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Abstract

In this paper, we study the existence and other properties of
the solution of the nonlinear Volterra Fredholm integrodifferential
equation of higher order. The tool employed in the analysis is based
on the application of the S-iteration method. Various properties such
as dependence on initial data, closeness of solutions and dependence
on parameters and functions involved therein are obtained using the
S-iteration method. Examples are provided in support of findings.

1. Introduction

Consider the nonlinear integrodifferential equation of the type:

A0 = F (e, (@), ¥ @), o X, (1) (), (L) (1)), (1)

for t O 1 = [a, b], with the given initial conditions

MN@y=a;, j=01,2 .01 )

where
(Hx) () = j t K., s) My(s, x(s), X(5)s s 27D (5)) ds, 3)
(Cx)(t) = j b Kot ) Mo (s, x(s), 2(s), s 77D (s)) ds. &)

Let R denote the set of real numbers and R, = [0, o). We assume
that FOC(I xR"™2 R); for i=1,2 and a<s<1, K, O0C(I* R),
M; OC(I xR", R) are given functions and a; (j=0,1,2,..,n—1) are
given real constants.

Several researchers have introduced many iteration methods for certain
classes of operators in the sense of their convergence, equivalence of
convergence and the rate of convergence [1, 3, 4, 5,7, 9, 10, 18-25, 30-32].
The most of iterations are devoted for both analytical and numerical
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approaches. Since the S-iteration method is simple and fast, we employ this

method in this paper.

The problems of existence, uniqueness and other properties of solutions
of special forms of IVP (1)-(2) and its variants have been studied by several
researchers under variety of hypotheses by using different techniques
[2, 8, 11-17, 26-29, 33-35] and some of references cited therein. Recently,
Atalan et al. [6] studied the special version of equation (1) for different

qualitative properties of solutions.

The main objective of this paper is to use normal S-iteration method
to establish the existence and uniqueness of solution of the initial value
problem (1)-(2) and other qualitative properties of solutions. Also, extend
the results of Atalan et al. [6].

2. Existence of Solution via S-iteration

Let E =R xR x---xR (ntimes) be the product space. For continuous

functions x(j) I -5 R (j =0,1,...,n—- 1), we denote by

n—1
(@) = Y 1:0)]
j=0

for (x(t), X(t), o, X" V() OE, t01 Denote by B=cC"(1)=

Cc" 11, R), the space of those functions x which are (n—1) times

continuously differentiable on / endowed with norm

||x||B = max{| x(r )|E} Q)

It is easy to see that B with norm defined by (5) is a Banach space.

By a solution of equations (1)-(2), we mean a continuous function x(z),
t O1 which is (n —1) times continuously differentiable on I and satisfies
equations (1)-(2). It is easy to observe that the solution x(z) of equations

(1)-(2) and its derivatives satisfy the integral equations of the form:
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ROIBE nz_la (t-a)™/ | J’t (c -5y

N ) TR PR P T

x F(s, x(s), X(s), oo 2D (s), (Hx)(s), (L2) (s))ds, (6)
forrd/and0< j<n-1.
We need the following pair of known results:

Theorem 1 [30, p. 194]. Let C be a nonempty closed convex subset of a

Banach space X and T : C — C a contraction operator with contractivity
factor m 00, 1) and fixed point x" Let oy and By be two real sequences
in [0, 1] such that o < 0y <1 and B < By <1 forall k ON and for some
a, B> 0. For given uy = v; = w; OC, define sequences uy, v, and wy in
C as follows:

o {”kﬂ = (1= o) Tuy + 0y Ty,
S-iteration process:
i = (1= By)uy + BTy, k ON.

Picard iteration: vy 41 = Tvy, k ON.

Mann iteration process: wi+1 = (1= By )wy + BrTwy, k ON.
Then

@) || upsy = x°) < m*[1 = (1 = m)aBl¥| uy = x|, forall k ON.

() | viay = x°| < m*| vy = x5, forall k ON.

-, U (1 - k _ .0
© || wisr = x| <[ = 0 =m)B| w = x|, forall k ON.

Moreover, the S-iteration process is faster than the Picard and Mann

iteration processes.

In particular, for a; =1, K 0N, the S-iteration process can be written

as:
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u O C,

U +1 = T)’k’ (7)
ye = (L=By)uy +ByTuy, k ON.

Lemma 1 [32, p. 4]. Let {Bk}zo:() be a nonnegative sequence for which

there exists ky O N U{0}, such that for all k = k,

Br+1 < (1= 1 )Br + My Vi (®)

where W 0(0, 1), for k ONU{0}, D ug = and y; 20, Ok ONU{0}.
k=0

Then the following inequality holds:

0 < lim sup By < lim sup Y. 9)

k — o0 k - o0
We list the following hypotheses for convenience:

(H,) The function F in equation (1) satisfies the condition:
| Ft, x(t), x(0). e X0, (Hx) (0). (£2) (1)
= F( (). y(0). o Y, (1) (). (£3)(0)) |

n-1
< p()] 2.1 x0() = 300 [+] (M) () = () () [ +] () (1) - (£3) ()] .
i=0

where p O C(I, R,).

