustic plasma waves. The Rosenau equation was proposed for 

explaining the dynamic of dense discrete systems since the case of wave-

wave and wave-wall interactions cannot be explained by the KdV and RLW 

equations. Monotonicity property preservation like positivity is essential          

for numerical schemes to approximate non-smooth solutions. Improved 

discontinuities capture need to increase accuracy of numerical scheme in 

order to reduce diffusivity. We use a process which is high order, non-

oscillating, able to capture the shocks by using total variation diminishing 

(TVD) schemes, preserve monotonicity and therefore increase accuracy. 
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However, in the region of the domain where the change of the flux is not 

fast, we can recover a high order accuracy by using flux limiters method 

where flux limiter is a function which controls smoothness of the numerical 

solution and allows limiting gradients to prevent the occurrence of 

oscillations. We focus on the one-dimensional Rosenau-Korteweg-de Vries - 

regularized long wave (Rosenau-KdV-RLW) equation, model which is 

difficult to solve numerically because of the high order mixed derivative          

and nonlinearity terms. Many numerical schemes have been employed to 

simulate Rosenau-KdV-RLW equations but there are very few numerical 

schemes which have been presented for the shock wave of this equation             

[1-3]. 

In this paper, we use flux limiters method under method of lines to solve 

numerically the Rosenau-KdV-RLW equation model. Section 2 is a quick 

overview of method of lines and flux limiter technique. Section 3 provides 

numerical example and compares the results with the exact solution of the 

problem. Error norms and three conservative properties which, respectively, 

correspond to mass, momentum and energy are calculated to demonstrate      

the efficiency and accuracy of the present method. Section 4 presents the 

concluding remarks. 

2. Quick Overview of Method of Lines and Flux Limiter Technique 

2.1. Method of lines 

The method of lines (MOL) is a general way of viewing a partial 

differential equation (PDE) as a system of ordinary differential equations 

(ODEs). The space variables are discretized to obtain a system of ODEs         

in the time variable and then a suitable initial-value problem solver is used         

to solve this ODE system. The method provides very accurate numerical 

solution for linear or nonlinear partial differential equations (PDEs). As the 

number of lines increases, the accuracy of the MOL representation of the 

original system increases [4]. The method of lines consists of two steps: 

space discretization and time integration. In a first step, the derivatives with 
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respect to the space variable are approximated by finite difference schemes 

for example and the second step is numerical integration in time by well-

known ode integrator like ode15s of MATLAB [5, 6]. 

2.2. Flux limiter technique 

Flux limiters are widely used in numerical simulations to prevent 

spurious oscillation in the flow with strong property gradients [7]. In the 

case of PDEs with a flux term   ,xuf  we can approximate the partial 

derivative by using flux limiter. The main idea is to avoid the spurious 

oscillations that occur with high-order spatial discretization due to shocks, 

discontinuities, or steep gradients in the solution domain. Use of flux 

limiters, together with an appropriate high-resolution scheme, makes the 

solutions total variation diminishing [8, 9]. Consider the following general 

form of partial differential equation: 
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where   is the flux limiter function, r represents the ratio of successive 

gradients on the solution mesh, h

i

l

i
ff

2
1

2
1 ,


 are low-order flux and high-

order flux at the grid points ,
2
1i

x  respectively. In this paper, flux limiters 

tested are, respectively, Van-Leer, Van-Albada 1&2, Sweby, Superbee, 

Ospre, Osher, SMART, Koren, MC (monotonized central difference), 

minmod and we shall retain best of them for Rosenau-KdV-RLW equation 

[9]. 
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3. The Numerical Scheme 

3.1. Description of Rosenau-KdV-RLW equation 

Rosenau-KdV-RLW equation is used for describing the dynamics of 

shallow water waves that appear along lake shores [10]. Along the beaches 

and lake shores, the dynamics of dispersive shallow water wave have been 

treated by Rosenau-KdV-RLW equation. In oceanography, the study of 

dynamics of shallow water waves is very important. The dynamics of water 

waves can be modeled by the different differential equations as KdV, 

Rosenau, Rosenau-KdV, RLW, Rosenau-RLW, and Rosenau-KdV-RLW 

[11]. Here, we focus on one-dimensional Rosenau-KdV-RLW equation. It 

should be noted that, the model is difficult to solve numerically because of 

the great computational cost caused by high order mixed derivative term and 

the selective wave behavior caused by the power of nonlinearity term [2]. 

