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Abstract

Recently, many mathematical models are proposed to describe storage
of solar energy. Most of these models are governed by boundary value
problems (BVPs). The explicit solutions of such BVPs depend in
determining the inverse Laplace transform of complex expressions.
This paper overcomes some of these difficulties arising on account of
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this. The results can be invested to construct the analytic solutions of
solar energy models and also models of other fields in engineering

sciences.
1. Introduction

In the past decade, many scientific models have been proposed to extract
solar energy by means of nanofluids. These models play a vital role in the
field of renewable energy which helps in reducing the harmful effects of
climate change. This field attracted considerable interest of many researchers
[1-7]. The Laplace transform (LT) is a well-known approach to solve
initial/boundary value problems (IVPs/BVPs). The LT is of wide application
to exactly solve several scientific problems in various fields of science,
biology, and engineering [8-16]. It can be seen in these references that the
obtained exact/analytic solutions depend mainly on obtaining the inverse LT
of complex expressions. So, the objective of this paper is to provide the
inversion of some complex expressions which can be invested in future to

explore several scientific models.
2. Analysis

This section is devoted to introduce some useful integrals. These

integrals are essential to find the inverse LT of complex expressions.

Definition 1. The complementary error function (erfc) is defined as
[17]:
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1.e.,
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Thus
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which completes the proof. U

Lemma 2. For ¢ > 0,
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Proof. The given integral can be decomposed as
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The integral in the right hand side, in equation (12), can be given from

Lemma 1 as
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Employing (13) into (12), we have

I; e_czerfc( 2jzjdz = —LCCI erfc(%) + % [e_d‘/zerfc(zi - \/Ej

+ ed‘/;erfc(% + JEH, (14)

which is the desired result.
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Lemma 3. The integral 1, = -[0 u ‘e du is given by
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Proof. The given integral can be put in the form:
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where z; and z, are defined by equations (4). Thus
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and this gives
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3. Inversion of Complex Expressions

In this section, we obtain inversion of some complex expressions. The
current results are of great importance to determine the exact solutions for
various IVPs/IVPs that arise in solar energy models.

Lemma 4. For a OR (see [17]),
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Theorem 1. For a > 0,
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where (0) stands for convolution operation defined by

t t
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The integral in equation (24) is already obtained by Lemma 1, hence
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and this completes the proof. As a special case, when b = 0, the inversion
(26) becomes
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Using the result in Lemma 2, we have

L)T e_cuerfc( 2%)&! = —LCCI erfc(zi\/;) + % [e_d‘/zerfc(zi\/; - «/E)
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Employing (32) in (31) leads to the result of this lemma. O
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where I; and [, were already obtained by Lemma 1 and Lemma 3,

respectively, i.e.,
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2
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Employing /; and I, into equation (35) and simplifying, we have

Ll{J;b } = (et - P e 0 )

N
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+ (E e - m e erfc(% + bt). (38)

4. Conclusions

The explicit solutions of many mathematical models describing storage
of solar energy depend on evaluating the inverse Laplace transform of
complex expressions. In this paper, some of the difficulties arising due to
it are solved. Accordingly, the obtained results are useful in establishing
explicit solutions of several scientific models including solar energy and also

other areas of engineering sciences.
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