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Abstract 

The numerical properties of a contemporary optimal control problem 

(OCP) within the realm of financial aspects deviate from the 

conventional OCP framework. In our specific scenario, the final state 

condition is unknown, while the integrand exhibits a piecewise 

capacity that aligns with the unknown terminal state value. Since           

this is not a classical OCP, it cannot be solved using Pontryagin’s 

maximum approach under the expected end limit conditions. A free 

final state in the non-classical issue results in a critical limit condition 

of the final shadow value not being equal to zero. The new 

fundamental condition must be comparable to a particular necessary 

condition because the integrand is a part of the unidentified final         

state value. By employing the hyperbolic tangent (tanh) function,           

we showcase a continuous approximation of the piecewise constant 
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integrand function. Furthermore, we tackle a specific scenario utilizing 

the shooting method in C++ programming language. This is by 

combining the Newton and Golden Section Search methods in the 

shooting technique to calculate the limiting free final state value in an 

external circle emphasis. Discretization methods such as Euler and 

Runge-Kutta approximations were used in the validation procedure. 

The program was constructed in AMPL programming language with 

MINOS solver. 

1. Introduction 

The calculus of variation (CoV) offers a numerical framework to address 

extreme practical scenarios where a given function possesses a stationary 

value that can be either a minimum or a maximum [13]. CoV is enhanced          

by optimal control (OC), which is a method for figuring out the best OC 

strategies. By utilizing control factor strategies, OC can increase cost 

utilitarianism while still satisfying standard differential criteria. The notion 

of CoV and OC is intriguingly used in relation to financial issues [7]. 

Several well-known examples that illustrate the application of OC 

include the optimal production process, drug enforcement strategies, discrete 

mechanics, strategic action plans, and the challenge of optimal resource 

allocation [5, 7, 9, 12]. Additionally, as noted in earlier optimization 

research, OC is a component of optimization strategies [12]. 

In our financial problems, a company struggling with little demand for 

its products will purposefully raise the price by reducing its production of 

the products. Imposing a flat-rate payment on sales leads to an increase in 

marginal cost and a decrease in yield. However, introducing a nonlinear 

royalty structure creates an unexpected effect, giving rise to an unusual CoV 

problem that was not originally anticipated. This research will present a few 

solutions to the problem without going into the specifics of financial issues. 

Let us examine a simple problem of finding the control function denoted 

as  tu  that maximizes the integral function over the interval  :, fi tt  
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         
f

i

t

t
f dttytutythJ .,,,  (1) 

Furthermore, we are familiar with the standard differential condition 

denoted as    ,tuty   where the initial state value  ity  is known, but the 

final state value denoted as  fty  is unknown. As the integral relies on the 

unknown  ,fty  this problem does not fall into the category of a classical 

OCP. 

In a classical OCP, the typical approach involves considering  fty  as a 

known endpoint and applying a limit condition where the shadow value 

equals zero [13]. When employing Pontryagin’s Maximum Principle (PMP), 

the Hamiltonian function of OC theory becomes apparent [14]. An OCP is 

employed to determine the most suitable control strategy for transitioning a 

dynamic system from one state to another while considering state or input 

control constraints [13]. 

In this investigation, we have put forth a method to approximate the 

piecewise constant integrand function continuously by utilizing a tanh 

approach instead of a discrete step function. The primary objective of this 

paper is to showcase how such problems can be effectively addressed. In the 

subsequent section, we will delve into the theoretical framework we have 

adopted, drawing inspiration from the work of Malinowska and Torres [6]         

in establishing the limit condition for CoV [2]. To further illustrate the 

effectiveness of our proposed method, we will present a numerical example 

and employ C++ programming language for its solution. The results will           

be thoroughly examined and validated, culminating in concluding remarks 

summarizing our findings. 

2. Non-classical Optimal Control Problem 

Equation (1) within the traditional framework of OCP is independent           

of the free value  .fty  However, in our specific case, the function h is 
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contingent upon both  fty  and  ,ftp  which can be likened to a certain 

integrand. Numerous investigations have offered understanding into the limit 

condition for CoV on time scales, as observed in works such as [2, 6]. The 

challenge we face can be associated with the corresponding theory [7]. 

Theorem 1 [7]. Let it  and ft  be two real numbers satisfying the 

condition .fi tt   Suppose  y  represents the solution of 

          ,,,,
f

i

t

t
f dttytytythJ &  

 ity  is known,  fty  is unknown,   1Cy   (2) 

subject to 

             ,,,,,,, fyfy tytytythtytytyth
dt
d    (3) 

where  ., fi ttt   Furthermore, 

             
f

i

t

t
fzfy dttytytythtytytyth .,,,,,, &&&  (4) 

From the OC perspective,         .,,, fyf tytytythtp   Hence, 

        
f

i

t

t
fzf dttytytythtp .,,, &  (5) 

In this particular scenario,  tp  is denoted as the Hamiltonian 

multiplier. 

Theorem 1 reveals that the fundamental optimality condition  ftp  is 

non-zero. Given this observation, it is worth considering a piecewise 

function of .  The selection of the independent variable plays a significant 

role in the progression of the piecewise function. For instance, let us 

consider the following objective function: 
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    
f

i

t

t
dtzuythJ ,,,  (6) 

subject to  ftyz   while 

    ,
7
5

cos
2
1

,,, 3 ztyzuzuyth   (7) 

where 














.
2
1

for

2
1

for

zyB

zyA
 (8) 

Suppose that A and B are real numbers in this scenario, which suggests 

the presence of an additional condition to address the main problem. 

Typically, a step function is implemented using an if-else condition in 

programming. However, this approach often leads to inaccuracies in the 

approximation. A tanh approach was presented to overcome this issue. The 

function represents a continuous approach for the stepwise function. It is 

connected to equation (8) and substituted into equation (7). 

