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MATHEMATICAL ANALYSIS OF HEPATITIS B 

TRANSMISSION MODEL 

 

 

Abstract 

In this article, we present the transmission dynamics of the acute          

and chronic hepatitis B epidemic problem. To control the spread        

of hepatitis in a community, we first develop a mathematical model          



OUEDRAOGO Boukary, ZOROM Malicki and GOUBA Elisée 214 

for the transmission of the virus of hepatitis B. After framing the 

mathematical model, we show the existence and uniqueness of the 

solution, then mathematically analyze the model and determine the 

disease-free equilibrium state of the model. Besides, we determine the 

basic reproduction number 0R  for this model which is interpreted 

epidemiologically. Next, we study the local stability of the disease-

free-equilibrium state and show that if ,10 <R  then, the disease-free 

equilibrium is asymptotically stable, otherwise unstable. Finally, a 

sensitivity analysis is performed to determine the relative importance 

of the model parameters to disease transmission and prevalence. The 

paper ends with the numerical simulation to illustrate the theoretical 

results. 

1. Introduction 

The liver is one of the most important organs in the human body and its 

infection causes different diseases like hepatitis B. Hepatitis B is one of the 

most common viral diseases across the world. The risk of becoming chronic 

that leads to the appearance of liver cancer or cirrhosis of the liver makes it a 

serious pathology. Viral hepatitis B is an inflammatory disease of the liver 

caused by the hepatitis B virus. Hepatitis B is a transmissible virus that can 

cause liver ulcerations, liver failure, and liver diseases like cirrhosis or liver 

cancer. It is transmitted sexually but also with the contact of biological fluids 

(the blood, the semen, the love juice ...) in small communities. For example, 

in the family environment, the virus is highly contagious. The hepatitis B 

virus reservoir appears to be strictly human and the virus can resist in the 

external environment for more than 7 days [1]. Hepatitis B is difficult to 

treat. Most of the infected people will not have any symptoms of the 

infection. They are called asymptomatic carriers, they play an important role 

in the transmission of this disease. Hepatitis B manifests in two forms, acute 

(short term: 6 months) or chronic (long term: beyond 6 months) [1]. When a 

person is first infected with the hepatitis B virus, he develops an “acute” 

infection. This acute infection can present different forms of symptoms. The 

acute symptoms can often be mild and may be similar (mistakenly) to those 

of flu. These manifest by fatigue, joint pains, pains in the stomach area, a 
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loss of appetite, nausea and a general feeling of being unwell. In some cases, 

hepatitis B can also cause jaundice, which is a sign of liver dysfunction. It is 

also possible that the infected person does not manifest any symptom. 

The proportion of symptomatic cases of acute hepatitis B increases with 

age while the risk of transition to chronic infection decreases. 

The goal of the treatment against the chronic viral hepatitis B is to 

improve the survival and the quality of patients’ lives and prevent the spread 

of the disease to cirrhosis or to liver cancer and to death. 

The vertical transmission being the frequent mode of HBV 

contamination in countries with high endemicity, screening during 

pregnancy is one of the most effective ways of its elimination. 

In 1927, Kermack and McKendrik [14] applied Ross’ ideas and studied 

the transmission of an infectious disease in humans. In 1991, Anderson and 

May [15] described the effect of carriers on HBV transmission using a 

simple deterministic model. Nokes et al. [16] presented a model for             

the dynamism of hepatitis B transmission. Medley et al. [17] used a 

mathematical model for the elimination of HBV in New Zealand. Khan et al. 

[2] presented an age-structured model for the prediction of the transmission 

of HBV and evaluated the long-term effectiveness of the vaccination 

program in China. 

In this article, we first develop a model of HBV transmission. 

The articles [2] and [3] made it possible to make the following 

modifications which are not taken into account in the model of Medley et al. 

[17]. 

An interaction between the cured compartment and that of the 

susceptible, that is to say that the cured people lose their immunities and 

become sensitive again. 

