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Abstract 

We determine the state at an instant ,0T  of a 2D heat problem whose 

initial condition is partially known on a part of the domain. We use a 

non-standard method to solve this problem numerically. 

0. Introduction 

The heat problem can translate the evolution of the temperature in an 

open domain Ω  of :3,2,1, =n
n
R  
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where A is the Laplacian operator, f is a source function, 0u  is the initial 

condition and .0>T  

The problem (1) is said to be well-posed (in the sense of Hadamard) if it 

admits a unique solution depending continuously on the data [9]. In practice, 

most often we are confronted with the situation: 
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where the condition 0u  is partially known. 

The evolution of the temperature cannot be studied from the problem 

(2). We need to know completely u at a time ] [.,00 TT ∈  We assume to 

have observations obsu  of the state of the system such that 

 obsuu =  in [ ],,0 0T×ω  (3) 

where Ω⊆ω  is nonempty. 
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Can we determine ( )0Tu  in ?Ω  We provide an answer to this historical 

question. Classical methods of variational data assimilation can be used to 

find a solution [3-7]. These methods are based on the resolution of an 

optimization problem through the adjoint model of the problem. This 

procedure requires a regularization of the functional by a priori information. 

These are not accessible in practice [1, 10, 15]. There are other so-called 

non-standard assimilation methods that circumvent this difficulty. Nudging 

is a method of data assimilation based on dynamic relaxation, with the aim 

of fitting the model and constraining it towards the observations [14]. 

Optimal interpolation (OI) is a system of equations where the fundamental 

assumption is that for each variable of the model at each grid point, a 

reduced number of observations is taken into account to perform the analysis 

[8, 11, 13]. 

We present a non-standard method to easily generate a numerical 

approximation of ( ).0Tu  This method has two advantages, that of covering 

( )0Tu  in Ω  and that of obtaining a good approximation of the state of the 

system (2) better than the observations .obsu  Indeed, the latter are marred  

by measurement errors. We were able to implement the method in 1D 

dimension [2], in this work, we intend to extend it in higher dimension. 

1. Problem Formulation 

Consider the heat problem 
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where Ω  is a regular open set of 2
R  and ( ( )).;,0,0 2

0
2

0 Ω∈> LTLfT  

Let Ω⊆ω  be a nonempty open set and obsu  an observation function 

defined in [ ].,0 0T×ω  We consider ( )tyxu ,,  solution of the system (4) 

satisfying the relation 
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 obsuu =  in [ ].,0 0T×ω  (5) 

We propose to identify ( )0Tu  in .Ω  

Multiplying the heat equation of the system (4) by a sufficiently regular 

function ϕ  and integrating over Q, we have 
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Given ( ),ˆ 2 Ω∈ϕ L  consider ϕ  solution of the controlled adjoint problem 
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where ωχ  is a characteristic function and ( ( ))ω∈ 2
0

2 ;,0 LTLv  represents 

the control, then equation (6) becomes 

( ) ( ) ( ) .00ˆ
0 0

0 0
0     Ω Ω Ω Ωω ϕ=ϕ−ϕ+⋅χ

T T
fuTuvu  (8) 

Since ( )0u  is not known, we can look for solution ϕ  of the controlled 

problem (7) such that 

 ( ) 00 =ϕ  in .Ω  (9) 

Taking this condition, we obtain the following integral equation: 

 ( )    Ω Ω ω
−ϕ=ϕ

0 0

0 0
0 .ˆ

T T

obsvufTu  (10) 
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Solving the problem (7) for zero controllability amounts solving the 

minimization problem 

 ( )
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under the constraint (7), where 
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Thus vϕ  is the solution of the problem (7) for the control v and the final 

state ϕ̂  is fixed. 