(H,) The functions M; (i =1, 2) in equations (3) and (4) satisfy:

| My (t, x(2), X0, s XY = M 30, Y, o YT
n—1
< ()X [0 - y00) .
=0

where ¢; 0 C(I, R,).
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(H3) There exist non-negative constants KiD (i =1, 2) such that
| Kt 5)|| gi(s)| < K for a < s <t <b.

(Hy) NP(1+a+B)(b-a)<1, where

n-—1 (b—a)n_j_l
N=Z—. P=sup{p(t):a£t£b},K1D(b—a)=(1, and

Now, we are able to state and prove the following theorem which deals

with the existence of solutions of equations (1)-(2).

Theorem 2. Assume that hypotheses (H)-(H4) hold. Let {Ek}/?:o be a

00
real sequence in [0, l] satisfying sz = o0, Then equations (1)-(2) have a
k=0

unique solution x 0 B and normal S-iterative method (T) (with u; = x;)

converges to x 1 B with the following estimate:

NP+ a+B)(b - )]
- NPy (b-a)] T &

| X1 = x g I xo = x||5- (10)

Proof. For x(¢) 0 B, define the operator

n-l i n-—1

_ (t-a)  ('(-5)
(Tx)(t) = ) o, o —
; (l) Ia (n 1).

x F(s, x(s), X(5), oy x770(5), (Hx) (5), (£x)(5))dds, (11)

for t O 1 =[a, b].
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Differentiating both sides of (11) with respect to ¢, we have

. —a) 7/ (= gyr=i1
0 =L b [ )

(n—j-1)

x F(s, x(s), X(5), s x7D(s), (Hx) (s), (£x)(5))ds, (12)
fort07 and 0 j<n-—-1.

Let {x};-, and {x,(cj)}zo:() (j=1,..,n—1) be iterative sequences

generated by normal S-iteration method (4) for the operators given in (11)
and (12), respectively.

We show that x; — x as k — oo,
From iteration (7), equations (6), (12) and hypotheses, we obtain

| g+1(t) = x(1) |

n-1
=3 [0 -0
Jj=0

N
—_

| (13)(e) - (1) (r) |

J=0

:" lln=- la (t—a)l jt(t_s)n—j—l
| a7t (i= ) g (= =)
J=01i=j

x F (s, v (s), e (s)s s YV(s), (M) (5), (L) (s)) s

nlo( t—a - J‘t(t—s)n_j_1
a

et (i) (n—j-1)
i=j

x F(s, x(s), X'(5), ooy x7D(s), (Hx) (5), (L) (5))ds
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20 a (n_]_l)'
x| F (s, yie(s), el o 370(s), (M) (), (L) (5))
= F (s, x(s), ¥(). s x7(s), (Hx) (5), (L) (5)) |ds

:

-1 n— n—1 _ .
boa p<s){z|(yk)(”(s)—x(l)(sn
i=0

= (n j=1)

+ | (Hy) (s) = (Hx) (s) [ +] (Lye) (s) = (£x) (s) I}ds

(| -l ) .
< NPL[Z| (v )(l)(s) - x(z)(S) |
i=0

+[ (Hye) (s) = (Hx) () | +] (Lyie) (5) = (£x) (s) @ds.

(13)
From (3) and hypotheses (H,)-(H3), we obtain

| (Hyi) (s) = (Hx) (s) |

= [ [ K DM 1 ()0 o)
- j :lCl(s, DM, (T, @)X (), ... X" D(1))dr
< [ 16 Ol M 3 @55 5 0)

- My (1, x(1) X' (1), .... XD (@) |dr
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s n-l : .
< [ 16 Dl Y] )00 - 200 ar
i=0

<[’k ZI 3 )@ - () | (14)

Similarly, from (4) and hypotheses (H,) - (H3), we have

(En) )= () < [ KzE’ZI )@ -0 e as)

Therefore, using (14) and (15) in (13), we have

[ (1) = 2(0) |
(-l . . g n-l ) .
< np| Q{ZI (0)V6) =2 [+ [ K] 00)0(0) = 2O () e
i=0 i=0
n—1
+ :’KZDZ| ()P () - () |dr}ds
i=0
< N[ 13k6) =20+ KT 30 = x0) e

o :Kg i (0) = x(1) |Edr}zs. (16)

Now, we estimate

| y(0) = x() | g

._

n—

1) - x|

~.
I
]

:
._

= 310 - £0)] +00) - X0 | + ] 7)) - ()0 |

j=0
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n-1 n-1
= [(1 =& > 1 x(0) - D0 |+ 8 > (1)) - (1) (1) |

J=0 J=0

n-1
<(1-8) | 20 - x)0) |

J=0

cgne|’ D 5(9) = ¥ + [ KT (0 = 0

+ :K2[| 2 (1) - x(1) |Edr}ds
< (1= &) (1) = x(1) |

5] |15 =20+ Kfl ) =200

b
+ J' K5 x, (1) = x(1) | Edr}zs. 17
a
By taking supremum in the above inequalities, we obtain
| 1 = xlg

t s b
<[k = xly # [ KfL = g [R5 o = sl s

< VP[ [+ Ko - ) + K5 - a)lds] oy - 1,
< NP[L+a +B](b —a)| ye = xlg (18)
and
lye =xlp <[ =&l 5 = xlg + &NP[L+a +B] (b~ a) ] x; — x]]
=[(1- &)+ &NP1L+a+B)(b - a)ll x — x|
=[1-& (- NP(L+a+B)(b-a)ll x — x|, (19)

respectively.
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Therefore, using (19) in (18), we have
g1 = x g
<[NP+ a+B) (b -a)lll =& (- NP(L+a +B) (b - a))l ¢ = x5 (20)
Thus, by induction, we get

| xger = x|lp < [NP(L+a +B) (b - )] !