The Rosenau-KdV-RLW equation with the initial and boundary conditions is 

given by: 

    .0,;,0  tbaxuuuuuu xxxxtxxxxxtx
p

xt  (1) 

The initial condition is: 

     ,;,0, 0 baxxuxu   (2) 

and the boundary conditions are: 

       ,,,, 21 tftbutftau   

       ,,,, 21 tgtbutgtau xx   

        ,0,,,, 21  tthtbuthtau xxxx  (3) 

where u is wave profile, 0  is the drifting of the wave coefficient, 0  

is the coefficient of non-linearity, 0  is the coefficient of third order 

spatial dispersion, while 0  accounts for spatio-temporal dispersion in 

order to consider equal-width effect. Inclusion of this spatio-temporal 

dispersion surely makes this model well-posed, p is the power-law non- 
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linearity parameter and 0  is the coefficient of highest derivative [12] 

and for the existence of soliton, it is necessary that .2p  The Rosenau-

KdV-RLW equation is a combination of the two forms of dispersive shallow 

water waves that is analogue to KdV equation. Therefore, this equation 

models dispersive shallow water waves [13]. When 0a  and ,0b  

the initial boundary value problem (1)-(3) is consistent and the boundary 

condition (3) is reasonable [14]. 

3.2. Method of line discretization 

We now rewrite Rosenau-Korteweg-de Vries - regularized long wave 

equation (1) as follows: 
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To apply the method of lines for solving the Rosenau-Korteweg-de Vries 

- regularized long wave equation, firstly we subdivide the solution domain 

into uniform meshes by the line. We use a uniform mesh of cell size h in 

space. The uniform mesh is distributed as follows: 
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 (5) 

For the second and fourth derivatives at  txi ,  in (5), we use three-point 

central finite difference and five-point central finite difference, respectively, 

to approximate them, so we have: 
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Introducing the boundary conditions, this yields a system of ordinary 

differential equations which depend on t in the following form: 
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Secondly, this system (6) is solved by using MATLAB solver ode15s. 

The resulting system of ordinary differential equations is integrated with 

respect to time. 

3.3. Numerical computations and results 

In this subsection, we present the numerical results of the proposed 

method on two test problems. The accuracy of the scheme is measured by 

using the following error norms: 
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  ,
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Besides, the error norms used, to demonstrate the efficiency and 

effectiveness of the proposed method, we can use the fundamental 

conservation characteristics of the Rosenau-KdV-RLW. 

The Rosenau-KdV-RLW equation possesses three conservative 

properties corresponding to mass, momentum and energy, respectively,             

[14-16]. 

Mass, momentum and energy are defined as follow, respectively: 
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The initial boundary value problem (1)-(3) includes the conservative 

quantities 21, II  and .3I  Those quantities are applied to measure the 

conservation properties and are calculated by using Simpson’s rule. The 

implementation of the weighted sum for Simpson’s rule applied to the 

function  txu ,  is defined as follows: 
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In the simulation of solitary wave motion, the invariants 21, II  and 3I  

are observed to check the conversation of the numerical algorithm [17]. 
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We compare the results obtained by using flux limiters methods to those 

obtained by MATMOL finite difference operators dss002 (differentiation in 

space subroutines) [18]. 

3.3.1. Example 

Let us consider solitary wave solution of Rosenau-Korteweg-de Vries-

regularized long wave (1) with parameters ,1  ,5.0  

40,2  ap  and .100b  

The equation is [19, 20]: 

  .05.0 2  xxxxtxxxxxtxxt uuuuuu  

The boundary conditions are 

    ,0,100,40  tutu  

    ,0,100,40  tutu xx  

    0,100,40  tutu xxxx  

and the exact solitary wave solution is: 

    ,sech, 4 vtxBAtxu   

where the values of the amplitude A, wave width B and wave speed v are, 

respectively: 

,
456

45765125 A  

,
288

45713 B  

.
266

45713241 v  

The numerical simulation of equations (1)-(3) using MATLAB 

subroutine dss002 gives the following figures and tables. The profiles of   

the solitary wave at different times ,0t  5, 10, 15, 20, 25, 30 are given in 

Figures 1, 2 and 3. 
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Figures 1, 2 and 3 show the motion of propagation of the solitary wave 

which travels to the right at an invariable speed and nearly conserves its 

amplitude and shape with the increasing time. We can also observe a good 

agreement between the exact and numerical solutions. The values of 

invariants and error norms for single solitary wave are tabulated in Table 1. 

 

Figure 1. Numerical solution with the exact solution. 

 

Figure 2. 3D plot of the numerical solution. 
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Figure 3. 3D plot of the exact solution. 