Characterization 

For all ,0>β  there is a unique solution ( ( ))ω∈β
22 ;,0 LTLv  of the 

problem (11) which is characterized by the following optimality problem: 

There exists ( ( ))Ω∈β
1
0

1 ;,0 HTCp  such that 

 βωβ
β ⋅χ=ϕ∆−∂

ϕ∂
− v

t
 in ( ),,0 0TQ ×Ω=  (13a) 

0=ϕβ  on ( ),,0 0T×Ω∂  (13b) 

( ) ϕ=ϕβ ˆ0T  in ,Ω  (13c) 

0=∆−∂
∂

β
β

p
t

p
 in ( ),,0 0T×Ω  (13d) 

0=βp  on ( ),,0 0T×Ω∂  (13e) 

( ) ( )0
1

0 ββ ϕβ−=p  in ,Ω  (13f) 

0=− ββ vp  in ( ).,0 0T×ω  (13g) 
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Indeed, we have the following result: 

Theorem 1.1 [12]. The sequences ( )βv  and ( )βϕ  converge, respectively, 

in ( ( ))ω2
0

2 ;,0 LTL  and in ( ( ))Ω1
00

2 ;,0 HTL  when .0→β  More precisely, 

vv →β  in ( ( ))ω2
0

2 ;,0 LTL  

and 

ϕ→ϕβ  in ( ( )).;,0 1
0

2 ΩHTL  

In addition, we have 
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and 

 ( ) 00 =ϕ  in .Ω  (15) 

2. Numerical Experiments 

The discretization in space is based on the pseudo spectral method with 

Chebyshev collocation points. 

The solution is well known on the boundary of .Ω  However, we            

are interested in the interior points. Let ( ) ( ).1,11,1 −×−=Ω  Consider 

( ) ( )211, −≤≤ Niii yx  the interior points of the grid of domain Ω  and let 

( ).ˆ 2 Ω∈ϕ L  Let =µi  ( ),,ˆ ii yxϕ  and for ( ) ,1...,,1
2−= Nk  we introduce 

the following functions: 

( ) [ ] [ ] R→−×−ϕ 1,11,1:ˆ k  

such that 

 ( )( )
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For every k, there is a control k
v  such that the corresponding solution 

( )kϕ  of the problem (7), where v is replaced by ( )k
v  and ϕ̂  by ( ),ˆ kϕ  satisfies 

( )( ) .00 =ϕ k  

Thus, for all ( ) ,1...,,1
2−= Nk  the relation (10) becomes 

 ( ) ( ) ( ) ( )
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Consider ( ) Mjjt ...,,0=  a regular subdivision of ( )0,0 T  such that =∆t  

,0

M

T
 .∗∈ NM  Performing a numerical integration, for ( ) ,1...,,1

2−= Nk  

equation (17) implies 
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Taking ϕ̂  such that ( )( ) 0,ˆ ≠ϕ kk
k

yx  for all ( ) ,1...,,1
2−= Nk  the 

system of equation (18) gives an approximation of the final state ( )0Tu           

at the collocation points ( ) ( ) ., 211 −≤≤ Niii yx  However, determining ( )0Tu  

requires computing ( )k
v  and ( )kϕ  such that ( )( ) .00 =ϕ k  

Let 

( ) ( ( )( ) ( )( ) ( )( ( ) ( ) ))TjNN

k
j

k
j
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tyxtyxtyx ,,...,,,,,,, 22 112211

,

−−
ϕϕϕ=ψ  

be the solution vector of the numerical scheme of the system (7). 
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( ) ( ) ( ) ( )

( ) ( )







ψ=ψ

−==ψ−
∆

ψ−ψ−
+

,ˆ

,0...,,1,

,

,,
,1,

kMk

jkjk
jkjk

MjVD
t  (19) 

where D is the pseudo-spectral differentiation matrix associated with the 

Laplacian operator .∆  

( ) ( ( )( ) ( )( ) ( )( ( ) ( ) ))TjNN

k
j

k
j

kjk
tyxvtyxvtyxvV ,,...,,,,,,, 22 112211

,

−−
=  

 (20) 

is the control vector at time ,...,,1,0, Mjt j =  where ( )( ) 0,, =jmm
k

tyxv  

if ( ) .\, ωΩ∈mm yx  

The system (19) can be rewritten in the form 
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Solving (21) requires knowledge of ( ) ., jk
V  

Determine an approximate solution of the problem (13d)-(13f) by 

solving the numerical scheme 
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where ( )( )0kϕβ  is chosen such that its norm is close to zero and β  is as 

close to zero as possible. 

