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Abstract 

In recent years, many mathematical models have been developed     

and investigated based on real-life issues in engineering, medicine, 

agriculture, and many other fields. Moreover, the numerical approach 

was used to solve it due to its intricacy. However, in reality, this 

methodology merely offers an approximate solution, which is close to 

an exact solution but not exact. This article demonstrates how to           

find the analytical solutions of the system of nonlinear ordinary 

differential equations precisely by considering the mathematical model 

for the spread of dengue fever of the with-in-host model. Furthermore, 

stability analysis and numerical simulation were also provided. 

Finally, graphs from the analytical method and numerical simulation 

are compared to assess the solutions of the system’s validity. This 

work may be helpful to many researchers in obtaining an analytical 

solution to the nonlinear dynamics. 

1. Introduction 

The Dengue Virus (DENV) causes several devastating vector-borne 

diseases, including Dengue Fever (DENF). One of the leading causes of 

death worldwide, DENF is spread to people through the bite of Aedes 

aegypti mosquitoes. One of the four virus serotypes with DENV:1-4 causes 

Dengue. These serotypes are parts of the Flavivirus genus including the 

viruses that cause yellow fever [1]. 

Currently, 50-100 million people in the world reside in areas where 

DENV transmission is possible. Once thought to be a summertime illness, 

DENF has now spread to other regions [2]. As a result, DENF cases have 

multiplied nearly five times in the last 30 years. This illness’ signs and 

symptoms include a high fever, a headache in the front of the head, pain 

behind the eyes, joint problems, nausea, and vomiting, among others [3]. 

In most cases, the primary infection of DENF at the initial state causes 

asymptomatic or moderate illness and a lifelong immunity to that serotype 

after the virus clears from the body [4]. However, Dengue Hemorrhagic 
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Fever (DHF) is a severe illness brought on by secondary infections of DENF 

[5]. Uncertainty exists in the processes underlying the severity of subsequent 

dengue infections. According to a theory, a process known as “Antibody-

Dependent Enhancement (ADE)” is how cross-reactive antibodies worsen 

the disease. Antibodies specific to that strain produce when a patient 

contracts the first dengue strain infection [6]. 

Even after treating the underlying infection, the body still has long-lived 

plasma cells that generate antibodies against the original virus strain [7]. 

When an illness with a second dengue serotype develops, antibodies from 

the initial infection attach to the secondary infection but do not neutralize it. 

However, phagocytic cells that release viral protein immune complexes 

absorb viruses that have not been destroyed and get ill. Due to the ADE, 

vaccination becomes problematic because if the population is not protected 

against all strains, they risk contracting more severe illnesses. Therefore, as a 

result, it is challenging to undertake a vaccine trial that intends to immunize 

against all four serotypes [8]. 

Proper care can manage DENF, which is usually a treatable infection. 

Patients who have feverish symptoms can use acetaminophen as a 

medication. It is preferable not to use antibiotics, corticosteroids, 

nonsteroidal anti-inflammatory medications, Aspirin, and Brufen in order to 

avoid bleeding and gastritis. Patients with DENF, whether proven or 

suspected, should have their platelets counted. Their hemoglobin levels 

should be routinely checked on the third day of symptoms, lasting one to two 

days after defervescence [9] and [10]. Unfortunately, immunization cannot 

stop dengue infection from occurring. Therefore, tetravalent vaccines have 

been created and are presently undergoing clinical research. 

There have been numerous mathematical studies on DENF. However, 

only a few of those [11-16] address the dynamics within the host. Each also 

assumes that the production of target cells (monocytes) is constant. This 

presumption is true for healthy or non-infected people, although monocyte 

production can vary greatly, especially during an illness [17-19]. Typically, 

Macrophage Colony Stimulating Factor, a cytokine secreted by monocytes, 
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regulates manufacturing. Our model, therefore, also considers the platelet 

count during the interaction with the virus, in contrast to other research           

that specifically evaluated the involvement of cytokines and antibodies. 

Consequently, we recommend investigating the dynamics of the with-in-host 

epidemic model of DENF with platelet production capacity when extract of 

papaya leaves therapy is administered to the patients. 