The infectious class is divided into two stages, such as acute infectious 

stage and chronic infectious stage. So the total population is divided into five 

compartments, namely, ( )tS  susceptible, ( )tE  exposed, ( )tI1  infected by 
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acute hepatitis B, ( )tI2  infected with chronic hepatitis B, and ( )tR  

recovered. After formulating the model, we determine the basic reproduction 

number 0R  and disease-free steady state. We prove that under certain 

conditions, the model is stable. Next, a sensitivity analysis is performed            

to determine the relative importance of the model parameters to disease 

transmission and prevalence. Finally, the theoretical results of the analysis 

are illustrated by a numerical simulation and we end the paper with a 

conclusion. 

2. Formulation of the Model 

In this section, we develop a mathematical model for HBV transmission. 

The diagram of HBV dynamics that we propose for our study is a 

compartmental model (SEIR), like that of Medley et al. [17] to which 

modifications have been made. 

The introduction of vertical transmission decreases the births by an 

amount 12 pbI  which no longer becomes susceptible because the newborns 

resulting from these births become chronic with the vertical transmission, 

which causes the appearance of this quantity 12 pbI  at the level of the 

chronic compartment .2I  

We constructed our diagram by also taking into account the biology of 

HBV and its natural history. Thus, we have the following diagram: 

 
Figure 1. Flow chart of the model of HBV transmission.  
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The model represented by Figure 1, composed of five compartments 

21,,, IIES  and R represents, respectively, the susceptibles’ compartment, 

latent infections, acute infections, chronic carriers and recoveries. 

( )SII 21 θ+δ  indicates the horizontal transmission from class S to class 

E, where δ  is the contact rate and θ  the contagiousness of chronic carriers 

compared to acute infections; 

21Ibp  denotes the vertical transmission of 2I  to 2I  through the birth of 

an individual’s offspring chronic carrier, where b is the birth rate of the 

population and 1p  the proportion of newborns chronic carriers who are 

infected through vertical transmission; 

21Ibpb −  is the flux entering the sensitive class; 

Eα  designates the transition from compartment E to that of ,1I  where 

α  is the acute infection rate of exposed individuals; 

22Iγ  shows the healing of chronic carriers and therefore the passage 

from compartment 2I  to R, where 2γ  is the proportion of acutely infected 

individuals who become chronic carriers; 

Rλ  indicates the progressive loss of immunity of cured individuals who 

pass to the S compartment, where λ  is the rate of loss of immunity of cured 

individuals; 

112 Ip γ  shows the proportion of acutely infected individuals who become 

chronic carriers, where 1γ  is the cure rate of acutely infected; 

( ) 1121 Ip γ−  shows the proportion of acutely infected individuals who 

clear HBV and go from 1I  to R, where ( )21 p−  is the proportion of acutely 

infected individuals who clear HBV; 

0µ  is the natural mortality; 

1µ  denotes mortality due to acute HBV infection; 

2µ  denotes mortality due to chronic HBV infection. 
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Remark. • The population of newborn chronic carriers, born of chronic 

carriers is lower to the sum of the deaths of chronic carriers and the 

population passing from the state of chronic carriers to the state of recovery 

[5]. In this case, we have ,2201 γ+µ+µ<bp  otherwise the chronic 

carriers would continue to increase rapidly as long as there is infection that 

is to say 02 >
dt

dI
 for 02 ≠I  or 01 ≠I  and .0≥t  

• The adequate contact is inferior to sum of the acute hepatitis B 

mortality rate, to the recovery of acutely infected individuals and at the 

contact rate, that is to say α+γ+µ+µ<αδ 110b  because 95% of cases of 

acute infection evolve towards spontaneous healing. 

Thus, we have the following dynamic model: 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )


















µ−λ−−γ+γ=

γ+µ+µ−+γ=

γ+µ+µ−α=

α+µ−θ+δ=

λ+µ−θ+δ−−=

tRtRtIptI
dt

tdR

tItIbptIp
dt

tdI

tItE
dt

tdI

tEtStItI
dt

tdE

tRtStStItItIbpb
dt

tdS

012122

222021121
2

1110
1

021

02121

1

.