k
[0 - & - NP+ a+B) (b~ a)ll xo = x]z @D
Jj=0

Since &, 0[0, 1] forall k 0N U{0}, the assumption (H,) yields
& <1land NP(I+a+P)(b-a) <1
= ENP(L+a+B)(b-a) <&
= &, [1-NP(1+a+B)(b-a)] <1, Ok ONU{0}. (22)

From the classical analysis, we know that
x2 3

l—xSe_x=1—x+7—%+---,xD[O,l].

Hence by utilizing this fact with (22) in (21), we obtain

| xg+1 = x ||B
< (WP B - )l ORI by )
This is (10). Since izk = o0,
k=0
e—(l—NP(1+a+[3)(b—a))zl;:0Ej 0k e o1

which implies lim || x;4; = x|z = 0. This gives x; — x as k — oo. O

—
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Remark. It is interesting to note that the inequality (23) gives

the bounds in terms of known functions, which majorizes the iterations

for solutions of equations (1)-(2) as well as its derivatives x(j)(t)

(j=L2,.,n-1) forrQO1I
3. Continuous Dependence via S-iteration

Suppose that x(¢) and X(¢) are the solutions of (1) with initial data

N@)y=a,, j=0,1,2 . n-1 (25)

j D
and

(q) = B j=012..n-1 (26)

respectively, where o ; and B ; are real constants. By a solution of equation

(1) along with condition (26), we mean a continuous function x(¢), ¢ 01
which is (n —1) times continuously differentiable on I and satisfies equation
(1) along with condition (26). It is easy to observe that the solution X(¢) of

equation (1) along with condition (26) and its derivatives satisfy the integral

equations of the form

_ j ts — -1
) = ZB’ ti—aj +J.a((tn—sz'—]1)!

x F(s, %(s), ®(5), or T7D(5), (HF) (5), (£F) (s))ds,  (27)
fort07and 0 j<n-—-1.

Then following the steps as in the proof of Theorem 2, we define the

operator for equation (1) along with condition (26) as
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n-1 i n—1
FV () = (t-a) , ('(t-s)
(TX) (t) - Bi 11 + —1\

,-Z(;‘ (i) Ja (n=1)!

x F(s, 7(s), T(5), r T77D(s5), (HF) (5), (£F)(5))ds, (28)
for t 01 =[a, b).

Differentiating both sides of (28) with respect to ¢, we obtain

=g n=j-l
(Tx (t)_ZB’ (z—])‘ ja ((tn_}_l)!

x F(s, 7(s), #(5), s T (s), (HE) (), (£F) (5))ds, (29)
fort0/ and 0< j<n-1.

Now, we deal with the continuous dependence of solutions of equation
(1) on initial data.

Theorem 3. Suppose that hypotheses (H,)-(H4) hold. Consider the
sequences {xk}zozo and {)_ck}zozo generated by normal S-iterative method
associated with operators T in (12) and T in (29), respectively, with the
real sequence {Ek}l?:o in [0,1] satisfying % <& forall k ONU{0}. If

the sequence {)_ck}zozo converges to X, then

_ 3M
[x-%|p < [1-NPO+a+B)(b-a)l

(30)

where

ZI[ZI o -p |G J

Proof. Suppose that the sequences {xk}zo:() and {)_ck}zo:() generated by

normal S-iterative method associated with operators 7 in (12) and T in (29),
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respectively, with the real sequence {Ek}k -0 In [0, 1] satlsfy

< & forall

k ON U{0}. From iteration (7) and equations (6) with (12); (27) with (29)

and hypotheses, we obtain
| X 41 (1) = X1 (2) |E

n—1

| xk+1(t) - xk+1(t) |
j=0

—

n—

| (13)(e) = (T3) () |

~.
]
=]

:n—l n—la (l‘—a)l J. (t_s)n j-1

i - = j-1)
~ (i =) (n =

~.
~.

=J

x F(s, v (), i (5)s oo yD(6) (Hye) (5), (L) (5))ds

(r- a)i_. 't - s)”_j_1
ZBI L=

x F(s, 3i(s), 505, - 5 7(5), (M) (), (£3) (5))ds

n-1 1 i—7 n—j-1
< . lt=a)™’ (t=s)""7"
_JZO[Z“] Bl| t(l_j)! J ZJ tn_]_l

x| F (s, ye(s) k() o 2 7(5) () (5). (£3) (5))

= F s, 31 (5), T (s} 5 7s), (3 (5), (£50) (5)) | s
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n j-1

Zl L {Z| y0)2(s) - 309(s) |

I/\

+] () () = (30 () +] (L) () = (£5) o) |]ds
(-l . .
<M+ NP| a{ZI 0)(s) = G|
i=0

| (Hyi) () = (H3i) () |+ (Lyi) () = (£3) (5) |]ds.