We considered the mathematical model on the effect of papaya leaves 

extracts as a DENF treatment by introducing a new set of differential 

equations. The innovative aspect of this work is that we solve the 

mathematical model on the effects of papaya leaf extracts as a DENF 

treatment using an analytical and numerical technique. The article is 

structured as follows. In Section 2, we develop a with-in-host mathematical 

model for immune response and papaya therapy for DENF and review the 

model in sufficient complexity. Then, in Sections 3 and 4, we investigate the 

analytical method and stability analysis of the mathematical model employed 

in Section 2. Next, the numerical simulation of the model is provided in 

Section 5. Finally, Section 6 provides the conclusion. 

2. The Mathematical Model of DENF with-in-host 

The model described here considers the host’s immune reaction and 

DENV with-in-host while papaya leaf extract is given to the patients. There 

are seven sets of first-order nonlinear ODEs explaining the Susceptible 

Monocytes Cell (SMC) (referred to as WBC), ( ),tA  Infected Monocytes 

Cells (IMC), ( ),tB  healthy platelets, ( ),tP  infected platelets, ( ),tQ  T 

immune reactivity, ( ),tS  dengue pathogens, ( ),tV  and papaya leaves extract 

(treatment), ( ).tT  Biology reveals that before infecting immune cells across 

the body and infecting humans, DENV targets the human immune system 

and is initially rejected by cells that are weak to infection. The SMC ( )Aη  is 

believed to be continually produced. So, a logical growth rate is used to 

evaluate it. The virus’s success rate in penetrating it determines whether 

such a healthy SMC becomes infected, as expressed as 1β  per unit of time. 
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The parameter N, which represents the bloodstream’s circulatory release of 

free virions, is measured. The other parameters involved in a set of equations 

(1) are described in detail in Table 1, together with their values, and α  

indicates how soon therapy-induced increases in immune production occur. 

Table 1. List of symbols and abbreviations 

1s  10 Source term of SMC [22] 

2s  100 Source term of platelets [10] 

maxA  4103 ×  Maximum quantities of SMC [10] 

maxP  41045 ×  Maximum quantities of platelets [10] 

Aη  0.1 Replacement of SMC [23] 

Pη  0.1 Replacement of platelets [10] 

N 500 Number of viruses produced by IMC [8] 

1β  0.0013 Lysing rate of monocyte [8] 

2β  0.5 Lysing rate of platelets [22] 

3β  0.9 Lysing rate of DV [22] 

4β  0.007 The rate at which antibodies destroy viral particles [23] 

5β  0.87 The rate at which papaya leaves destroy viral particles [18] 

1ξ  0.05 Transformation rate of healthy SMC to stronger [23] 

2ξ  0.5 Transformation rate of platelets cells to stronger [22] 

Aµ  0.14 The natural death rate of SMC [21] 

Bµ  0.14 The death rate of IMC [24] 

Pµ  0.11 The natural death rate of platelets [21] 

Qµ  0.01 The death rate of viral platelets [8] 

Vµ  3.48 The death rate of viral particles [23] 

Sµ  0.009 The death rate of immunity cells [23] 

Tµ  0.07 The death rate of papaya leaves [12] 

α  2 The rate at which the production of immunity by therapy [10] 

f 25 Quantity of papaya leaves per day [10] 



D. Maheskumar, T. Jayakumar, S. Sujitha and E. Vargees Kaviyan 282 

The dynamic model of a DENF with papaya leaves therapy is an 

overview as follows: 
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3. Analytical Approach for the System of NLODE 

3.1. Definition 

Consider the general linear non-homogeneous system, ( ) ,BZtJ
dt

dZ +=  

( ) ,00 ZtZ =  where both ( )tJ  and B are continuous on some interval I. 

3.2. Theorem 

Let ( )tΨ  be a fundamental matrix of solution of ( ) .ZtJ
dt

dZ =  Then the 

solution of ( ) ,BZtJ
dt

dZ +=  ( ) 00 ZtZ =  is 

( ) ( ) ( ) ( ) ( )
−ΨΨ+Ψ=

t

t
dssBstCttZ

0

.1  

The NLODE (1) transformed into a linearized system by considering the 

following steps to obtain an analytical solution: 
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 (i) determine the fixed points of (1), 

(ii) identifying the Jacobian matrix at the fixed points. 