Table 1. The error norms and invariants for solitary wave solution with 

560,2,5.0,1  np  and 25.0h  

Time (t) 2L  L  1I  2I  3I  

0 0 0 21.6793 43.7171 50.3397 

10 2.26e-02 1.30e-02 21.6793 43.7169 50.3373 

20 4.29e-02 2.33e-02 21.6793 43.7164 50.3355 

30 6.28e-02 3.62e-02 21.6793 43.7164 50.3355 

Table 1 shows that the invariants are practically constant over time and 

the error norms are acceptable. 

We now use the flux limiters techniques for numerical simulation and 

then compare the results to those obtained by classical MATLAB finite 

difference subroutine dss002 method. The profiles of the solitary wave at 

different time levels are shown in Figures 4, 5 and 6. 

Figures 4, 5 and 6 display that flux limiters method performs better. The 

motion of propagation of the solitary wave is very satisfactory. The solitary 

wave moves to the right at nearly unchanged speed and conserves its 
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amplitude and shape with increasing time. The simulation is run from         

0t  to ,30t  and values of the error norms and invariant quantities with 

limiters functions are listed in Table 2 and Table 3. 

 

Figure 4. Numerical solution and exact solution with SMART flux limiter. 

 

Figure 5. 3D plot of the numerical solution with SMART flux limiter. 
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Figure 6. 3D plot of the exact solution with SMART flux limiter. 

Table 2. The error norms for solitary wave solution with   

25.0,560,2,5.0,1  hnp  at times 20,10,0t  and 30 with 

flux limiters 

 2L  L  

Time (t) 0 10 20 30 0 10 20 30 

Van leer 0 2.01e-02 2.04e-02 2.25e-02 0 1.25e-02 1.3e-02 1.38e-02 

Van albada1 0 1.91e-02 2.08e-02 4.5e-02 0 1.3e-02 1.17e-02 3.19e-02 

SMART 0 5.3e-03 8.3e-03 1.8e-02 0 2.4e-03 5.8e-03 1.13e-02 

Osher 0 1.47e-02 3.32e-02 5.68e-02 0 9.7e-03 1.91e-02 3.19e-02 

MC 0 2.19e-02 2.76e-02 2.54e-02 0 1.35e-02 1.86e-02 1.86e-02 

Ospre 0 1.97e-02 1.96e-02 2.95e-02 0 1.27e-02 1.21e-02 2.02e-02 

Table 3. The invariants for solitary wave solution with   

25.0,560,2,5.0,1  hnp  at times 20,10,0t  and 30 with 

flux limiters 

 1I  2I  3I  

Time (t) 0 10 20 30 0 10 20 30 0 10 20 30 

Van leer 21.6793 21.6755 21.6717 21.6680 43.7171 43.5823 43.4482 43.3149 50.3397 50.1447 49.9421 49.7400 

V.alb1 21.6793 21.6596 21.6400 21.6206 43.7171 43.5247 43.3333 43.1436 50.3397 50.0559 49.7666 49.4793 

SMART 21.6772 21.6751 21.6709 21.6668 43.6966 43.6762 43.6354 43.5947 50.3130 50.2829 50.2210 50.1592 
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Osher 21.6793 21.6755 21.6717 21.6680 43.7171 43.6715 43.6261 43.5807 50.3397 50.2709 50.2011 50.1321 

MC 21.6793 21.6717 21.6679 21.6566 43.7171 43.6408 43.6026 43.4884 50.2348 50.1776 50.0045 50.2348 

Ospre 21.6793 21.6635 21.6399 21.6321 43.7171 43.6408 43.6026 43.4884 50.3397 50.1125 49.7615 49.6451 

The table clearly shows that the error norms obtained by the proposed 

method are less than the others. The results obtained show that the 

fundamental conservation properties of the Rosenau Korteweg-de Vries -

regularized long wave equation are preserved with flux limiters numerical 

schemes. The figures and tables obtained show that the method is better. 

3.3.2. Example 

Let us consider shock wave solution of Rosenau-Korteweg-de Vries-

regularized long wave equation (1) with parameters ,1  ,025.0  

,04.0  ,1  ,5.0  .3p  

The exact solution is [20]: 

    vtxBAtxu p  1
4

tanh,  

with 

 
,

92
4610010 22


B  

,
18136

8
24

2




BB

B
v  

.
30

2 2

 v

BA  

Numerical simulation of Rosenau Korteweg-de Vries-regularized long 

wave equation (1) with above parameters and classical MATLAB finite 

difference subroutine dss002 gives the following figures and tables. 

The profiles of the single soliton at times 40,30,20,10,0t  are given 

in Figure 7, 8 and 9. 
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Figure 7. Numerical solution with the exact solution. 