(€29)
Recalling equations (14), (15) and (18), the above inequality becomes
| X1 = xlp < M+ NP[L+a +B](b~a)| v = 5 |- (32)
Similarly, we have

| v (1) = 3 (2) |

n—1
=310 -390)|

j=0
n—1 .
(- &) D0 - x0(0) | + &) (1)) - Tx) D) ]
j=0
-1 n—1
(1-& 2 ) =20+ &> | o)) - (Tx) () |
=0 j=0

1—zk)2| D) -x9() |
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‘ n-1 ] )
&M+ ENP] [Z| (5)(s) = (50)(9)|
i=0

+ | (o) (s) = (Hx () | +] (Lx ) (5) = (LX) (s) [ | ds. (33)

Hence from equations (14), (15) and (19), the above inequality takes the
form
Ive =V g
SU=& )| X [lp + &M + ENP(L+ o +B) (b - a)| x =X I

<SEM +[(1-&) + ENP(L+a +B) (b - a)l| x — % |

< &M +[1-8, (1= NP(1+ o +B) (b = a))l| 1 = % - (34)

Therefore, using (34) in (32) and hypothesis (H,4), and % < &, for all
k ONU{0}, the resulting inequality becomes
[ o I
<[1-&QU-NP(L+a+B)(b-a)llx; —X; 5 + &M +28M
<[1-&@-NP(+a+B)(b-a)llx - % s

3M

#(1- NP+ o+ B) b - ) s s B =)

(35)

We denote
Be =lx —xlp =0,
W =& (1 - NP(1+a+B)(b-a))0(0,1),

_ M
Ye = T=NP(+a +B) (b - a)

)20.
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The assumption % < & forall k ONU{0} implies D & = . Now,
k=0

it can be easily seen that (35) satisfies all the conditions of Lemma 1 and
hence we have

0 < lim sup By < lim sup Yy

k > o k — o

M
=~ NP(1+a +B)(b - a))

= 0 < lim sup || x; — X [ < lim sup @
k - o

— 00

3IM

(1-NPQ+a+B)(b-a)) (36)

= 0 < lim sup|lx; — % |5 <
k - o

Using the assumptions lim x; =x and lim Xx; = X, we get from (36)
k > k o

that

M

l4=%ls < T=ApEF a v @G- ©7

which shows the dependency of solutions of IVP (1)-(2) and IVP (1) with
(26) on given initial data. O

4. Closeness of Solution via S-iteration

In this section, we study the continuous dependence of solutions of

(1)-(2) on the given initial data, and function involved therein.

Now, we consider the initial value problem (1)-(2) and the

corresponding problem

) = g, 70), 7(0), ... 7). (HF) (), (£3)(2)), (38)

for t O 1 = [a, b], with the given initial conditions

i(q) = Bi. j=0.12 ..n-1 (39)
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where G 0 C(I x R"*2, R); (Hx)(r), (£x)(r) are as in (3), (4) and B; are
given real constants.

By a solution of equations (38)-(39), we mean a continuous function

x(t), tO1 which is (n—1) times continuously differentiable on I and
satisfies the IVP (38)-(39). It is easy to observe that the solution x(z) of

equations (38)-(39) and its derivatives satisfy the integral equations:
-j-1
o (t - a) +J‘f(t—s)”f
ZBZ (G IR P T ]

x G(s, 7(s), T(5), . T"7D(s), (HF) (), (£F) (s))ds,  (40)

fort0/and 0< j<n-1.

Let x(t) O B. Following steps from the proof of Theorem 2, define the
operator for equations (38)-(39):

_5g (r =s)"”!
7)) = ZB, l(l), [ 8

n—l

x G(s, (s), T(s), . T"7V(5), (HF) (5), (£F) (5))dds, (41)
for t O 1 =[a, b).

Differentiating both sides of (41) with respect to #, we have

-a J t(f—g n—j-1
7)) = ZBz (l(l ot (1 ).

a (”_J_l)!

x (s, 7(s), T(5), s T (5), (HE) (5), (£F)(5))ds, (42)
fort07 and 0< j<n-1.

The next theorem deals with the closeness of solutions of the problems
(1)-(2) and (38)-(39).
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Theorem 4. Consider the sequences {xk}/?:o and {)_ck}zozo generated by
normal S-iterative method associated with operators T in (12) and T in (42),
respectively, with the real sequence {Ek}zo:() in [0, 1] satisfying % < & for

all k O N U{0}. Assume that

(i) all conditions of Theorem 2, and x(t) hold and X(t) are solutions of
(1)-(2) and (38)-(39), respectively,

(i1) there exists a non-negative constant € such that
| F e x(0). x'(). .. 7). (1) (). () ()
= G(t. x(2), ¥(1). . XV(0), (1) (0). (L) () |
<p()e Ot 01, (43)
where p(t) 0 p(I, Ry).
If the sequence {X;}, =, converges to X, then

_ 1 < 3M +NPeb - a)
lx=%lp < [1-NPI+a+B)(b-a)]’

(44)

where P = max{p(t): a <t < b}.