3.3. Determination of the fixed points for system of equations 

The equilibrium values must first be determined to properly comprehend 

the seven-component model’s dynamics. System (1) has some points of 

equilibrium ( )TVSQPBAE ,,,,,,  which are obtained by solving the 

system of equations ,0,0,0,0,0,0,0 ======= TVSQPBA ɺɺɺɺɺɺɺ  i.e., 

,01 11
max

1 =ξ+µ−β−





 −η+ TAAVA

A

A
As AA  (2) 

,01 =µ−β BAV B  (3) 

,01 22
max

2 =ξ+µ−β−





 −η+ TPPVP

P

P
Ps PP  (4) 

,02 =µ−β QPV Q  (5) 

,03 =β−µ−γ SVSP S  (6) 

,05421 =µ−β−β−β−β−µ VVTVSVPVABN VB  (7) 

.0=µ−α Tf T  (8) 

On solving the above system of equations, we get the positive 

equilibrium point of the system (1) as 

( )TVSQPBAE ,,,,,,=  

( ).2816.714,0,104285.1,0,1035255.1,0,1007023.1 1197 ×××=  

3.4. Identification of the Jacobian matrix at the fixed points 

The nonlinear system (1) can be written as: 
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The nonlinear system (1) can be approximated into a linear system as 

follows: 
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At the fixed points, 

( ) ,0,,,,,, =TVSQPBAfi  where .7,6,5,4,3,2,1=i  
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Thus the system (10) can be written as 
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As a result, the system (11) is linear. In matrix form, it can be shown as 

 .

000000

0

0000

0000

0000

0000

0000

566421

33

22

2233

11

1111



































−

−

−

−

−

−

−



































µ−

β−β−β−µβ−

β−β−µ−γ

βµ−β

ξβ−

βµ−β

ξβ−

=



































′

′

′

′

′

′

′

TT

VV

SS

QQ

PP

BB

AA

VaVVNV

SV

PV

PPa

AV

AAa

T

V

S

Q

P

B

A

T

B

S

Q

B

 (12) 

Around the equilibrium point 

( ),2816.714,0,104285.1,0,1035255.1,0,1007023.1 1197 ×××  
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the linear system (12) can be written using the input variables listed in          

Table 1. 
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By variation of constant formula, the analytical solution of the linear 

system (12) is given by 
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,00296.0,1007352.1,1033532.5 21
7

15
8

14 −=×−=×−= −
aaa  

,031.144,1035255.1,00326.0 32
9

3122 =×== aaa  

,1097345.9,00019.0,1079202.1 8
3534

8
33 ×−=−=×−= aaa  

,1050001.5,71207.0,031.144 7
434241 ×=−=−= aaa  

,295959,3.27381,1042851.1 5322
11

51 ==×= aaa  

,1055932.1,1030799.1,333.134 11
56

10
5554 ×−=×== aaa  

.28.714,1036269.1,999.356 71
10

6261 −=×== −
aaa  

4. Stability Analysis 

The linearized system (11) has the following characteristic equation: 

,076
2

5
3

4
4

3
5

2
6

1
7 =+λ+λ+λ+λ+λ+λ+λ=λ− aaaaaaaIJ  (15) 

where 

,1091662.2,1072162.8,1067624.1 13
3

11
2

9
1 ×=×=×= aaa  

,1091801.5,1000743.4,1062868.6 9
6

11
5

12
4 ×=×=×= aaa  

and .1054429.2 7
7 ×=a  

The eigenvalues of the matrix J are 

,6746.35,406.484,1067624.1 32
9

1 −=λ−=λ×−=λ  

.009.0,01.0,07.0,13.0 7654 −=λ−=λ−=λ−=λ  

In this case, every eigenvalue is negative. It follows that the system is 

asymptotically stable. The evidence analytical solution of the DENF model’s 

effectiveness is presented in Figures 1-6. 
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5. Numerical Simulation 

This article examined the quantitative performance of the papaya-based 

antiviral treatment model of (1), and the numerical simulations supporting 

the analytical results were done using computational tools. All of the 

biological parameters used to execute the numerical simulation are listed in 

Table 1. Many of the parameter values were obtained from earlier literature. 

However, some were estimated. Figure 1 shows that after the administration 

of papaya leaf extract, the rate of WBC cells gradually increased from the 

starting point until stabilizing after 20 days. Figure 2 shows that starting on 

day one, the proportion of infected WBC cells gradually reduced. After that, 

however, it reached a plateau and did not even appreciably increase after        

30 days. Figure 3 depicts how dengue suppresses the bone marrow, which 

produces platelets. Therefore, the rate of platelets losing their count began to 

rise on the fourth day and stabilized after 20 days. Figure 4 illustrates how 

healthy persons’ platelet counts drop after contracting the dengue virus           

and may potentially fall below 8101 ×  platelets per liter. The platelet 

reduction typically happens three to four days into a fever, during the          

peak of the infection. In addition, it takes five days to reach a stable state. 