,

,

,

 (1) 

with the initial conditions 

( ) ( ) ( ) ( ) ( ) .00;00;00;00;00 21 ≥≥≥≥≥ RIIES  

3. Well Posedness of the System (1) 

The following theorem shows that the model is well-posed. 

Theorem 1. The solutions of system (1) are bounded for 0≥t  that is to 

say: 

( ) .,00

0
R∈







 +µ≤ µµ−
cce

b
etN

tt  
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By letting t tend to ,∞+   

∞<µ≤
0

b
N  which gives: ,

0
21 ∞<µ≤++++ b

RIIES  

where .21 RIIESN ++++=  

Proof. We assume that the population is closed, i.e., 

( ) ( ) ( ) ( ) ( ) ( ),21 tRtItItEtStN ++++=  

which on differentiation and simplification gives 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ).2211210 tItItRtItItEtSb
dt

tdN µ−µ−++++µ−=  

We then get 

( ) ( ) ( ) ( ) .22110 btItItN
dt

tdN =µ+µ+µ+  

And finally, 

 
( ) ( ) btN

dt

tdN <µ+ 0  (2) 

because 0,0,0 121 >>µ>µ I  and .02 >I  

Let 
( ) ( ) 00 =µ+ tN

dt

tdN
 be the homogeneous equation associated with 

the differential inequality (2). 

The solution of our homogeneous equation is: ( ) .,0 R∈= µ−
kketN

t  

Using the method of variation of constants, we have 

( ) ( ) ( ) ( ) ,0000
00 betkbetketketk

tttt =′=µ+µ−′ µ−µ−µ−µ−   

or ( ) ,0t
betk

µ=′  and after integration, we have: ( ) R∈+µ= µ
cce

b
tk

t ,0

0
 

as 
( ) ( ) ,0 btN

dt

tdN <µ+  so ( ) tt
ece

b
tN 00

0

µ−µ







 +µ≤ , i.e., ( ) +µ≤
0

b
tN  
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,0t
ce

µ−  where c is a constant. By letting t tend to ,∞+  we have 

∞<µ≤
0

b
N  

which completes the proof. 

Next, we restrict our study to the following set :π  

( ) .,,,,
0

21
5

21








µ≤++++∈=π +
b

RIIESRIIES
t
R  (3) 

The set π is positively invariant. Therefore, the system is mathematically 

well-posed. Then for the initial starting point ,5
+∈ Rx  the trajectory is 

located in π. Therefore, we will focus our attention only on the π  region. 

Proposition 1. The model (1) has a unique disease-free equilibrium 

point 0E  in π  such that .0,0,0,0,
0

0 







µ= b

E  

Proof. In considering model (1), there is no disease in the population if 

the variables 1, IE  and 2I  are zero, that is to say no infection in the 

population. 

Let 0E  be the disease-free equilibrium point commonly called DFE 

(disease-free equilibrium). For the system (1), replacing 1, IE  and 2I  by 0, 

we obtain 

 

( ) ( ) ( )

( ) ( ) ( )







µ−λ−=

λ+µ−=

.

,

0

0

tRtR
dt

tdR

tRtSb
dt

tdS

 (4) 

A disease-free equilibrium point is in the form ( )0
00 ,0,0,0, RSE =  

with 00 =R  because there is no postponement because there were no sick 

people. 
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And then ( )0,0,0,0,0S  is the solution of the system: 

 
( ) ( ) ( )

( ) ( )






=µ+λ−

λ+µ−=

.0

,

0

0

tR

tRtSb
dt

tdS

 (5) 

Since 
( )

,0=
dt

tdS
 .000 =µ− Sb  Thus, .

0
0 µ= b

S  

4. Basic Reproduction Number 

The basic reproduction number 0R  of model (1) is given as follows: 

( )
( ) ( ) ( ) .

122011000

211220
0 bp

bpbpb

−γ+µ+µγ+µ+µα+µµ
δθαγ+−γ+µ+µαδ=R  (6) 

It can be proved by using the notation of van den Driessche and J. 