Let Λ  be a diagonal matrix such that 
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Thus, the control vector is generated by 

 ( ) ( ) ....,,1,,,
MjPV

jkjk =Λ=  (24) 

For ( ) ,00, =ψ k  it suffices that 

 ( ) ( ) .00,1, =∆+ψ kk
tV  (25) 

By fixing the parameters N and M, we can generate an approximation of 

the state ( )0Tu  at the collocation points of Ω  by the following algorithm: 

(1) that is β  quite small 

(2) For ( )2
1...,,1 −= Nk  

• Give kµ  nonzero real 

• give vector 
( )k
βϕ  such as 

( )

β
ϕβ

k

 is bounded by a constant 

• Calculate 
( )k

pβ  system fix (22) 

• Generate 
( ) ( )

MjPV
jkjk ...,,1,,, =Λ=  (formula (24)) 

• Calculate 
( ) 1...,,,,

Mj
jk =ψ  (formula (21)) 

• Determine 
( ) ( ) 1,0, 1 kk

t
V ψ∆−=  from equation (25) 

(3) Calculate ( ) ( )kk yxTu ,0  from (18). 

 End 

For the validation of the numerical scheme, we consider the problem (4) 

with ( ) ( ) ( ) ( ),sinsin,, 2
yxetyxf

t ππα−πλ= α−  ( ) ( )1,11,1 −×−=Ω  and 

.10,
10

1 k
k eT

−−=µ=  The observation function obsu  is obtained by the 
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twin experiment method. It is generated from a random perturbation of the 

values of the exact solution. 

When Ω=ω  and ,0 TT =  the method makes it possible to best 

approach the exact solution instead of being satisfied with observation 

measurements which are generally marred by errors. 

 

Figure 1. Observations Uobs and exact state Uexomega on Ω  at time 0=t  

(on the left), at time 08.0=t  (on the right). 

We evaluate the error between the exact state and the observations as a 

function of time ( ) ( ) ,∞−= jobsjex tUtUEr  ....,,0 Mj =  The behavior 

of this curve (2) reflects the randomness used to generate the observations. 

 

Figure 2. Maximum deviation between system state and observations. 
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Before carrying out the determination of an approximation of ( )0Tu  on a 

domain ω  fixed, we study the variation of the errors according to .ω  

 

 

 

Figure 3. A variation of the domain of observations .ω  
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Error in infinite norm, at time ,0T  on a variation of ,ω  is given by 

( ) ( ) ,00 ∞−= TUTUEr obsexExactObs  

( ) ( ) ,00
Ω
∞

−= TUTUEr appexExactAppGo  

( ) ( ) .00
ω
∞

−= TUTUEr appexExactAppPo  

Figure 4 represents the error curves by varying the domain of 

observations ω  with a constant discretization of the domain .Ω  This figure 

shows us a clear difference between the approximate state and the 

observations compared to the exact state of the system on .ω  Indeed, the 

observation error curve increases according to the number of discretization 

points on ω  contrary to that of error relating to the approximated state on 

the same domain. The error curve of the approximate state on Ω  is globally 

decreasing and tends towards zero. This representation can guide our     

choice of the number of observation points necessary to have an excellent 

approximation of the state of the system on .Ω  

 

Figure 4. Error in infinite norm, at time ,0T  on a variation of .ω  
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To determine an approximation of the state of the system at time 0T  on 

,Ω  we set the following parameters: 

,25=N    ,10=M    ,1 π=λ    ,01.=α    .10 24−=β  

Choice of observation domain :ω  On this domain, there are 9 data 

collection points. 