After contracting the DENV at the initial stage, Figure 5 unequivocally 

demonstrates that the immune cells lack the strength to combat them. The 

immune cell count, however, began to rise after just five days and returned 

to normal after 20 days. After 5-6 days, as patients made progress against 

their illness, the viral load gradually decreased. Patients’ dengue viral loads 

showed that the first day of symptoms often resulted in the highest viral 

load. The viral burden then gradually reduced over the following few days. 

The infection rate finally decreased to 0 copies/ml on the fifth day following 

the fever, as illustrated in Figure 6. 
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Figure 1. Effect of WBC healthy cells with papaya therapy. 

 

Figure 2. Effect of infected WBC with papaya therapy. 

 

Figure 3. Effect of healthy platelets with papaya therapy. 
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Figure 4. Effect of infected platelets with papaya therapy. 

 

Figure 5. Effect of T immune reactivity with papaya therapy. 

 

Figure 6. Effect of dengue pathogens with papaya therapy. 
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6. Conclusion 

This study looked at the analytical solutions to a set of nonlinear 

differential equations that specifies the immune response to DENF within a 

host model where the patient receives treatment with an extract of papaya 

leaves. Seven sets of nonlinear differential equations are considered to 

determine the solutions to each equation using an analytical approach. 

Finding solutions to NLODEs is also very challenging. Applying the 

linearization technique to the systems can break them into linear components 

to balance such a situation. They were, furthermore, applying the method of 

variation of the parameter to the linear system with constant coefficients            

to reach the solutions. Finally, the system’s stability was identified               

and discussed using solutions of NLODE obtained from analytical. We 

occasionally could not find exact solutions for some systems of nonlinear 

differential equations. In light of this, the solution of the governing equation 

was carried out through numerical simulation. Figures 1 and 2 demonstrate 

that the system solutions for the novel technique and the numerical 

simulation are the same. In our estimation, determining the performance of 

papaya leaves extracts against the dengue viral load is a vital component of 

the proposed method since it will help develop the techniques for treating the 

malignant DENV. 

References 

 [1] S. Bhatt, P. W. Gething, O. J. Brady, J. P. Messina, A. W. Farlow, C. L. Moyes, J. 

M. Drake, J. S. Brownstein, A. G. Hoen, O. Sankoh, M. F. Myers, D. B. George, 

T. Jaenisch, G. R. Wint, C. P. Simmons, T. W. Scott, J. J. Farrar and S. I. Hay, 

The global distribution and burden of dengue, Nature 496(7446) (2013), 504-507. 

 [2] G. Chowell, F. Diaz-Duenas, J. C. Miller, A. Alcazar-Velazco, J. M. Hyman,              

M. Fenimore and C. Castillo, Estimation of the reproduction number of dengue 

fever from spatial epidemic data, Math. Biosci. 208(2) (2007), 571-589. 

 [3] S. Noisakran, K. Chokephaibulkit, P. Songprakhon, N. Onlamoon, H. M. Hsiao,  

F. Villinger, A. Ansari and G. C. Perng, A reevaluation of the mechanisms  

leading to dengue hemorrhagic fever, Ann. New York Acad. Sci. 1171(1) (2009), 

E24-E35. 



D. Maheskumar, T. Jayakumar, S. Sujitha and E. Vargees Kaviyan 294 

 [4] M. G. Guzman, S. B. Halstead, H. Artsob, P. Buchy, J. Farrar, D. J. Gubler,             

E. Hunsperger, A. Kroeger, H. S. Margolis, E. Martínez, M. B. Nathan, J. L. 

Pelegrino, C. Simmons, S. Yoksan and R. W. Peeling, Dengue: a continuing 

global threat, Nature Reviews Microbiology 8 (Suppl 12) (2010), S7-S16. 

 [5] H. E. Clapham, V. Tricou, N. VanVinh Chau, C. P. Simmons and N. M. 

Ferguson, Within-host viral dynamics of dengue serotype 1 infection, Journal of 

Royal Society Interface 11 (2014), 20140094. 

 [6] W. M. Wahala and A. M. Silva, The human antibody response to dengue virus 

infection, Viruses 3(12) (2011), 2374-2395. 