Watmough [9] taken up by Sallet [4]. Indeed, we have 















 δθδ

=

000

000

0 00 SS

F  

and 

( )
( )

( )
,

0

0

00

220121

110

0

















γ+µ+µ−γ
γ+µ+µ−α

α+µ−
=

bpp

V  

( ) ( ) ( ) ( )[ ].det 22011100 γ+µ+µ−γ+µ+µα+µ= bpV  
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Since ( ) ,0det ≠V  V is invertible and its inverse is 

( ) ( ) ( )

( ) ( )

( )

( )

( )

( )

,

1

0
1

00
1

1220

1220

110

21

1220

1100

21

1101100

0

1

































−γ+µ+µ−

−γ+µ+µ⋅

γ+µ+µ
γ−

−γ+µ+µ⋅

γ+µ+µα+µ
αγ−

γ+µ+µ−γ+µ+µα+µ
α−

α+µ−

=−

bp

bp

p

bp

p

V  

















=− −

000

000

321
1

KKK

FV  

with 

( ) ( ) ( ) ( ) ( ) ,
12201100

210

1100

0
1 bp

pSS
K

−γ+µ+µγ+µ+µα+µ
αγδθ+

γ+µ+µα+µ
αδ=  

( ) ( ) ( ) ,
1220110

210

110

0
2 bp

pSS
K −γ+µ+µγ+µ+µ

γδθ+γ+µ+µ
δ=  

.
1220

0
3 bp

S
K −γ+µ+µ

δθ=  

The characteristic polynomial of 1−−FV  is: ( ) ( ).1
2

zKzzP −=  

The eigenvalues are as follows: 

,021 == zz  and 

( ) ( )1100

0
3 γ+µ+µα+µ

αδ= S
z  

( ) ( ) ( ) .
12201100

210
bp

pS

−γ+µ+µγ+µ+µα+µ
αγδθ+  
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Therefore, 

( ) ( )1100

0
0 γ+µ+µα+µ

αδ= S
R  

( ) ( ) ( )12201100

210
bp

pS

−γ+µ+µγ+µ+µα+µ
αγδθ+  

which means 

( )
( ) ( ) ( ) .

122011000

211220
0 bp

bpbpb

−γ+µ+µγ+µ+µα+µµ
δθαγ+−γ+µ+µαδ=R  

We know that ,2201 γ+µ+µ<bp  that is to say 1220 bp−γ+µ+µ  

0>  so .00 >R  

5. Local Stability 

The stability of the steady state without disease 0E  is governed by the 

reproduction basic number of .0R  

Proposition 2. The equilibrium 







µ= 0,0,0,0,

0
0

b
E  is locally 

asymptotically stable if 10 <R  and unstable if .10 >R  

Proof. Let ( ) ( ),,,,,,,,, 5432121 fffffRIIESf =  where 

( ) ( ) ( )( ) ( ) ( ) ( );021211 tRtStStItItIbpbf λ+µ−θ+δ−−=  

( ) ( )( ) ( ) ( ) ( );0212 tEtStItIf α+µ−θ+δ=  

( ) ( ) ( );11103 tItEf γ+µ+µ−α=  

( ) ( ) ( ) ( );2220211214 tItIbptIpf γ+µ+µ−+γ=  

( ) ( ) ( ) ( ) ( );1 0121225 tRtRtIptIf µ−λ−−γ+γ=  
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.

5

2

5

1

555

4

2

4

1

444

3

2

3

1

333

2

2

2

1

222

1

2

1

1

111

































∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

R

f

I

f

I

f

E

f

S

f

R

f

I

f

I

f

E

f

S

f

R

f

I

f

I

f

E

f

S

f

R

f

I

f

I

f

E

f

S

f

R

f

I

f

I

f

E

f

S

f

J f  

That is to say, 

( ) ( )
( ) ( )

( )
( )

( ) ( )

,

100

000

000

0

0

0221

220121

110

021

1021























λ+µ−γ−γ
γ+µ+µ−γ

γ+µ+µ−α
δθδα+µ−θ+δ

λδθ+−δ−µ−θ+δ−

=

p

bpp

SSII

SbpSII

J f  

 (7) 

( )

( )

( )

( )

( ) ( )































λ+µ−γ−γ

γ+µ+µ−γ

γ+µ+µ−α

µ
δθ

µ
δα+µ−

λ







µ
δθ+−µ

δ−µ−

=

0221

220121

110

00
0

0
1

0
0

0

100

000

000

00

0

p

bpp

bb

b
bp

b

EJ f  (8) 

or 

 ( ) ( )[ ]

( )

( )

( )

.