Proof. Suppose that the sequences {x;},—, and {X;}; -, generated by
normal S-iterative method associated with operators 7 in (12) and T in (42),
respectively, with the real sequence {Ek}zo:() in [0, 1] satisfy % < §; forall

kONU {0} From iteration (7) and equations (6) with (12); (40) with (42)

and hypotheses, we obtain

| xg41(8) = X1 (1) [

n-1
= > () - 7, 0) |
Jj=0
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-1
Z | @y )0 - T5)00) |

n—1{n-1 i— 7 —i-1
D N IR
a (”_J_l)!

=0 i:j

x F(s, v () ¥ (5)s on YD), (Hye) (5). (L) (s))ds

~.

= Tl

(-t Jal-j-1)

x Gls, T (s), Tk (5) - 775, (M) 5, (£50) (5))ds

njl

[ a B"WJ Zfzn—Jm

x| Fs, ve(s) Y () ¥ D) (o) (5), (L3 ) (5))
— F (s, 5 (s), () o 37V(s), () (), (L) () | ds
n-l1 n-j-1

.\ t(—s)"J
JZJ. (n=j-1)

x| F(s, T (5), T () oo T(s), (H3) (5), (£7) (5))

= G(s. 7 (). T (), o TUO(s). (1) ). (£37) (5)) s

DI S D [Z| 0)26) = G|

| (Hyi) () = (R ) () [+ (L) () = (L) (s) || ds
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n]l

l
Z n—]—l J p(s)eds
<M+ NP j;["zﬁ CORIORIGARIO]
i=0

1 (M) () = (M) () |+ (Lyi) (5) = (£3k) (s) [ | ds

+ NPe(b - a). (45
Recalling equations (14), (15) and (18), the above inequality becomes
51 = Feot |y < M+ NPe(b —a) + NP[1+ 0+ Bl(6 ~ @) vy = . |- (46)

Similarly, we have

| i) = 3 (@) |g

Z| y(J)(, (j)(t) |
j=0

-1

= S 10- 80 00 - $00) | + &) )00 - Tx) ) ]
=

[1— zk)2| OREUOIR sz| (T3) () - @5 (0) |]
j=0
1—ak2|x<f (1) | + &M + NPe(b - a)]

+ e[| FZ ARIORIGARIO]
i=0

+ [ (Hye) (s) = (i) () [ +] (Lyie) () = (L3 ) (s) [ ds. (47
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Hence from equations (14), (15) and (19), the above inequality takes the
form

Ive = Vi llg
<S(U=8&)|xx =X |5 +&x[M + NPe(b - a)]
+ENP(L+ o +B) (b - a) | xx =% I
<&M+ NPe(b - a)] +[(1- &) + NP+ a +B) (b - a)l| x — % |5
< &M + NPe(b - a)] +[1 - &, (1 - NP1+ + B) (b = a))]|| x¢ — % |-
(48)

Therefore, using (46) in (48) and hypothesis (H 4) and < & for all

k ON U{0}, the resulting inequality becomes
I %41 = Xea1 15
<[1=& (- NP(1+a+B) (- a)llx - % g
+ &, [M + NPg(b - a)] + 28 [M + NPe(b - a)]
<[1=& (- NP(1+a+B) (- a)llx - % g

3[M + NPe(b - a)]
NP1 +a+B)(b-a)]’

Ho[1-NP(+ o+ B) (b - a)] o (49)

We denote
Be =lx —xlp 20,
b = &1 - NP1+ a+B)(b - a)] 00, 1),

3[M + NPe(b - a)
[1-NP(1+a+B)(b-a)

Yir = = 0.
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The assumption L & forall k ONU{0} implies D & = . Now,

2 k=0
it can be easily seen that (49) satisfies all the conditions of Lemma 1 and
hence we have
0 < lim sup By < lim sup Yy
k - o k — o
3[M + NPe(b - a)
- NP(1+0a +B)(b - a)]

= 0 < lim sup | x; =% ||z < lim sup 0
k — o

k- o

3[M + NPe(b - a)]
[[-NP(1+a+B)(b-a)]

= 0<lim sup || x; — X |5 <

k - o0

(50)

Using this fact and the assumptions lim x; = x, lim x; = x, we get
k > o0 k — o

from (50) that

1 < 3M + NP - a)
| x x||B—[1_NP(1+a+|3)(b—a)]’

61y

O

Remark. The inequality (51) relates the solutions of the problems
(1)-(2) and (38)-(39) in the sense that if F and G are close, then not

only the solutions of the problems (1)-(2) and (38)-(39) are close to each

other (i, | x = X[z — 0), but also depend continuously on the functions

involved therein and initial data.
5. Parameter Dependence via S-iteration

We next consider the following initial value problems containing certain

parameters:
A0(6) = F (e, x(@), 2@ s <), (M) @), (LX) W), (52)

(1) = F(t, %), %), o V), (HE) (), (£F) (), o), (53)
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for +0O1 =[a, b], with the given initial conditions (2), where F [
C (I x R" +3, R); H, L as defined in (3), (4) are given functions and Y;, U,
are real parameters.