 [7] R. Shukla, V. Ramasamy, R. K. Shanmugam, R. Ahuja and N. Khanna, Antibody- 

dependent enhancement: a challenge for developing a safe dengue vaccine, 

Frontiers in Cellular and Infection Microbiology 10 (2020), 572681. 

 [8] R. Nikin-Beers and S. M. Ciupe, The role of antibody in enhancing dengue virus 

infection, Math. Biosci. 263 (2015), 83-92. 

 [9] M. Z. Khan Assir, U. Kamran, H. I. Ahmad, S. Bashir, H. Mansoor, S. B. Anees 

and J. Akram, Effectiveness of platelet transfusion in dengue fever: a randomized 

controlled trial, Transfusion Medicine Hemotherapy 40(5) (2013), 362-368. 

 [10] N. Ahmad, H. Fazal, M. Ayaz, B. H. Abbasi, I. Mohammad and L. Fazal, Dengue 

fever treatment with Carica papaya leaves extracts, Asian Pacific Journal of 

Tropical Biomedicine 1(4) (2011), 330-333. 

 [11] H. Ansari and M. Hesaraaki, A with-in host dengue infection model with immune 

response and Beddington-DeAngelis incidence rate, Appl. Math. 3 (2012),          

177-184. 

 [12] R. Ben-Shachar and K. Koelle, Minimal within-host dengue models highlight           

the specific roles of the immune response in primary and secondary dengue 

infections, J. R. Soc. Interface 12 (2015), 20140886. 

 [13] A. Mishra, A within-host model of dengue viral infection dynamics,                  

Applied Analysis in Biological and Physical Sciences, Springer Proceedings in 

Mathematics and Statistics, 2016. 

 [14] N. Nuraini, H. Tasman, E. Soewono and K. A. Sidarto, A with-in host dengue 

infection model with immune response, Math. Comput. Modelling 49 (2009), 

1148-1155. 

 [15] T. P. Gujarati and G. J. Ambika, Virus antibody dynamics in primary and 

secondary dengue infections, J. Math. Biol. 69 (2014), 1773-1800. 



Analytical and Numerical Approaches ... 295 

 [16] Jeremy J. Thibodeaux, Daniel Nunez and Andres Rivera, A generalized within-

host model of dengue infection with a non-constant monocyte production rate, 

Journal of Biological Dynamics 14(1) (2020), 143-161. 

 [17] B. G. Klekamp, Assessing the relationship of monocytes with primary and 

secondary dengue infection among hospitalized dengue patients in Malaysia, A 

Cross-sectional Study, Graduate Theses and Dissertations, 2011. 

 [18] S. Kalayanarooj, D. W. Vaughn, S. Nimmannitya, S. Green, S. Suntayakorn, N. 

Kunentrasai, W. Viramitrachai, E. Ratanachu-eke, S. Kiatpolpoj, B. L. Innis, A. L. 

Rothman, A. Nisalak and F. A. Ennis, Early clinical and laboratory indicators of 

acute dengue illness, The Journal of Infectious Diseases 176 (1997), 313-321. 

 [19] J. J. Tsai, J. S. Chang, K. Chang, P. C. Chen, L. T. Liu, T. C. Ho, S. S. Tan, Y. W. 

Chien, Y. C. Lo and G. C. Perng, Transient monocytosis subjugates low platelet 

count in adult dengue patients, Biomedicine Hub 2 (2017), 457785. 

 [20] Urszula Ostaszewska, Ewa Schmeidel and Malgorzata Zdanowicz, Existence of 

positive bounded solutions of system of three dynamic equations with neutral 

term on time scales, Tatra Mountains Mathematical Publications 71(1) (2018), 

123-137. 

 [21] Naveen Sharma, Ram Singh, Carlo Cattani and Rachana Pathak, Modeling and 

complexity in dynamics of T-cells and cytokines in dengue fever based on 

antiviral treatment, Chaos Solitons Fractals 153(2) (2021), 111448. 

 [22] S. M. K. Deva Siva, D. Bhanu Prakash, D. K. K. Vamsi and B. S. Carani, A study 

of within-host dynamics of dengue infection incorporating both humoral and 

cellular response with a time delay for production of antibodies, Comput. Math. 

Biophys. 9 (2021), 66-80. 

 [23] S. D. Perera and S. S. N. Perera, Simulation model for dynamics of dengue with 

innate and humoral immune responses, Computational and Mathematical Methods 

in Medicine 2018 (2018), 1-18. 