0

0

122021

110

00
0

000





















−γ+µ+µ−γ

γ+µ+µ−α
µ
δθ

µ
δα+µ−

λ+µ−µ−=

bpp

bb

EJ f  (9) 
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Two eigenvalues 1z  and 2z  of ( )0EJf  are negative, 01 µ−=z  and 

( ).02 λ+µ−=z  For the rest of eigenvalues, we consider the following 

33 ×  matrix: 

( )

( )

( )

.

0

0

122021

110

00
0























−γ+µ+µ−γ

γ+µ+µ−α

µ
δθ

µ
δα+µ−

=

bpp

bb

B  (10) 

The characteristic polynomial of the matrix B is given by 

( ) ( ) ( ) ( )[ ]11001220
23 γ+µ+µ+α+µ+−γ+µ+µ−−= bpzzzP  

( ) ( ) ( ) ( )

 −γ+µ+µα+µ+γ+µ+µα+µ− 122001100 bpz  

       ( ) ( ) 


µ

αδ−−γ+µ+µγ+µ+µ+
0

1220110
b

bp  

( )
0

211220
µ

δθαγ+−γ+µ+µαδ+ bpbpb
 

( ) ( ) ( ).12201100 bp−γ+µ+µγ+µ+µα+µ−  

We then obtain the following characteristic equation: 

( ) ( ) ( )[ ]11001220
23 γ+µ+µ+α+µ+−γ+µ+µ+ bpzz  

( ) ( ) ( ) ( )

 −γ+µ+µα+µ+γ+µ+µα+µ+ 122001100 bpz  

( ) ( ) 


µ

αδ−−γ+µ+µγ+µ+µ+
0

1220110
b

bp  

( )
0

211220
µ

δθαγ+−γ+µ+µαδ− bpbpb
 

( ) ( ) ( ) .012201100 =−γ+µ+µγ+µ+µα+µ+ bp  
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Set 

( ) ( ) ( ),110012201 γ+µ+µ+α+µ+−γ+µ+µ= bpa  

( ) ( ) ( ) ( )1220011002 bpa −γ+µ+µα+µ+γ+µ+µα+µ=  

( ) ( )
0

1220110 µ
αδ−−γ+µ+µγ+µ+µ+ b

bp  

and 

( )
0

211220
3 µ

δθαγ+−γ+µ+µαδ−= bpbpb
a  

( ) ( ) ( ).12201100 bp−γ+µ+µγ+µ+µα+µ+  

Then 

( ) ( ) ( ),110012201 γ+µ+µ+α+µ+−γ+µ+µ= bpa  

01 >a  because ( ) ( ) 0,0 01220 >α+µ>−γ+µ+µ bp  and 

( ) ,0110 >γ+µ+µ  

( ) ( )11002 γ+µ+µα+µ=a  

( ) ( ) ,2
0

1101220 µ
αδ−α+γ+µ+µ−γ+µ+µ+ b

bp  

02 >a  because .110 α+γ+µ+µ<αδb  

Therefore, it is obvious that 

( ) ( ) ( ) ( ) ,
0

11012201100 µ
αδ>α+γ+µ+µ−γ+µ+µ+γ+µ+µα+µ b

bp  

( )
0

211220
3 µ

δθαγ+−γ+µ+µαδ−= bpbpb
a  

( ) ( ) ( )12201100 bp−γ+µ+µγ+µ+µα+µ+  

( )
( ) ( ) ( ) ,1

122011000

211220 +−γ+µ+µγ+µ+µα+µµ
δθαγ+−γ+µ+µαδ−=

bp

bpbpb
 

,103 +−= Ra  
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03 >a  if ,10 <R  

( )1220321 bpaaa −γ+µ+µ=−  

( ) ( ) 