3. Hyperbolic Tangent Function as a Continuous Approach 

Previous attempts to address the issue involved using the exact 

piecewise function without any approximation. However, these efforts 

yielded inconsistent and non-differentiable results across the domain. 

Alternative approximations, such as Fourier series approximation, were          

also explored but proved to be inadequate, requiring a significant number         

of terms. In order to ensure differentiability throughout, we propose a 

continuous approximation method. By transforming the discontinuous 

piecewise constant integrand function, commonly referred to as the step 

function, into a continuous integrand function, we aim to achieve a smooth 

and differentiable function. To accomplish this, we present a tanh method 

for the continuous approximation of the piecewise constant integrand 
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function, resulting in an overall differentiable and smoothly continuous 

function. 

4. Optimization of the Objective Function 

Suppose that the ordinary differential equation (ODE) system follows 

   tuty   (9) 

as mentioned in Section 1, let us consider the following objective function: 

       
f

i

t

t
dttutytgtuJ ,,  (10) 

such that 

                      
f

i

t

t

ttrttt dtetuetctmtytutag .00
1  

 (11) 

In the given context, we have various variables and functions. Let  ta  

represent the demand, which follows an exponential growth pattern defined 

as .40
1

t
e  The price elasticity of demand is denoted by  .t  The royalty 

payment,   ,ty  is a four-stage piecewise function. The learning curve is 

characterized by  ,0 tm  an asymptote equal to one, and the component of 

unit cost that is subject to learning is denoted as  ,0 tc  also equal to one. 

The parameter  t  determines the speed of learning, set at 12%. The 

discount factor is indicated as  tr  and is equal to 10%. The control variable 

is represented by  .tu  

The function g depends on  ty  and ,  where   takes the form of a 

piecewise constant function, with  fty  determining its value. We set the 

initial time as 0it  and the final time as .10ft  The known initial state 

is   ,0ity  while  fty  is unknown. Generally, the value of   can be at 
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any stage. In this case, the four-stage piecewise function is the value of .  

This setting was implemented in order to maximize the objective function in 

equation (10). Further, 

  

 

 

 

 

























.
4
3

for
25
3

,
4
3

2
1

for
25
6

,
2
1

4
1

for
5
6

,
4
1

0for
10
1

ztyz

ztyz

ztyz

zty

ty  (12) 

The continuous   ty  was approximated by applying the tanh 

function: 

   




 





 





 





  zykzykty

2
1

tanh
25
12

4
1

tanh
20
11

100
11

 

.
4
3

tanh
50
3






 





  zyk  (13) 

The smoothing value k was set equal to 250. The smoothness of the   

will increase with the number of k. The Hamiltonian is denoted as H where 

the function is a summation of the integrand g with the product of shadow 

value  tp  and control variable  .tu  The Hamiltonian behaviour can be 

expressed in the following expressions: 

  ,pHty &  

  ,yHtp &  

.0uH  (14) 

Therefore, the state value satisfies 

  .1 10
1

25
3

2
1

40
1

ueueuety
tyt
































  (15) 
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Thus, the shadow value satisfies 

  .

25
3

4
3

tanh
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


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




 





 

&  (16) 

At the same time, the control value fulfils 
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 (17) 

Hence, the final shadow value satisfies 

   
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tp t
f  (18) 

In order to compare approaches, we solved the identical issue using             

a different method, such as discrete-time nonlinear programming (NLP)             

[1, 7]. The discretization method, such as the Euler and Runge-Kutta 

approximation, was used to find the unknown  fty  and optimal objective 

function. The problem was solved using the AMPL programming language 

with MINOS solver, where the step size was set as 45S  [3]. 
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Table 1 showcases the results obtained from the nonlinear shooting 

method, as well as the optimal solutions achieved using the Euler and 

Runge-Kutta methods. Notably, the nonlinear shooting method yielded a 

highly accurate optimal solution. 

Table 1. Optimal final state value, objective function and initial shadow 

value generated from shooting and discretization methods 

Method Final state value Objective function Initial shadow value 

Shooting method 

Newton and Golden 

Section Search 
0.585314 0.820619 –0.277648 

Discretization method 

Euler 0.543349 0.814081 –0.082824 

Runge-Kutta 0.588223 0.826710 –0.246044 

According to the findings, the objective function values for the shooting 

and Runge-Kutta methods are comparable up to one decimal point. The final 

state values for all techniques are similar to one decimal place. The initial 

shadow values yield an optimal solution identical to one decimal place for 

the shooting and Runge-Kutta methods. 

The obtained results indicate that the plots of the state variables and 

shadow values for the shooting, Euler, and Runge-Kutta methods exhibit 

similarities. Figure 1 depicts the optimal curves of the state variables, 

shadow values, control variables, and the objective function. Upon 

comparing the Euler and Runge-Kutta methods with the shooting method, 

the graphs of the control variables show distinct variations between the 

approaches. As previously stated, the calculation likely contains errors since 

S increases inaccuracy. This has an impact on the control plots. 
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Figure 1. Optimal plot for the state, shadow value, control variable and 

objective function. (NG  Newton and Golden Section Search, EU  Euler, 

and RK  Runge-Kutta). 

5. Conclusion 

This article shows how to use a continuous approximation stepwise 

function over a tanh to solve an unconventional optimum control issue. We 

have shown how to apply the necessary parameters and numerical techniques 

to find the best answer. The approach applies to the real climatic problem 

where the Lagrangian is piecewise continuous. The numerical method was 

used to approve a simple illustration, which was then resolved using 

sophisticated PC programming. It was possible to acquire a highly accurate 

solution and compare it to other NLP techniques. 
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