We observe from Figures 7, 8 and 9 that solitary wave travels to the            

right at a constant speed and keeps its amplitude with some oscillations. The 

different figures show that there are spurious oscillations at the boundaries. 

As it is seen, the maximum errors happen at the boundary position of the 

solitary wave. In Table 4, we give the error norms and invariant values at 

various time steps. 

 

Figure 8. 3D plot of the numerical solution. 
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Figure 9. 3D plot of the exact solution. 

Table 4. The error norms for shock wave solution with ,025.0,1   

250,3,5.0,1,04.0  np  at times 40,30,20,0t  

Time (t) 3
2 10L  310 L  1I  3

2 10I  3
3 10I  

0 0 0 1.2240 4.000 2.000 

20 1.100 1.100 1.1670 4.400 2.000 

30 1.200 1.100 1.1339 4.600 2.000 

40 1.700 1.300 1.1009 4.600 1.900 

Table 4 indicates that the error norms are almost no negligible and 

invariants are relatively constant. 

Now, we turn our attention to the flux limiter method. To this end, we 

compute the numerical solutions using the flux-limiter scheme with limiter 

functions mentioned in Subsection 2.2 for four values of the time and the 

best are retained. The profiles of the single soliton at times 30,20,10,0t  

and 40 are given in Figures 10, 11 and 12. 



Numerical Simulation of Rosenau-Korteweg-de Vries … 339 

 

Figure 10. Numerical solution and exact solution with MC flux limiter. 

 

Figure 11. 3D plot of the numerical solution with MC flux limiter. 

 The overall motion of propagation of the single solitary wave for this 

example is preserved with no spurious oscillations appearing for results 

obtained by using the flux-limiter scheme. The computed results satisfy the 

stability and the shock capturing properties of the proposed flux-limiter 

scheme. The result obtained by using the flux-limiter scheme is very good. 

The flux-limiter scheme performs well since it does not diffuse the moving 

fronts and no spurious oscillations have been observed at the end. 
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Figure 12. 3D plot of the exact solution with MC flux limiter. 

Table 5. The invariants for shock wave solution with ,025.0,1   

250,3,5.0,1,04.0  np  at 40,30,20,0t  with flux 

limiters 

 1I  3
2 10I  3

3 10I  

Time (t) 0 20 30 40 0 20 30 40 0 20 30 40 

Van leer 1.2240 1.1505 1.1127 1.0748 4.000 3.700 3.600 3.500 2.000 1.900 1.800 1.700 

V.alb1 1.2240 1.1502 1.1123 1.0745 4.000 3.700 3.600 3.400 2.000 1.900 1.800 1.700 

V.alb2 1.2240 1.1503 1.1125 1.0746 4.000 3.700 3.600 3.400 2.000 1.900 1.800 1.700 

SMART 1.2240 1.1509 1.1130 1.0752 4.000 3.700 3.600 3.500 2.000 1.900 1.800 1.700 

Superbee 1.2240 1.1513 1.1134 1.0756 4.000 3.800 3.600 3.500 2.000 1.900 1.800 1.700 

Sweby 1.2240 1.1508 1.1129 1.0751 4.000 3.700 3.600 3.500 2.000 1.900 1.800 1.700 

Osher 1.2240 1.1503 1.1124 1.0746 4.000 3.700 3.600 3.400 2.000 1.900 1.800 1.700 

MC 1.2240 1.1508 1.1130 1.0752 4.000 3.700 3.600 3.500 2.000 1.900 1.800 1.700 

It is noticeably seen from Table 5 that the error norms obtained by our 

method are found much better than the others. Table 5 also shows that 

invariants are almost constant for all the limiters used. We can observe from 

Table 5 that the results from the present study are in good agreement with 

the exact solutions. We can see that the results obtained with the flux 

limiters are all good, fundamental preservation quantities remain almost 

constant and are preserved during simulation time. 
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4. Concluding Remarks 

In this article, to solve the solitary wave and shock wave problem of 

Rosenau-Korteweg-de Vries-regularized long wave equation, we have used 

flux limiters schemes instead of finite difference approximation of advection 

terms. The performance of the method has been examined on two problems 

having exact solutions. The efficiency and accuracy have been shown           

by calculating the error norms and the discrete invariants conservative 

properties. Numerical simulations show that the method is very efficient 

with the advantages of being non-oscillant. Results obtained in this paper 

demonstrate that the flux limiter method based on the method of lines is a 

remarkably successful numerical technique for solving the Rosenau-

Korteweg-de Vries-regularized long wave equation and can be efficiently 

applied to a broad class of nonlinear PDEs with power law nonlinearity. 
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