µ

αδ−α+γ+µ+µ−γ+µ+µ⋅
0

1101220 2
b

bp  

( ) ( )[ ]11002 γ+µ+µα+µ+ a  

( )
,

0

211220
µ

δθαγ+−γ+µ+µαδ+ bpbpb
 

0321 >− aaa  because adequate contact is known to be less than the sum of 

the mortality rate due to acute hepatitis B, to the cure rate of acutely infected 

individuals and the contact rate, that is to say that ,110 α+γ+µ+µ<αδb  

and hence ( )( ) 02
0

1101220 >µ
αδ−α+γ+µ+µ−γ+µ+µ b

bp  and .02 >a  

It results from the Routh-Hurwitz [10] criteria that the eigenvalues of the 

matrix B have also real negative parts because ,01 >a  0321 >− aaa  and 

03 >a  if .10 <R  Consequently, the equilibrium without disease of model 

(1) is locally and asymptotically stable if 10 <R  and unstable if .10 >R  

6. Sensitivity Analysis 

In determining how best to tackle hepatitis B and reduce hepatitis B 

mortality, it is necessary to know the relative importance of the different 

factors responsible for its transmission and prevalence. Initial disease 

transmission is directly related to ,0R  and disease prevalence is directly 

related to the disease-free equilibrium point [11]. 

Sensitivity analysis tells us how important each parameter is to disease 

transmission. Such information is crucial not only for experimental design, 

but also to data assimilation and reduction of complex nonlinear models 

[12]. 
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Definition. The normalized forward sensitivity index of a variable u that 

depends continuously on a parameter p is defined as: 

.
u

p

p

uu
p ⋅∂

∂=γ  

Sensitivity analysis is also commonly used to determine the robustness 

of model predictions to parameter values, as there are usually errors in data 

collection and presumed parameter values. However, as we do not use               

our model to make predictions, we do not utilize this aspect of sensitivity 

analysis. 

Table 1. Baseline values of the parameters used in sensitivity analysis and 

numerical simulation 
    

Parameters Descriptions Values Reference 
    

b Population birth rate 0.000121 [3] 

δ  Contact or transmission rate 0.8-20.49 [3] 

θ  Infectiousness of carriers relative to acute infections 0.1 [3] 

α  Rate of moving from exposed to acute 6 [3] 

1γ  Cure rate of acutely infected individuals 4 [3] 

2γ  Cure rate of chronic carriers 0.06 [2] 

λ  Rate of loss of immunity of cured individuals 0.03-0.06 [3] 

1p  
Proportion of neonates of chronic carriers 

who are infected by vertical transmission 
0.11 [3] 

2p  
Proportion of acutely infected individuals 

who become chronic carriers 
0.05-0.9 [3] 

21 p−  
Proportion of acuted infected individuals 

who clear HBV 
0.1-0.95 assumed 

0µ  Natural mortality rate 1/(365 × 60) assumed 

1µ  Mortality rate due to acute HBV infection 0.002-0.004 [2] 

2µ  Mortality rate due to chronic HBV infection 0.5 [2] 

0S  Sensitive individuals 100 [13] 

0E  Exposed individuals 30 [13] 

1I  Acute infected individuals 20 [13] 

2I  Chronic HBV carriers 5 [13] 

0R  Recovered individuals 10 [13] 
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Table 2. Variables used in the model 
  

Variables Biological description 
  

S Individuals susceptibles to contracting the disease 

E Latent infected individuals who will progress to an acutely infected state 

1I  Acute infected individuals 

2I  Chronically infected individuals 

R Cured individuals likely to lose immunity 

N Total population: RIIESN ++++= 21  
  

As we have an explicit expression for ,0R  we can evaluate the 

sensitivity of 0R  to the eleven different parameters described in Table 1 as, 

0

00
R

RR p

pp ⋅∂
∂=γ  to provide an analytical expression for the sensitivity 

index [11]. 

Given the explicit formula (5) for ,0R  we can easily derive an 

analytical expression for the sensitivity of 0R  with respect to each 

parameter that comprises it. The obtained values are described in Table 1, 

which presents the sensitivity indices for the baseline parameter values that 

we use for numerical analysis. 