By a solution of equations (52) with condition (2), we mean a

continuous function x(z), 701 which is (n—1) times continuously

differentiable on [ and satisfies equations (52) with condition (2). It is easy

to observe that the solution x(t) of equations (52) with condition (2) and its

derivatives satisfy the integral equations of the form

x(j)(t):nz_iai (t—a) ™/ J- ()
i=j

(i - j)! (n—j—1)!

x F(s, x(s), 2(s), ooy XD (s), (Hx) (). (£2) (5). py)ds, (54)
fort07 and 0L j<n-—-1.
Let x(t) O B. Following steps from the proof of Theorem 2, define the
operator for equation (52) as
I’l

-a) (t—s)"
00 =Y, Lo Y

x F(s, x(s), x'(s), s X7 (s), (1) (5), (£x)(5), Wy )ds, (55)
for t O 1 = [a, b].

Differentiating both sides of (55) with respect to ¢, we have

(i - j)! (n—j—1)!

(Tx)(j)(z) = nz_lui (t- a)l J‘ (t - sy~ j-1
i=]

x F(s, x(s), x'(s), oy X7 (s), (Hx) (5), (£x)(5), py)ds, (56)

fort07 and 0 j<n-—-1.
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Similarly, we define for equation (53):
n-l i n—j-1
() = (t-a)™’ I (r-s)
W0 =28 Gt e

=J

x F(s, Z(s), T(5), woos T (s), (HF) (), (£F) (5), 1y )ds, (57)

fort07 and 0L j<n-—-1.

Let x(¢) O B. Following steps from the proof of Theorem 2, define the

operator for equation (53) as
—_ (t—a) (r=s)""
0= Z“ 1

x F(s, Z(s), #(5), ooos T (s), (HF) (), (£F) (5), 1y )ds, (58)
for t O 1 = [a, b].

Differentiating both sides of (58) with respect to ¢, we have

—a) 7/ — gyl
(75)0)( t)—za (f(l_)J j <(fn_3_1
x F(s, 7(s), T(s), oo ¥ (s), (HF) (5), (LX) (s), Ha)ds, (59)
fort07 and 0L j<n-—-1.

The following theorem states the continuous dependency of solutions on
parameters.

Theorem 5. Consider the sequences {xk}]o::O and {)_ck}zozo generated by
normal S-iterative method associated with operators T in (56) and T in

(89), respectively, with the real sequence {Ek}zo:() in [0,1] satisfying

% < & forall k ONU{0}. Assume that
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(i) The hypotheses (H,)-(H4) hold and x(t) and X(t) are solutions
of equation (52) with condition (2) and equation (53) with condition (2),

respectively, and

(i1) The function F in equations (52) and (53) satisfy the conditions:
| F e xe). 20 27D, (1) (), (£2) (). )

= F(t, (@), ¥ @), s YV, () (@), (£3) (), 1) |
n—1
< ()| D 1xD0@) =y [ +] () (1) - (1) ()| +] (L) (1) = (£) ()] |-
i=0

and

| F (e, (), X0, s <7D (0), (M) (2, (L) (), 1y)
= F(t, x(0), &'(0), s xP@), (Hx) (), (L) (0), 12) |

< ()| — Mo |,

where p, r 0 C(I, R,).
If the sequence {)_ck}zozo converges to X, then

ANR |y — Wy | (b - a)]
1- NP|(il L aufé) (b-a)l’ (60)

| x-%|p S[

where R = max{r(t) : a <t < b}.

Proof. Suppose that the sequences {xk}:’:o and {)_ck};:’:o generated by
normal S-iterative method associated with operators T in (56) and T in (59),
respectively, with the real sequence {§;};’_, in [0, 1] satisfy % < &, forall

k O N U{0}. From iteration (7) and equations (54) with (56), (57) with (59)

and hypotheses, we obtain
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| xg41(2) = X1 (¢) |E

Z| xk+1 (1) - xk+1 (1)

n—1

| (@)D - T5) 00 |
j=0

:n—lnl (l‘ a)l J.(t s)n]l

al
!
~ (i =j)! (n =1~

~.
~.

=J

x (s, wi (), () s 38 7(6), (H) (s, (L) ) my)ls

(t-a) (t- s)”]1
’(l J)‘ J

(n-j-1)

X F (s, 5 (5), T (s)s o 37 (s), (HF0) (5, (L3 ) (5), b )dls
n-l n—j-1
- t( -5y
- Z.[a (tn -j-1
j=0
x| F(s, v () i (s)s o ¥ 7(s), (Hae) (5), (L) (), 1y)
= F (s, 5 (5), () oo TD(s), (T ) (5), (£3) (5), 1y) |l
sy j-1
* ZI ((tn 3 1
x| F(s, ¥ () T (s)s oo T(s), (M) (5), (£5) (), 1y)

= F (s, T (5), T () oo 3D(s), (M) (50, (£3) (5), 1) |ds
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Z(é)n_—aj) —i)v _[ p(s) {Z‘J (yk)(l)(s (yk)(l (s) |
+| (Hyr) () = (Hye) () | +] (L) (s) = (£k) (5) | ]ds

nl ;

(b-a)yi™!
+§ — | () gy |ds
=ACRNED I b

n—1

< NP Ji | (0)D(s) = 5)D(s) |

i=0

| (Hyi) () = (R ) () [+ (L) () = (£3%) (5) Iids

+ NR| W -~ | (b - a). (61)
Recalling equations (14), (15) and (18), the above inequality becomes
a1 = X g
S NR|py — Uy |(b—a) + NP(L+a +B)(b - a)| vk = Vi |- (62)
Similarly, we have

| v (6) = 5, (2) |

-1
Z| w0 -590)|

k‘
»—O

n—

= 3 10- &) <D0 - 20) | + & | () 0) - Tx)D () [

0

-1 n—1
(1-& 2 -5 [+ & Y| () 0) - (T5)(0) |
j=0 j=0

~.
1
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| x(0) =xD(0) |+ & [NR 1y — 1y | (b - a)]