 

Figure 5. At time :0T  the exact state (left), observation (middle), and 

approximation of the state (right). 

3. Conclusion and Perspectives 

We are interested in this article in the approximation of the state of a 

heat problem with incomplete data in time .0T  Among several methods that 

exist, we have opted the non-standard methods for our resolution. 

The discretization in space is based on the Chebyshev pseudo-spectral 

method and the discretization in time being taken like regular. The numerical 

tests carried out show a good stability of our numerical scheme. This method 

allowed us to obtain an excellent approximation of ( )0Tu  without going 

through an optimization process that requires a priori information. We can 

improve the numerical scheme by trying to use the best tools in terms of 

numerical scheme of PDEs and numerical integration. We can also extend 

the method to nonlinear PDEs or to Ω  domains with complex geometry. 



ABANI MAIDAOUA Ali, DJIBO Moustapha and SALEY Bisso 212 

References 

 [1] A. F. Bennett, Inverse Modeling of the Ocean and Atmosphere, Cambridge 

University Press, Cambridge, 2002. 

 [2] Abani Maidaoua Ali, Dia Bassirou, Diop Oulimata, Sembene Ama Diop Niang 

and Benjamin Mampassi, Solving an incomplete data inverse problem by                  

a pseudo-spectral approximation method with a non standard approach, 

International Journal of Numerical Methods and Applications 18(2) (2019), 9-21. 

 [3] K. J. Beven and J. Freer, Equifinality, data assimilation, and uncertainty 

estimation in mechanistic modelling of complex environmental systems using the 

GLUE methodology, Journal of Hydrology 249 (2001), 11-29. 

 [4] D. H. Burn and D. B. Boorman, Estimation of hydrological parameters at 

ungauged catchments, Journal of Hydrology 143 (1992), 429-454. 

 [5] D. G. Cacuci, Sensitivity theory for nonlinear systems: I. Nonlinear functional 

analysis approach, J. Math. Phys. 22 (1981), 2794-2802. 

 [6] D. G. Cacuci, Sensitivity theory for nonlinear systems: II. Extensions to additional 

classes of responses, J. Math. Phys. 22 (1981), 2803-2812. 

 [7] D. G. Cacuci, Sensitivity analysis, optimization, and global critical points, United 

States, 1989, pp. 602-603. 

 [8] R. Daley, Atmospheric Data Analysis, Cambridge University Press, 1991. 

 [9] Jacques Hadamard, On partial differential problems and their physical 

significance, Princeton University Bulletin, 1902, pp. 49-52. 

 [10] E. Kalnay, S. Ki Park, Z.-X. Pu and J. Gao, Application of the quasi-inverse 

method to data assimilation, Month. Weather Rev. 128 (2000), 864-875. 

 [11] L. S. Gandin, Objective Analysis of Meteorological Fields, 

Gidrometeorologicheskoe Izdatelstvo, Leningrad, 1963, Translation by Israel 

Program for Scientific Translations, Jerusalem, 1965, 242 pp. 

 [12] Jean-Pierre Puel, A non standard approach to a data assimilation problem           

and Tychonov regularization revisited, SIAM J. Control Optim. 48(2) (2009), 

1089-1111. 

 [13] A. C. Lorenc, A global three-dimensional multivariate statistical interpolation 

scheme, Quart. J. Roy. Meteor. Soc. 109 (1981), 701-721. 

 [14] D. Luenberger, Observers for multivariable systems, IEEE Trans. Automat. 

Control 11 (1966), 190-197. 

 [15] O. Talagrand, Assimilation of observations, an introduction, J. Met. Soc. Japan 

75(1B) (1997), 191-209. 