Table 3. Sensitivity indices of 0R  to parameters for baseline parameter 

values given in Table 1 for the parameters depending of 0R  
  

Parameters Sensitivity index 
  

b +1 

δ  +1 

θ  +0.0345 

α  +7.6103e–6 

1γ  –0.7366 

2γ  –0.0282 

1p  +6.2541 e–6 

2p  +0.2631 

0µ  –1 

1µ  –2.4993 e–4 

2µ  –0.2349 
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After the sensitivity analysis of ,0R  we find that the sensitive 

parameters are b and .δ  These parameters must be estimated carefully 

because a small variation in these parameters will cause large quantitative 

changes. 

As the disease-free equilibrium 0E  depends only on b and ,0µ  then 

these parameters are also the sensitive parameters of .0E  

7. Numerical Simulation 

In this section, we verify some of our analytical results by using the 

numerical method. The simulation of our article must be considered from a 

qualitative point of view but not from a quantitative point of view. 

The parameters used in the numerical simulations are collected from the 

literature and some are assumed with biologically achievable values (see 

Table 1). 

The initial conditions 0.20.100 ,,, IIES  and 0R  are all positive. 

Here, we offer to view the numerical simulations of model (1). The 

acknowledged graphs portray the dynamics of the susceptible population,  

the latent population, the HBV acute infected population, the chronic 

population, and the recovered population, respectively. 

Consequently, we acquired the results shown in Figures 2 to 7. 

In Figure 2, the graph shows that the susceptible population first 

decreases because individuals become infected with hepatitis B and then 

increases over time because recovered individuals gradually lose their 

immunity and become susceptible again. 
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Figure 2. The plot appears as the dynamics of hepatitis B susceptible 

individuals ( ).tS  

In Figure 3, the latent population gradually decreases over time as shown 

in the plot because it moves into the acutely infected compartment. 

 

Figure 3. The plot shows the dynamics of hepatitis B latent individuals 

( ).tE  
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In Figure 4, acutely infected individuals also gradually decrease over 

time as the plot appears as they progress to either the chronic or the 

recovered compartment. 

 
Figure 4. The plot represents the dynamics of hepatitis B acute infected 

individuals ( ).1 tI  

In Figure 5, the chronic individuals also gradually decrease over time as 

the plot indicates because they evolve into the recovered compartment. 

 
Figure 5. The plot appears the dynamics of hepatitis B chronic individuals 

( ).2 tI  
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In Figure 6, the recovered individuals gradually increase and then 

decrease over time as shown in the plot because they move into the 

compartment of susceptible individuals. 

 

Figure 6. The plot shows the dynamics of hepatitis B recovered individuals 

( ).tR  

In Figure 7, we summarize the dynamics of susceptible, latent, acute, 

chronic, and recovered individuals. 

 

Figure 7. The plot shows the dynamics of hepatitis B for all five 

compartments. 
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The decrease in individuals in the latent, acute and chronic infected 

compartments shows that the disease will disappear over time. The increase 

in individuals in the recovered compartment shows that individuals recover 

from hepatitis B but the decrease shows that these recovered individuals 

gradually lose their immunities and become susceptible again, hence the 

increase in individuals in the susceptible class. 

8. Conclusion 

In this paper, a deterministic model is formulated to describe hepatitis B 

virus transmission in a population. After formulating the model, we found 

the basic reproduction number 0R  which made possible to predict whether 

the disease will disappear ( )10 <R  or persist ( ).10 >R  Sensitivity analysis 

shows that parameters b, δ and 0µ , i.e., respectively, the population birth 

rate, the transmission rate and the natural mortality rate are sensitive 

parameters and a small variation of these will lead to a large change in 

disease transmission dynamics. The numerical simulation has permitted to 

confirm the theoretical results obtained from the analysis. The numerical 

results also showed that latent, acute and chronic infected individuals 

recover spontaneously or after medical intervention but gradually lose their 

immunity and become susceptible again. Some medical research must be 

carried out in order to allow individuals recovered of hepatitis B to retain 

their immunity for life. 
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