M1

<(1-&)

=0

~
1

¢ ozt . .
+ENP| [Z| (:)76) - G|
i=0

+ [ (M) () = (M3 ) () [ +] (Lye) () = (£3%) (5) | |ds. (63)
Hence from equations (14), (15) and (19), the above inequality takes the
form
Iye = Vi llg < (0= &) x = % 5 + EINRI Wy — 1o [ (b — a)]
+ENP(L+ o +B) (b - a) | x = %
< & [NR[py —pa [(0 - a)]
+[(1- &) + GNP+ a +B) (b - a)l| % = i
< & [NR[py —pa [(0 - a)]
+[1-& U -NPOL+a+B) (b -a)ll % — X 5 (64)

Therefore, using (64) in (62) and hypothesis (H,4), and L &, for all

5 S
k O N U{0}, the resulting inequality becomes
%1 = X g
<[1-& @0 -NP(L+a+B)(b-a)llx - %l
+ENRI Wy — By (b = a)] + 28 [NR| py =y [ (b - )]

<[1-& @ -NPOU+a+p)(b-a)llx X g

+ &1 NP+ o+ B) (b - a)] f%@é‘i;“ﬁ [Lglzb__"i])] . (65)
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We denote
Be =llx =Xk [ 20
W = &l - NP(1+a+B)(b-a)T(0, 1),

vo = VRl p ~ o (b - a)]
kmTi-nNPl+a+B)(b-a)

]20.

The assumption % < & forall k ONU{0} implies D & = . Now,
k=0

it can be easily see that (65) satisfies all the conditions of Lemma 1 and
hence we have

0 < lim sup B; < lim sup Yi

k - o0 N

3NR| Wy —Hy | (b - a)]
1-NP(1+a +B)(b-a)

= 0<lim sup | x; =X [ < lim sup
k-,OO[

k - o0

3NR|py — Yy [ (b —a)
1-NP(Q+a+B)(b-a)l

= 0<lim sup || x; =% [ s[ (66)

k - o

Using this fact and the assumptions lim x; =x and lim Xx; =X, we

k — o0 k — o
get from (66) that
_ 3INR|py — My [ (b - a)]
Ix=%ls < T NP+ a +B) G - a) 7
U

Remark. The result dealing with this property of a solution is called
“dependence of solutions on parameters”. Here the parameters are scalars.
Notice that the initial conditions do not involve parameters. The dependence

on parameters is an important aspect in various physical problems.
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6. Examples

We consider the following example for n = 2:

i l3 3
X' = 5 [sin x(¢) cos x(¢)] = = sin x'(¢)
+ i s + — (S) S
9 (4} s st 05 s o0

where ¢ 0 1 =0, 1], with initial conditions

x(0)=0, x(0)= 5 (69)

Comparing this equation with proposed equation (1), we get F U
c(I xR* R), with
F (2, x(r). x'(¢). (Hx) (1), (£x) (1))
l3 l3 l3 l3
== [sin x(t) cos x(t)] — - sin x'(¢) + 5 (Hx)(z) + o (Lx)(2),
where
2

(H2)(0) = t( ! }x(s)ds and (L) (1) = j (a5 +1) 220 as

0\ 4 +¢° ()

2
Also, we get K;(s, 1) = d— Ko (s, 1) = (45> +1) and M,(1, x, x)
4

+ e’

, X
= x, Mz(t,x,x)=5+x.

Now, we have

| F(t, x, x', Hx, Lx) = F(t. y, ¥', Hy, LY)]

3 - 3
17 ] sin2x(r) _sin2y(e) | L 7y
< = 5 5 + 7|s1nx(t) sin y'(z) |
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l3 13
+3|Hx—Hy|+7|£x—£y|

w

< limy|+ o -y - Hy |+ x - Ly |
=75 YT Y1739 YT Y

3
t I I
sSlx-yl+ [ =¥+ He-Hy|+[ Lx = Ly]]

<p@)lx=—yl+]x' = y|+|Hx=Hy|+|Lx =Ly,

t3

where p(t) = 5

Also, we get
| My (5 x, x') = Myt y, Y <] x =y
and

X Y

5+x S5+y

' , 1
|M2(I,x,x)—/\/12(t,y,y)|$ S§|x—y|.

This gives

1
q(x) =1 and gp(x) = 5

Therefore, we have

2
Ky(e, )l qr | =
4+

and

1
alt )l gz | = (a7 +1) | 5

5 0
<= =1=
<c=1=K;

Further, we have

3
P =sup{p(t): 0<t <0} =sup{%:
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1 1
o = Kb -a) =<(1-0) =<,

B=K5(b-a)=11-0)=1,

. )i Q 1 1 1

Z n—]—l 'Z;)(z—j—l)!‘(2—0—1)z+(2—1—1)!‘2‘
J:

Therefore,

NP(1+0(+B)(b—a)=2(%)[1+%+1}(1—0)—5—2—088<1

6.1. Existence and uniqueness of solutions

Now, we define the operator 7 : B - B by
(Tx)(t) = = + I t = 5)F(s, x(s), x'(s), (Hx)(s), (Lx)(s))ds. (70)

From the above discussion, it follows that the operator T satisfies all

the conditions of Theorem 2. Hence, the sequence {x;} associated with

the normal S-iterative method (7) for the operator 7 in (70) converges to a
unique solution x of IVP (68)-(69) in B.

6.2. Error estimate

Further for any x; U B, we have

RN (7 (R 53 [ el il
B e[l_NP(l+a +B) (b_a)]zf;()zi

I

k+1
. [0.88]

rl EVIEY 2 71
L0122

where, we have chosen §; = % 00, 1]. The estimate in (71) is called the

bound for the error (due to truncation of computation at the kth iteration).
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6.3. Continuous dependence
_ _1 _1 _

Indeed, for oy =0, 0y = 3 and By = 5 B; =1, we have

M
a+p)(-a)l’

I =ls = r=xpa+

where
n-1{n-1 i— i
— (b=-a)™/
M = Zlai Bll l_j)!
J=0\i=j
1 1 1
=|0(o—l30|(mj+|0‘1—|31|(ﬁj+|0‘1—|31|(m)
—lo-Ll41_ 1_
_‘0 5 + > 1|+ > 1‘
_3
ok
Therefore,
3
{2)
_ 2) _ 45 _
||x X||BS1_£—T—375
25

6.4. Closeness of solutions
Next, we consider the perturbed equation:

3
VRN S = r -
x'(t) = = [sin X(¢) cos x(¢)] = sin X (1) + 5 10(4 " est(s)ds
3 .1 = 3
t 2 x(s) t
+— + -—
- jo (457 + )2y ds = g (72)
with the given initial conditions
(73)

%(0) = % 7(0) = 1.
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Similarly, comparing with equation (40), we have

G(s, x(s), ¥(s), (Hx)(s). (£X)(s))

0

:é[sin)_c(t)cosf(t)] _§Sin?(t)+§jt[ /2 J)—C(s)ds

i(s) o
57 50) ds =15 (74)

2 s +1
+— +
7j0r(s )

Now, we define the operator 7 : B — B by

t

(Tx)(t) =t +% + IO (t =s)G(s, x(s), X'(s), (HX)(s), (Lx)(s))ds. (75)

It is easy to see that the perturbed equation (72) satisfies all the

conditions of Theorem 2. Hence, the sequence {X} associated with the

iterative method (7) for the operator (75) converges to a unique solution

x U B. Now, we have the following estimate:

| F (e, x(e), x'(e), (Hx) (1), (£x) (1)) = G2, x(2), x'(2), (Hx) (0), (Lx) (1))

3 3
1] _r1
S?H‘?? (76)
1
Therefore, € = 5

Consider the sequences {xk}]?:() with x; — x as k — oo, and {)_ck}zo:()
with X, - X as k — o generated by iterative method (7) associated to
operators T in (70) and T in (75), respectively, with the real sequence
{&}i=p in [0, 1] satisfying % <&, for all k ONU{0}. Then we have

3
from Theorem 4 that for By = %, B =1, €=0.5 with p(tr) = p(r) = %

Therefore, P = max{p(t): 0 <t < 1} = %
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Thus,

i <. 3M+NPeb - a)]
||x‘x||B “[-NPA+a+B)(b-a)

- 3[% : 2[%)0%2](1 ] 0)} = 05.‘112 = 425. (77)

This shows that the closeness of solutions depends on involved functions.
6.5. Dependence on parameters

Finally, we prove the dependency of solutions on real parameters.

Consider the following integrodifferential equations:

£ £ 2t 12
x"(t) = 35 [sin x() cos x(t)] = = sin x'(t) + 5 -[0 (4 - Jx(s)ds
+ e
361
+ % j Oz(4s2 +1)< f(;zs) ds + 1y, (78)

where ¢ 0 1 =0, 1], with initial conditions

x0)=0. x(0)=1 (79)
and
3 3 3 2
() = % [sin %(r) cos %(1)] - % sin ¥'(r) + % j ;(4 : - J)_c(s)ds
R R TRE C I (80)
7J0 5+ x(s) 2

where ¢ 0 1 =0, 1], with initial conditions

x(0) = % x'(0) = 1. (81)
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Following the above discussion, we have p(t) = p(t) = r(t) =

Therefore, R = max{p(r):0<r<1} = Hence, by making similar

1
5

arguments and from Theorem 5,

1
[x -], < SVRL =1 |6~ a)] :3{2(§j|l11—u2|(1—0)}
?TU-NPta B a) (1= 039)

1

In particular, for p; =1, hy = 3 the above inequality becomes

6] 2],

0.12

| x=%p <
This proves the dependence on both initial data and real parameters.
7. Conclusion

We established the existence and uniqueness of the solution to the IVP
(1)-(2) by the S-iteration method. Further, we discussed various properties of
solutions such as continuous dependence on the initial data, closeness of
solutions, and dependence on parameters and functions involved therein.

Finally, we provided examples in support of our results.
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